CN106622200A - 一种大比表面多孔二氧化锆介观晶体及其制备方法与应用 - Google Patents

一种大比表面多孔二氧化锆介观晶体及其制备方法与应用 Download PDF

Info

Publication number
CN106622200A
CN106622200A CN201710056383.8A CN201710056383A CN106622200A CN 106622200 A CN106622200 A CN 106622200A CN 201710056383 A CN201710056383 A CN 201710056383A CN 106622200 A CN106622200 A CN 106622200A
Authority
CN
China
Prior art keywords
zirconium dioxide
crystal
preparation
sees
surface porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710056383.8A
Other languages
English (en)
Other versions
CN106622200B (zh
Inventor
张燕杰
林棋
娄本勇
郑国才
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minjiang University
Original Assignee
Minjiang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minjiang University filed Critical Minjiang University
Priority to CN201710056383.8A priority Critical patent/CN106622200B/zh
Publication of CN106622200A publication Critical patent/CN106622200A/zh
Application granted granted Critical
Publication of CN106622200B publication Critical patent/CN106622200B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/12Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide
    • C01B3/16Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/02Oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种大比表面多孔二氧化锆介观晶体及其制备方法与应用,属于金属氧化物功能材料制备领域。本发明将聚乙二醇2000、八水氧氯化锆和尿素按比例溶解于水中形成混合溶液,经150℃水热反应6 h,制得所述二氧化锆介观晶体。本发明制备方法简便易行,成本低,介观晶体产率高;所制得的二氧化锆介观晶体具有良好的单分散性,呈橄榄状,内部多孔,BET比表面积高达120~153 m2/g,是一种优良的水煤气变换催化剂载体。

