CN106629702A - 一种高循环天然石墨负极材料的加工方法 - Google Patents

一种高循环天然石墨负极材料的加工方法 Download PDF

Info

Publication number
CN106629702A
CN106629702A CN201611195178.1A CN201611195178A CN106629702A CN 106629702 A CN106629702 A CN 106629702A CN 201611195178 A CN201611195178 A CN 201611195178A CN 106629702 A CN106629702 A CN 106629702A
Authority
CN
China
Prior art keywords
natural graphite
processing method
negative electrode
electrode material
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201611195178.1A
Other languages
English (en)
Inventor
陈然
谢秋生
仲林
张鹏昌
吴志红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Shanshan Technology Co Ltd
Original Assignee
Shanghai Shanshan Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Shanshan Technology Co Ltd filed Critical Shanghai Shanshan Technology Co Ltd
Priority to CN201611195178.1A priority Critical patent/CN106629702A/zh
Publication of CN106629702A publication Critical patent/CN106629702A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/02Particle morphology depicted by an image obtained by optical microscopy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/10Solid density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明涉及石墨负极材料技术领域,具体地说是一种高循环天然石墨负极材料的加工方法,其特征在于,采用如下制备步骤:(1)、混合:将天然石墨原料与改性剂按质量比100∶0~30均匀混合,得混合物;(2)、等静压处理;(3)、粉碎;(4)、表面改性;(5)、冷却分级。本发明与现有技术相比,对天然石墨进行致密化改性,改性剂在外压作用下进入材料内部,填充空隙,经过热处理后,改性剂形成非晶炭或人造石墨的稳定结构,这一结构相比于天然石墨的高石墨化度层结构,对电解液的抗性更好,尤其在高倍率充放电时,使整个材料的循环性能明显提高;且本发明工艺简单,加工时间短,效率高,利于实现高产能,具有环境友好,操作安全的优点。