Description

一种大比表面多孔二氧化锆介观晶体及其制备方法与应用
技术领域
本发明属于金属氧化物功能材料制备领域,具体涉及一种大比表面多孔二氧化锆介观晶体及其制备方法与应用。
背景技术
介观晶体(简称介晶)是指纳米晶基元按照特定晶体取向有序堆积而成的纳米晶超结构或有序聚集体,它作为一类新型的纳米粒子有序组装结构而受到人们的广泛关注。这类介于单晶和多晶结构之间的晶态材料具有高晶化度、高孔隙度和由亚单元有序排列而成的结构特点,在催化、传感、光电器件、生物医学材料以及能源存储与转化等诸多领域有着广阔的应用前景,也成为单晶和多晶材料的有力竞争者。目前,有关功能性氧化物介晶材料的可控制备和性能研究仍是一个颇具挑战性的研究课题。
二氧化锆(ZrO2)是一种十分重要的结构和功能材料,它不但具有良好的热稳定性、而且同时具有表面酸性、碱性、氧化性和还原性,还富含表面羟基,这些性能使二氧化锆成为一种很重要的催化剂材料。二氧化锆用作催化剂或载体,在烯烃氢化、异构化、环氧化、醇类脱水、费托合成、甲醇合成和甲烷燃烧等方面已经获得了广泛应用,它还在消除大气污染物NOx、新能源开发等方面发挥着积极的作用。
发明内容
本发明的目的在于提供一种大比表面多孔二氧化锆介观晶体及其制备方法与应用,其制备方法简便易行,适合规模化生产,制得的二氧化锆介观晶体单分散性好,比表面积高达120~153 m2/g,内部具有丰富孔道,是一种优良的催化剂材料,特别适合用作水煤气变换催化剂载体。
为实现上述目的,本发明采用如下技术方案:
一种大比表面多孔二氧化锆介观晶体的制备方法,其包括以下步骤:
(1)将聚乙二醇2000、八水氧氯化锆和尿素溶解于去离子水中制得混合溶液;
(2)将步骤(1)所得混合溶液转入高温反应釜中,控制反应温度为150 ℃,反应时间为6h;所得反应产物经离心分离、洗涤、干燥后得到所述大比表面多孔二氧化锆介观晶体。
步骤(1)混合溶液中八水氧氯化锆的浓度为0.5 mol/L,八水氧氯化锆与尿素的摩尔比为1:2;聚乙二醇2000的添加量按每毫升混合溶液含0.05~0.2 g进行换算。
所得大比表面多孔二氧化锆介观晶体为单斜晶相,形貌为橄榄状,长度为50~150nm,直径为20~100 nm,BET比表面积为120~153 m2/g,内部多孔,最可几孔径为2 nm;可用作载体制备水煤气变换催化剂,其制备方法为:在超声波破碎辅助条件下,将所述二氧化锆介观晶体分散于三水合硝酸铜水溶液中,然后向上述溶液中滴加碱液至溶液pH=9,所得沉淀经离心洗涤、干燥、焙烧后制得水煤气变换催化剂;所用碱液为碳酸钠、碳酸钾、氢氧化钾或氢氧化钠的水溶液。
本发明制备过程中将八水氧氯化锆与尿素在水热条件下均匀反应,反应遵循“原位结晶”机制,即经均匀沉淀生成的氢氧化物前驱物经过脱去羟基(或脱水),原子原位重排而转变为结晶态氧化锆,析出二氧化锆一次纳米晶粒,一次晶粒在聚乙二醇2000的诱导作用下实现晶体学取向聚集,形成多孔性二氧化锆介观晶体超结构。
本发明的显著优点在于:
(1)本方法首次制备出橄榄状单斜相二氧化锆介观晶体,其制备方法简便易行,适合规模化生产,所得二氧化锆介晶产率高,单分散性好,结晶性好,BET比表面积高达120~153m2/g,产物颗粒内部孔道丰富,颗粒内部最可几孔径为2 nm。
(2)本发明所制备的二氧化锆介晶是一种优良的催化剂载体,以其为载体制备的CuO/ZrO2催化剂表现出优异的水煤气变换反应制氢催化性能,当CuO含量为10wt%时,CuO/ZrO2催化剂在210℃催化条件下就表现出优异的催化性能,CO转化率可达81%;反应温度为270 ℃时的CO转化率更是高达88%,明显优于以传统多晶二氧化锆为载体的CuO/ZrO2催化剂。
附图说明
图1是实施例1制备的二氧化锆介观晶体的XRD图。
图2是实施例1制备的二氧化锆介观晶体的SEM图。
图3是实施例1制备的二氧化锆介观晶体的TEM图。
图4是实施例1制备的二氧化锆介观晶体的选区电子衍射(SAED)图。
图5是实施例2制备的二氧化锆介观晶体的SEM图。
图6是实施例3制备的二氧化锆介观晶体的SEM图。
具体实施方式
为了使本发明所述的内容更加便于理解,下面结合具体实施方式对本发明所述的技术方案做进一步的说明,但是本发明不仅限于此。
实施例1
将3.50 g聚乙二醇2000,11.28 g 八水氧氯化锆及4.20 g尿素溶于50 mL去离子水中制得混合溶液,将上述混合液用去离子水标定到70 mL后转入容积为100 mL的高温反应釜中(即八水氧氯化锆摩尔浓度为0.5 mol/L,聚乙二醇2000添加量为每毫升混合溶液0.05g,八水合氧氯化锆与尿素的摩尔比为1:2)。将反应釜放入鼓风干燥箱内,控制反应温度为150℃,反应时间为6 h。所得产物经离心洗涤脱除杂质离子后于60℃干燥8 h,得到二氧化锆介观晶体。
图1是本实施例制备的二氧化锆介观晶体的XRD图。由图1可知,所制备的二氧化锆呈单斜晶相。
图2、图3分别是本实施例制备的二氧化锆介观晶体的SEM图和TEM图。由图2和图3可知,二氧化锆颗粒呈橄榄状且由众多小晶粒聚集而成,橄榄状颗粒的长度为50~150 nm,直径为20~100 nm。
图4是本实施例制备的二氧化锆介观晶体的选区电子衍射(SAED)图。由图4可见单个二氧化锆颗粒呈现类单晶电子衍射行为,即颗粒内部一次晶粒间的晶格高度匹配,表明二氧化锆为介观晶体。
N2-物理吸脱附实验表明,该二氧化锆介晶的BET比表面积为120 m2/g,颗粒内部最可几孔径为2 nm。
实施例2
将7.00 g聚乙二醇2000,11.28 g 八水氧氯化锆及4.20 g尿素溶于50 mL去离子水中制得混合溶液,将上述混合液用去离子水标定到70 mL后转入容积为100 mL的高温反应釜中(即八水氧氯化锆摩尔浓度为0.5 mol/L,聚乙二醇2000添加量为每毫升混合溶液0.1 g,八水合氧氯化锆与尿素的摩尔比为1:2)。将反应釜放入鼓风干燥箱内,控制反应温度为150℃,反应时间为6 h。所得产物经离心洗涤脱除杂质离子后于60℃干燥8 h,得到二氧化锆介观晶体。
图5是本实施例制备的二氧化锆介观晶体的SEM图。图5表明,所制备的二氧化锆颗粒同样为橄榄状介观晶体。
N2-物理吸脱附实验表明,该二氧化锆介晶的BET比表面积为153 m2/g,颗粒内部最可几孔径为2 nm。
实施例3
将14.00 g聚乙二醇2000,11.28 g 八水氧氯化锆及4.20 g尿素溶于50 mL去离子水中制得混合溶液,将上述混合液用去离子水标定到70 mL后转入容积为100 mL的高温反应釜中(即八水氧氯化锆摩尔浓度为0.5 mol/L,聚乙二醇2000添加量为每毫升混合溶液0.2 g,八水合氧氯化锆与尿素的摩尔比为1:2)。将反应釜放入鼓风干燥箱内,控制反应温度为150℃,反应时间为6 h。所得产物经离心洗涤脱除杂质离子后于60℃干燥8 h,得到二氧化锆介观晶体。
图6是本实施例制备的二氧化锆介观晶体的SEM图。图6表明所制备的二氧化锆颗粒同样为橄榄状介观晶体。
N2-物理吸脱附实验表明,该二氧化锆介晶的BET比表面积为152 m2/g,颗粒内部最可几孔径为2 nm。
应用实施例1
以实施例1制得的二氧化锆介观晶体为载体负载CuO制备CuO/ZrO2介晶催化剂,方法如下:在超声波破碎的辅助下将3 g 250℃焙烧后的二氧化锆介观晶体分散于200 mL 0.021mol/L的三水合硝酸铜水溶液中,然后向上述溶液中滴加0.5 mol/L的氢氧化钾水溶液至终点pH=9.0。所得产物经洗涤脱除杂质离子后于120℃干燥8 h,再于400℃焙烧4 h制得CuO/ZrO2介晶催化剂。
应用实施例2
以实施例2制得的二氧化锆介观晶体为载体负载CuO制备CuO/ZrO2介晶催化剂,其制备方法和条件与应用实施例1相同。
应用实施例3
以实施例3制得的二氧化锆介观晶体为载体负载CuO制备CuO/ZrO2介晶催化剂,其制备方法和条件与应用实施例1相同。
应用对比例
将7.85g 八水合氧氯化锆溶解于200 mL去离子水中制得反应底液,将0.5 mol/L氢氧化钾水溶液加入上述反应底液至终点pH=9.0。所得产物经洗涤脱除杂质离子后于60℃干燥8 h,再于250℃焙烧4 h制得二氧化锆多晶。
在超声波破碎的辅助下将3 g 二氧化锆多晶分散于200 mL 0.021 mol/L的三水合硝酸铜水溶液中,然后向上述溶液中滴加0.5 mol/L的氢氧化钾水溶液至终点pH=9.0。所得产物经洗涤脱除杂质离子后于120℃干燥8 h,再于400℃焙烧4 h制得CuO/ZrO2多晶催化剂。
活性评价
以水煤气变换反应为探针反应测试催化剂的催化活性,活性评价在常压固定床反应器上进行,评价条件:原料气为模拟甲烷重整气,其体积百分含量组成为15% CO,55% H2,7%CO2,23% N2
以CO转化率表示催化活性,对应用实施例1-3和应用对比例所得催化剂的活性进行评价,其结果如表1。
表1 应用实施例1-3及应用对比例所得催化剂的活性评价结果
由此可见,与CuO/ZrO2多晶催化剂相比,以本发明ZrO2介观晶体为载体制备的CuO/ZrO2介晶催化剂对水煤气变换反应具有更高的催化活性,说明本发明所制备的ZrO2介晶是一种优良的催化剂载体。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (5)

1.一种大比表面多孔二氧化锆介观晶体的制备方法,其特征在于,包括以下步骤:
(1)将聚乙二醇2000、八水氧氯化锆和尿素溶解于去离子水中制得混合溶液;
(2)将步骤(1)所得混合溶液转入高温反应釜中,控制反应温度为150℃,反应时间为6h;所得反应产物经离心分离、洗涤、干燥后得到所述大比表面多孔二氧化锆介观晶体。
2. 根据权利要求1所述的大比表面多孔二氧化锆介观晶体的制备方法,其特征在于,步骤(1)混合溶液中八水氧氯化锆的浓度为0.5 mol/L,八水氧氯化锆与尿素的摩尔比为1:2;
聚乙二醇2000的添加量按每毫升混合溶液含0.05~0.2 g进行换算。
3. 一种如权利要求1所述方法制得的大比表面多孔二氧化锆介观晶体,其特征在于,为单斜晶相,形貌为橄榄状,长度为50~150 nm,直径为20~100 nm,BET比表面积为120~153 m2/g,内部多孔,最可几孔径为2 nm。
4.一种如权利要求3所述的大比表面多孔二氧化锆介观晶体的应用,其特征在于,用作载体制备水煤气变换催化剂。
5.根据权利要求4所述的大比表面多孔二氧化锆介观晶体的应用,其特征在于,其制备方法为:在超声波破碎辅助条件下,将所述二氧化锆介观晶体分散于三水合硝酸铜水溶液中,然后向上述溶液中滴加碱液至溶液pH=9,所得沉淀经离心洗涤、干燥、焙烧后制得水煤气变换催化剂。
CN201710056383.8A 2017-01-25 2017-01-25 一种大比表面多孔二氧化锆介观晶体及其制备方法与应用 Active CN106622200B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710056383.8A CN106622200B (zh) 2017-01-25 2017-01-25 一种大比表面多孔二氧化锆介观晶体及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710056383.8A CN106622200B (zh) 2017-01-25 2017-01-25 一种大比表面多孔二氧化锆介观晶体及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN106622200A true CN106622200A (zh) 2017-05-10
CN106622200B CN106622200B (zh) 2018-07-20