Description

一种高循环天然石墨负极材料的加工方法
技术领域
本发明涉及石墨负极材料技术领域,具体地说是一种高循环天然石墨负极材料的加工方法。
背景技术
锂离子二次电池具有输出电压高、存储性能好、无记忆效应、能量密度大等优点,已广泛应用于便携式电子产品及消费类电子产品中,并且已在电动工具和电动汽车领域显示出更广阔的需求。
锂二次电池主要由正极、负极、隔膜和电解液组成。其中,虽然负极仅占电池成本的5%左右,但其对电池的整体性能起直接而重要影响。从应用的可行性角度讲,目前负极主要分石墨类和合金类材料。合金类主要指硅炭,由于引入了硅,其在能量密度上相比石墨类具有很大优势,但是循环和膨胀一直是未能完满解决的问题。目前,硅炭已经在一定规模上实现产业化。
石墨类负极一直是占据市场的主流材料,从原料的来源上分为人造石墨和天然石墨两类。人造石墨膨胀较小,循环较好,价格也较为昂贵。天然石墨成本低廉、容量较高,但膨胀和循环较差,这限制其应用范围。相比人造石墨,天然石墨拥有更高的石墨化度,层间距更小,嵌锂脱锂过程中,体积变化更大,易发生层离,造成循环变差。针对这一点,目前可以通过表面改性有效改善。然而,天然石墨的炭层一般都为卷曲结构,材料内部多少都会存在一些空隙。材料在膨胀时,电解液会逐渐渗透到内部,反应产生新的SEI膜,消耗电解液,造成容量不可逆衰减。同时,这还会使材料内部出现层离,加快容量衰减。针对此因素对循环性能的恶性影响,目前仍未能找到合适的处理方式实现改性。为了实现天然石墨的高循环性能,有必要对天然石墨进行致密化改性。
发明内容
本发明的目的是克服现有技术的不足,提供一种工艺简单、条件温和、操作方便、安全性高的改性锂离子电池石墨负极材料的制备方法。
实现上述目的,设计一种高循环天然石墨负极材料的加工方法,其特征在于,采用如下制备步骤:
(1)、混合:将天然石墨原料与改性剂按质量比100∶0~30均匀混合,得混合物;所述的天然石墨原料为单颗粒天然石墨、复合颗粒天然石墨的其中一种或两种混合物;所述的天然石墨原料的平均粒径6~30μm,比表面积≤15m2/g,振实密度≥0.70g/cm3,压实密度17MPa时≥1.50g/cm3;所述的改性剂为重质油;
(2)、等静压处理:将混合物进行等静压处理;
(3)、粉碎:将等静压处理后的物料进行粉碎或打散处理;粉碎或打散处理后物料平均粒径∶等静压处理前平均粒径=1.00~1.10;
(4)、表面改性:将粉碎或打散处理后的物料与表面改性剂,按质量百分比70~97%∶3~30%进行均匀混合,再在惰性气氛下,以1000℃~3000℃进行热处理2~5h;所述的表面性剂采用重质油或沥青或重质油与沥青组合物;
(5)、冷却分级:对表面改性后的物料冷却后进行分级,即得负极材料。
所述等静压处理采用冷等静压设备或温等静压设备,等静压处理温度范围为室温~200℃,处理压力为50~300MPa,处理时间为1~30min。
所述的惰性气氛为氮气。
所述的重质油在常温下为液态,550℃结焦值为10%~25%。
所述沥青采用550℃结焦值为30%~80%的低温、中温或高温沥青。
本发明与现有技术相比,对天然石墨进行致密化改性,改性剂在外压作用下进入材料内部,填充空隙,经过热处理后,改性剂形成非晶炭或人造石墨的稳定结构,这一结构相比于天然石墨的高石墨化度层结构,对电解液的抗性更好,尤其在高倍率充放电时,使整个材料的循环性能明显提高;且本发明工艺简单,加工时间短,效率高,利于实现高产能,同时也具有环境友好,操作安全的优点。
附图说明
图1为仅表面改性的球形天然石墨极片的1000倍显微镜下的截面形貌图。
图2为仅表面改性的球形天然石墨极片的3000倍显微镜下的截面形貌图。
图3为本发明实施例3中制备的高循环天然石墨负极材料的1000倍显微镜下的截面形貌图。
图4为本发明实施例3中制备的高循环天然石墨负极材料的3000倍显微镜下的截面形貌图。
图5为本发明实施例6中制备的高循环天然石墨负极材料的1000倍显微镜下的截面形貌图。
图6为本发明实施例6中制备的高循环天然石墨负极材料的3000倍显微镜下的截面形貌图。
具体实施方式
现结合附图对本发明作进一步地说明。所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
将平均粒径为9.5μm的球形天然石墨与沥青按100∶0的质量比混合,用冷等静压设备在70MPa下处理5min,之后将物料碾碎投入气流粉碎机粉碎至平均粒径为9.5μm。将粉碎后的物料与沥青按质量比95∶5进行混合,之后对该混合物在氮气气氛下进行1150℃热处理2h,冷却后分级处理制备得负极材料。
实施例2
将平均粒径为9.5μm的球形天然石墨与沥青按100∶0的质量比混合,用冷等静压设备在130MPa下处理5min,之后将物料碾碎投入气流粉碎机粉碎至平均粒径为9.5μm。将粉碎后的料与沥青按质量比95∶5进行混合,之后对该混合物在氮气气氛下进行1150℃热处理3h,冷却后分级处理制备得负极材料。
实施例3
将平均粒径为9.5μm的球形天然石墨与沥青按100∶0的质量比混合,用冷等静压设备在200MPa下处理5min,之后将物料碾碎投入气流粉碎机粉碎至平均粒径为9.5μm。将粉碎后的料与沥青按质量比95∶5进行混合,之后对该混合物在氮气气氛下进行1150℃热处理5h,冷却后分级处理制备得负极材料。
实施例4
将平均粒径为9.5μm的球形天然石墨与重质油按100∶10的质量比均匀混合,用冷等静压设备在70MPa下处理5min,之后将物料碾碎投入气流粉碎机粉碎至平均粒径为9.5μm。将粉碎后的物料与沥青按95∶5进行混合,之后对该混合物在氮气气氛下进行1150℃热处理3h,冷却后分级处理制备得负极材料。
实施例5
将平均粒径为9.5μm的球形天然石墨与重质油按100∶10的质量比均匀混合,用冷等静压设备在130MPa下处理5min,之后将物料碾碎,投入气流粉碎机粉碎至平均粒径为9.5μm。将粉碎后的料与沥青按质量95∶5进行混合,之后对该混合物在氮气气氛下进行1150℃热处理4h,冷却后分级处理制备得负极材料。
实施例6
将平均粒径为9.5μm的球形天然石墨与重质油按100∶10的质量比均匀混合,用冷等静压设备在200MPa下处理5min,之后将物料碾碎投入气流粉碎机粉碎至平均粒径为9.5μm。将粉碎后的物料与沥青按质量95∶5进行混合,之后对该混合物在氮气气氛下进行1150℃热处理5h,冷却后分级处理制备得负极材料。
以采用和实施例相同原料且仅经过表面改性和冷却分级这两步骤所制备的天然石墨A为对比样。上述实施例1-6制备的样品和对比样天然石墨A的性能指标如表1、表2所示。
表1
表2
将天然石墨A、实施例3和实施例6制备的负极进行极片涂布、烘烤,之后采用粒子束切割极片截面,并用场发射电镜观察截面形貌,参见图1~图6。
通过表1和表2可以看出,经过本发明方法处理后的球形石墨相比仅仅经过表面改性的球形石墨,在循环后容量保持率和振实密度上具有优势。随着冷等静压的压力从70MPa提高到200MPa,材料的振实密度逐步提高,容量保持率也越来越高。
通过场发射电镜观察截面形貌可以看出,仅表面改性的天然石墨内部存在大量的缺陷,有的缺陷宽度甚至达1μm以上。采用冷等静压工艺处理后,石墨内部的空隙明显减小,这得益于高压力下颗粒之间相互挤压,单个颗粒均轻微收缩。采用重质油为改性剂进行冷等静压处理,相比于不采用改性剂的方案,振实更有优势,这可能是改性剂在高压力下渗透到材料内部空隙,经炭化形成非晶炭或石墨结构,提高了材料的致密化度。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。

Claims (5)

1.一种高循环天然石墨负极材料的加工方法,其特征在于,采用如下制备步骤:
(1)、混合:将天然石墨原料与改性剂按质量比100∶0~30均匀混合,得混合物;所述的天然石墨原料为单颗粒天然石墨、复合颗粒天然石墨的其中一种或两种混合物;所述的天然石墨原料的平均粒径6~30μm,比表面积≤15m2/g,振实密度≥0.70g/cm3,压实密度17MPa时≥1.50g/cm3;所述的改性剂为重质油;
(2)、等静压处理:将混合物进行等静压处理;
(3)、粉碎:将等静压处理后的物料进行粉碎或打散处理;粉碎或打散处理后物料平均粒径:等静压处理前平均粒径=1.00~1.10;
(4)、表面改性:将粉碎或打散处理后的物料与表面改性剂,按质量比70~97∶3~30进行均匀混合,再在惰性气氛下,以1000℃~3000℃进行热处理2~5h;所述的表面性剂采用重质油或沥青或重质油与沥青组合物;
(5)、冷却分级:对表面改性后的物料冷却后进行分级,即得负极材料。
2.如权利要求1所述的一种高循环天然石墨负极材料的加工方法,其特征在于,所述等静压处理采用冷等静压设备或温等静压设备,等静压处理温度范围为室温~200℃,处理压力为50~300MPa,处理时间为1~30min。
3.如权利要求1所述的一种高循环天然石墨负极材料的加工方法,其特征在于,所述的惰性气氛为氮气。
4.如权利要求1所述的一种高循环天然石墨负极材料的加工方法,其特征在于,所述的重质油在常温下为液态,550℃结焦值为10%~25%。
5.如权利要求1所述的一种高循环天然石墨负极材料的加工方法,其特征在于,所述沥青采用550℃结焦值为30%~80%的低温、中温或高温沥青。
CN201611195178.1A 2016-12-21 2016-12-21 一种高循环天然石墨负极材料的加工方法 Pending CN106629702A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611195178.1A CN106629702A (zh) 2016-12-21 2016-12-21 一种高循环天然石墨负极材料的加工方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611195178.1A CN106629702A (zh) 2016-12-21 2016-12-21 一种高循环天然石墨负极材料的加工方法