Family

ID=58841379

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710056383.8A Active CN106622200B (zh) 2017-01-25 2017-01-25 一种大比表面多孔二氧化锆介观晶体及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN106622200B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108579749A (zh) * 2018-04-08 2018-09-28 浙江工业大学 一种高缺陷单斜相纳米氧化锆负载镍金属催化剂及其制备和使用方法
CN114806515A (zh) * 2022-03-31 2022-07-29 浙江大学 铜基复合金属氧化物储热材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101327953A (zh) * 2008-07-24 2008-12-24 中南大学 一种介孔氧化锆的制备方法
JP2009114008A (ja) * 2007-11-02 2009-05-28 Sakai Chem Ind Co Ltd 酸化ジルコニウム微粉末とその製造方法とそれを含む樹脂組成物
CN103007939A (zh) * 2012-12-13 2013-04-03 北京化工大学常州先进材料研究院 一种Cu/ZrO2催化剂的制备方法
CN103599780A (zh) * 2013-11-13 2014-02-26 福州大学 一种Al助剂改性的CuO-ZrO2水煤气变换催化剂及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009114008A (ja) * 2007-11-02 2009-05-28 Sakai Chem Ind Co Ltd 酸化ジルコニウム微粉末とその製造方法とそれを含む樹脂組成物
CN101327953A (zh) * 2008-07-24 2008-12-24 中南大学 一种介孔氧化锆的制备方法
CN103007939A (zh) * 2012-12-13 2013-04-03 北京化工大学常州先进材料研究院 一种Cu/ZrO2催化剂的制备方法
CN103599780A (zh) * 2013-11-13 2014-02-26 福州大学 一种Al助剂改性的CuO-ZrO2水煤气变换催化剂及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
张燕杰: "CuO/ZrO2水煤气变换催化剂:制备及构效关系研究", 《中国博士学位论文全文数据库 工程科技Ⅰ辑》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108579749A (zh) * 2018-04-08 2018-09-28 浙江工业大学 一种高缺陷单斜相纳米氧化锆负载镍金属催化剂及其制备和使用方法
CN114806515A (zh) * 2022-03-31 2022-07-29 浙江大学 铜基复合金属氧化物储热材料及其制备方法