Publications (1)

Publication Number Publication Date
CN106629702A true CN106629702A (zh) 2017-05-10

Family

ID=58834853

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611195178.1A Pending CN106629702A (zh) 2016-12-21 2016-12-21 一种高循环天然石墨负极材料的加工方法

Country Status (1)

Country Link
CN (1) CN106629702A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107814382A (zh) * 2017-09-28 2018-03-20 广东东岛新能源股份有限公司 一种长寿命的改性的天然石墨负极材料及其制备方法和用途
CN108063229A (zh) * 2017-12-13 2018-05-22 深圳市贝特瑞新能源材料股份有限公司 天然石墨基改性复合材料、其制备方法及包含该改性复合材料的锂离子电池
CN108682818A (zh) * 2018-05-21 2018-10-19 北方奥钛纳米技术有限公司 干法制备改性石墨的方法及电池
CN111463416A (zh) * 2020-04-14 2020-07-28 广东东岛新能源股份有限公司 一种低成本低膨胀率长循环天然石墨基复合材料及其制备方法与应用
CN114162814A (zh) * 2020-08-20 2022-03-11 洛阳月星新能源科技有限公司 一种石墨的改性方法
CN116979053A (zh) * 2023-06-30 2023-10-31 贝特瑞新材料集团股份有限公司 负极材料及其制备方法、锂离子电池
EP4386907A1 (en) * 2022-12-12 2024-06-19 CALB Technology (Shenzhen) Co. Ltd. Battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102557015A (zh) * 2010-12-31 2012-07-11 上海杉杉科技有限公司 一种各向同性细结构炭材料及其制备方法
CN103477476A (zh) * 2011-03-29 2013-12-25 三菱化学株式会社 非水系二次电池用负极碳材料、负极以及非水系二次电池
JP2014067637A (ja) * 2012-09-26 2014-04-17 Mitsubishi Chemicals Corp 非水系二次電池用炭素材、負極及び、非水系二次電池
CN103794790A (zh) * 2012-10-30 2014-05-14 上海杉杉科技有限公司 一种锂离子电池复合石墨负极材料及其制备方法
US20140356707A1 (en) * 2013-05-29 2014-12-04 Posco Chemtech Co., Ltd. Negative electrode active material for rechargeable lithium battery, method for preparing the same and rechargeable lithium battery including the same
CN106169584A (zh) * 2016-08-03 2016-11-30 深圳市贝特瑞新能源材料股份有限公司 石墨负极材料、制备方法及锂离子电池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102557015A (zh) * 2010-12-31 2012-07-11 上海杉杉科技有限公司 一种各向同性细结构炭材料及其制备方法
CN103477476A (zh) * 2011-03-29 2013-12-25 三菱化学株式会社 非水系二次电池用负极碳材料、负极以及非水系二次电池
JP2014067637A (ja) * 2012-09-26 2014-04-17 Mitsubishi Chemicals Corp 非水系二次電池用炭素材、負極及び、非水系二次電池
CN103794790A (zh) * 2012-10-30 2014-05-14 上海杉杉科技有限公司 一种锂离子电池复合石墨负极材料及其制备方法
US20140356707A1 (en) * 2013-05-29 2014-12-04 Posco Chemtech Co., Ltd. Negative electrode active material for rechargeable lithium battery, method for preparing the same and rechargeable lithium battery including the same
CN106169584A (zh) * 2016-08-03 2016-11-30 深圳市贝特瑞新能源材料股份有限公司 石墨负极材料、制备方法及锂离子电池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
刘先龙等: "锂离子电池用石墨类炭负极材料的改性", 《炭素技术》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107814382A (zh) * 2017-09-28 2018-03-20 广东东岛新能源股份有限公司 一种长寿命的改性的天然石墨负极材料及其制备方法和用途
CN108063229A (zh) * 2017-12-13 2018-05-22 深圳市贝特瑞新能源材料股份有限公司 天然石墨基改性复合材料、其制备方法及包含该改性复合材料的锂离子电池
US11581539B2 (en) 2017-12-13 2023-02-14 Btr New Material Group Co., Ltd. Natural graphite-based modified composite material, preparation method therefor, and lithium ion battery comprising modified composite material
CN108682818A (zh) * 2018-05-21 2018-10-19 北方奥钛纳米技术有限公司 干法制备改性石墨的方法及电池
CN111463416A (zh) * 2020-04-14 2020-07-28 广东东岛新能源股份有限公司 一种低成本低膨胀率长循环天然石墨基复合材料及其制备方法与应用
CN111463416B (zh) * 2020-04-14 2021-09-07 广东东岛新能源股份有限公司 一种低成本低膨胀率长循环天然石墨基复合材料及其制备方法与应用
CN114162814A (zh) * 2020-08-20 2022-03-11 洛阳月星新能源科技有限公司 一种石墨的改性方法
CN114162814B (zh) * 2020-08-20 2024-05-10 洛阳月星新能源科技有限公司 一种石墨的改性方法
EP4386907A1 (en) * 2022-12-12 2024-06-19 CALB Technology (Shenzhen) Co. Ltd. Battery
CN116979053A (zh) * 2023-06-30 2023-10-31 贝特瑞新材料集团股份有限公司 负极材料及其制备方法、锂离子电池

Similar Documents

Publication Publication Date Title
CN106629702A (zh) 一种高循环天然石墨负极材料的加工方法
CN109830669B (zh) 一种高倍率人造石墨负极材料的制备方法
CN103887502B (zh) 一种人造石墨锂离子电池负极材料及其制备方法
CN105938906B (zh) 一种锂离子电池用人造石墨复合负极材料及其制备方法
EP3726629A1 (en) Natural graphite-based modified composite material, preparation method therefor, and lithium ion battery comprising modified composite material
CN105731427B (zh) 一种锂离子电池石墨负极材料及其制备方法
CN107369823A (zh) 一种锂离子电池用人造石墨复合负极材料及其制备方法
CN106058304A (zh) 一种锂离子动力电池用人造石墨负极材料及制备方法
CN102195036B (zh) 一种表面改性的石墨化中间相炭微粉及其制备方法
CN106169584A (zh) 石墨负极材料、制备方法及锂离子电池
CN111463416B (zh) 一种低成本低膨胀率长循环天然石墨基复合材料及其制备方法与应用
CN103165869B (zh) 改性中间相负极材料、锂离子二次电池及制备方法和应用
CN104143635A (zh) 一种人造石墨负极材料及其制备方法
CN107507979A (zh) 一种高振实人造石墨负极材料的制备方法
CN103979527B (zh) 一种中间相复合石墨负极材料的生产方法
CN106531979A (zh) 一种高倍率性能锂离子电池负极材料的制备方法
CN107316983A (zh) 一种锂离子电池复合石墨负极材料及其制备方法
CN113526500A (zh) 一种高性能人造石墨负极材料的制备方法
CN112234179A (zh) 一种高容量硅基负极材料的制备方法
CN114620707A (zh) 一种长循环锂离子电池负极材料的制备方法
CN104900878B (zh) 一种高容量锂离子电池人造石墨负极材料生产方法
CN102117912B (zh) 掺杂复合碳锂离子电池活性负极材料的制备方法
CN113023724A (zh) 一种锂离子动力电池用高倍率石墨负极材料的制备方法
CN102214821A (zh) 表面改性的石墨化中间相炭微粉及其制备方法
CN115043398B (zh) 一种简化的利用微粉原料制备锂离子负极材料的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170510