Also Published As

Publication number Publication date
CN106622200B (zh) 2018-07-20

Similar Documents

Publication Publication Date Title
Yang et al. Syntheses and applications of noble-metal-free CeO2-based mixed-oxide nanocatalysts
Wan et al. Defect engineered mesoporous graphitic carbon nitride modified with AgPd nanoparticles for enhanced photocatalytic hydrogen evolution from formic acid
Dey et al. The performance of highly active manganese oxide catalysts for ambient conditions carbon monoxide oxidation
CN104549082B (zh) ZnO@ZIF-8核壳结构微球及其制备方法
WO2019109831A1 (zh) 一种钴酸铜镍纳米线的制备方法及其在催化氨硼烷水解产氢上的应用
Ming et al. Fine control of titania deposition to prepare C@ TiO 2 composites and TiO 2 hollow particles for photocatalysis and lithium-ion battery applications
Han et al. Controlled synthesis of double-shelled CeO 2 hollow spheres and enzyme-free electrochemical bio-sensing properties for uric acid
CN106622199B (zh) 一种大比表面多孔ZrO2介观晶体
Peng et al. Double-shelled hollow LaNiO3 nanocage as nanoreactors with remarkable catalytic performance: Illustrating the special morphology and performance relationship
Huang et al. Hydrothermal growth and characterization of length tunable porous iron vanadate one-dimensional nanostructures
CN108080000A (zh) 一种中空多孔微球催化材料及其制备方法和降解no应用
Chen et al. Hollow multishelled spherical PrMnO3 perovskite catalyst for efficient catalytic oxidation of CO and toluene
Swain et al. Synthesis of Cu 3 (MoO 4) 2 (OH) 2 nanostructures by simple aqueous precipitation: understanding the fundamental chemistry and growth mechanism
CN104860351B (zh) 一种微/介孔四价金属氧化物及其制备方法
CN103721745A (zh) 一种共聚合改性有序介孔氮化碳光催化剂
CN106622200A (zh) 一种大比表面多孔二氧化锆介观晶体及其制备方法与应用
CN112246244A (zh) 一种氧空位含量可调铜-氧化铜-钴酸铜催化剂的制备方法及应用
CN102303906A (zh) 一种制备三维有序大孔BiVO4的抗坏血酸辅助胶晶模板法
Kaviani et al. Biogas dry reforming over nickel-silica sandwiched core–shell catalysts with various shell thicknesses
Su et al. The Template‐Free Synthesis of CuO@ CeO2 Nanospheres: Facile Strategy, Structure Optimization, and Enhanced Catalytic Activity toward CO Oxidation
Yang et al. General and efficient synthesis of two-dimensional monolayer mesoporous materials with diverse framework compositions
CN106698511B (zh) 一种掺钇二氧化锆介观晶体及其制备方法和应用
CN102989521A (zh) 一种用于苯选择加氢的含锆尖晶石系负载蜂窝整体催化剂及其制备方法
CN103111278B (zh) 一种“蛋壳型”氧载体及其制备方法
CN103599778A (zh) 一种Cu-Zr二元氧化物低温水煤气变换催化剂及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant