CN106569241A - 一种基于gnss的单频高精度定位方法 - Google Patents

一种基于gnss的单频高精度定位方法 Download PDF

Info

Publication number
CN106569241A
CN106569241A CN201610855464.XA CN201610855464A CN106569241A CN 106569241 A CN106569241 A CN 106569241A CN 201610855464 A CN201610855464 A CN 201610855464A CN 106569241 A CN106569241 A CN 106569241A
Authority
CN
China
Prior art keywords
epoch
formula
follows
variance
fuzziness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610855464.XA
Other languages
English (en)
Other versions
CN106569241B (zh
Inventor
陈培
张键
孙秀聪
魏华波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN201610855464.XA priority Critical patent/CN106569241B/zh
Publication of CN106569241A publication Critical patent/CN106569241A/zh
Application granted granted Critical
Publication of CN106569241B publication Critical patent/CN106569241B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/43Determining position using carrier phase measurements, e.g. kinematic positioning; using long or short baseline interferometry
    • G01S19/44Carrier phase ambiguity resolution; Floating ambiguity; LAMBDA [Least-squares AMBiguity Decorrelation Adjustment] method

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

一种基于GNSS的单频高精度定位方法,其步骤如下:一:准备工作;二:初始历元位置解算;三:构建载波相位历元差分观测模型,求解相对位置变化量;四:进行模糊度信息与位置信息传递;五:进行模糊度信息与方差信息调整;六:构建模糊度与位置信息虚拟观测方程;七:GRAPHIC组合观测方程与虚拟观测方程共同进行最小二乘估计,解算最终定位结果。通过上述步骤,本发明使用载波相位历元差分辅助的GRAPHIC组合运动学定位算法,提高了运动学导航定位精度;采用精密星历能对低轨卫星进行高精度定轨,采用广播星历则能实现实时导航定位;该方法,不受导航定位过程中换星影响,可靠度高,成本低廉,数据处理简单,利于普及与应用。

Description

一种基于GNSS的单频高精度定位方法
技术领域
本发明提供一种基于GNSS(Global Navigation Satellite System)的高精度单频定位方法,它涉及一种对飞行器或地面,海面运动载体利用GNSS进行绝对位置解算的方法,属于导航技术领域。
背景技术
全球定位系统(GPS,Global Positioning System)是美国建立的一种卫星导航系统,能够为用户提供实时的三维导航服务。伴随着GPS的广泛应用,许多科研机构开始注意其单个接收机在低轨卫星精密定轨,以及地面和海面,静止或运动载体的高精度定位方面的应用。目前,上述方面的研究可以分为两个方向。第一,采用双频GPS的精密定位;该方法充分利用GPS播发的多频信息,通过各种不同的线性组合构建出无电离层观测量,从而消除电离层延迟的影响,以提高导航精度。采用双频GPS进行的运动学后处理低轨卫星定轨精度在厘米级。但双频方法对接收机要求较高,数据处理复杂,计算量大。第二,采用单频GPS的精密定位;单频GPS定位只利用GPS卫星播发的一个频率上的信息,其只包含伪距信息和载波信息,采用电离层模型或GRAPHIC(Group and Phase Ionospheric Calibration)消电离层。相较于双频GPS精密定位,单频方法的精度要低一些,其定位精度一般在分米级,但由于单频接收机造价低廉,数据量小,处理简单,使得单个单频接收机的高精度定位方法研究仍具有巨大的实用意义。
如今,各国的卫星导航系统都在如火如荼的建设当中,除了已经成熟完善的美国的GPS系统,我国的北斗卫星导航系统(BeiDou Navigation Satellite System),俄罗斯的格洛纳斯(GLONASS,GLOBAL NAVIGATION SATELLITE SYSTEM)以及欧洲的伽利略卫星导航系统(Galileo satellite navigation system)都在建设中。可以预想未来众多卫星导航系统的建立完善会使得基于GNSS的精密导航定位服务研究拥有更广阔的平台,而本专利所提出的一种基于GNSS的单频高精度定位方法便是其中之一。
在进行精密定位的过程中,电离层延迟误差是最大的误差来源之一。在双频GPS中利用电离层延迟一阶项与载波频率的关系,通过两个载波上信息的线性组合来消除电离层延迟的影响。在单频GPS中利用电离层延迟一阶项在伪距观测量与载波观测量中大小相等符号相反的性质,构建GRAPHIC(Group and Phase Ionospheric Calibration)观测量消除电离层延迟的影响。而由于伪距观测量的噪声为半米左右,载波观测量的噪声为毫米级,导致了构建的GRAPHIC组合观测量的噪声约为伪距噪声的一半,可达分米级。大噪声的观测量严重限制了定位结果的精度。
在不同的情况与目的下,对所得到的伪距观测量与载波相位观测量有许多处理方法。目前在导航定位方面主要有星间单差消除接收机卫星钟差、站间单差消除GPS卫星钟差以及历元单差消除载波相位模糊度,三种单差又可以进行组合从而得到更加复杂的双差观测量以及三差观测量。
综上,基于GNSS的精密定位具有巨大的研究与应用价值,其中的采用单接收机单频GPS测量量的定位算法,其设备简单,间隔低廉,数据处理容易,具有更大的普及与实用价值。但由于其定位精度相比双频GPS较差,从而限制了其在高精度情景下的应用。本发明提出了一种基于GNSS的单频高精度定位方法,提高了单频GPS定位精度,从而实现了低轨卫星的高精度定轨、地面、水面以及空中的静止或运动载体高精度定位与导航。
发明内容
(一)发明目的:本发明采用单接收机的单频GPS接收机数据,以运动学GRAPHIC组合定位方法为基础,创新的在每个历元定位过程中引入该历元时刻位置信息虚拟观测量,而当前历元位置信息虚拟观测量是使用上一历元的绝对位置加上载波相位历元差分所求解的相对位置变化量得到。由于载波相位观测量的观测精度很高,其历元差分求解的相对位置变化量误差在厘米级,在传统的GRAPHIC组合运动学定轨中加入这些信息,增加了观测方程,而没有引入大的误差,可以有效的抑制传统GRAPHIC组合定位结果的噪声,因此对于定位精度有很大的提高。
(二)技术方案
本发明一种基于GNSS的单频高精度定位方法,其步骤如下:
步骤一:准备工作
首先给出伪距观测方程:
P=ρ+c(δtr-δts)+δionrelp (1)
式(1)中,P伪距观测量,以米(m)为单位;ρ为GPS卫星到接收机的真实几何距离;c为真空中的光速;δtr为接收机钟差;δts为GPS卫星钟差;δion为电离层延迟;δrel为相对论效应引起的误差;εp为伪距观测噪声,其符合方差为的白噪声;
给出载波相位观测方程:
式(2)中,Φ为载波相位观测量(以米为单位),为载波相位观测量(以周为单位);λ为载波波长;ρ为GPS卫星到接收机的真实几何距离;c为真空中光速;δtr为接收机钟差;δts为GPS卫星钟差;N为模糊度;δion为电离层延迟;δrel为相对论效应引起的误差;为载波相位观测噪声,其符合方差为的白噪声;
为了消除电离层误差,利用伪距观测方程(1)和载波相位观测方程(2)中电离层延迟一阶项,大小相等,符号相反的性质,得到以下消除电离层误差项的GRAPHIC组合观测方程为:
上式中δts可以通过外部星历得到,为已知项;δrel可以通过建模得到并进行修正。合并已知项的观测方程为:
Gc=ρ+cδtr+λNGG (4)
其中Gc为误差修正后的GRAPHIC组合观测量,NG为GRAPHIC组合模糊度,表达
式如下:
下文在不引起歧义的情况下,统一将NG简写为N,并称为模糊度;
εG为GRAPHIC组合观测噪声,表达式如下:
其噪声方差如下:
式(7)是GRAPHIC组合观测量的噪声方差,其中D(·)为求方差算子(下文出现,不再说明),可见其是由伪距噪声方差与载波噪声方差组合得到;伪距的测量噪声可达米级,而载波相位的测量噪声一般为毫米级;由上式可以看到GRAPHIC组合的噪声水平处于伪距噪声和载波相位噪声之间,为分米级,使用这种组合进行传统的GRAPHIC组合运动学定轨、定位和导航,结果的误差在分米级,难以满足高精度定位要求;
给出载波相位历元差分观测方程:
上式(8)中,k表示当前历元,k-1表示上一历元;其他符号与上文相同。其中,GPS卫星钟差项δts可通过外部星历得到;相对论引起的误差项δrel可通过建模得到;而当历元时间较短时,相邻历元电离层变化不大,残留项(δion,kion,k-1)可以忽略;因此得到整理后的载波相位历元差分观测方程:
上式中ΔΦc为GPS接收机钟差,相对论效应修正后的载波相位历元差分观测量;其观测噪声方差为:
从(10)中可以看出,载波相位历元差分观测量的噪声水平与载波相位观测量的水平相当;
以上,给出了载波相位历元差分测量模型,该模型用于相邻历元的相对位置求解,其结果将传递到下一历元用于构建位置信息虚拟观测量;使用最小二乘估计对当前时刻接收机的位置和钟差信息进行估计;以下给出一种基于GNSS的单频高精度定位方法具体步骤;
步骤二:初始历元位置解算
由于初始历元是导航定位过程的第一个历元,其没有来自上一历元的先验信息,因此对于初始历元要进行单独处理,初始化它的位置信息与模糊度信息;
构建GRAPHIC组合观测量计算值Z;
由公式(4),可知GRAPHIC组合观测方程是一个关于状态变量x=(xr,yr,zr,δtr,N1…Np)T的非线性方程,其中模糊度下标表示当前历元共观测到的GPS卫星数目。GRAPHIC组合观测量计算值Z,计算如下:
其中的关系式如下:
其中,上式符号“~”表示估计值,为接收机的三个位置估计分量,(xs,ys,zs)T为GPS卫星的三个位置分量;
采用卡尔曼滤波器一步估计状态变量x=(xr,yr,zr,δtr,N1…Np)T。因为GRAPHIC组合观测方程是关于状态变量x=(xr,yr,zr,δtr,N1…Np)T的非线性方程,因此要对其线性化;线性化过程如下:
将GRAPHIC组合观测方程(4),写成如下形式:
Gc=h(x)+εG (13)
在参考点处线性化:
其中便是上面所求的GRAPHIC组合观测量的计算值Z。Δx为状态变量x的实际值与估计值之差;H模型观测量对状态量x的偏导数雅克比矩阵,有:
认为每个GRAPHIC组合观测量是相互独立的,观测噪声阵有如下形式:
状态变量初始值的先验协方差阵P-如下:
式(17),是一个分块对角阵。其中为位置信息初始先验方差阵;为接收机钟差初始先验方差阵;为模糊度方差阵,取值如下:
其中,取值一般为伪距单点定位误差的一半,现取30米;
式(19),表示初始历元钟差δtr的初始带入值是准确的,在后面估计出的各个历元接收机钟差项全都是相对于第一历元时刻的相对钟差,后边不再叙述;
式(20),模糊度方差值为一个极大值,这是因为初始历元并没有模糊度信息的先验值,所以如此处理表示方差的初始带入值是完全不可信的;
给状态变量的估计值赋初值,其中位置状态变量的估计值赋值如下:
其中,(xspp,yspp,zspp)T表示由伪距单点定位得出的接收机位置,单点定位在此不再叙述。
钟差状态变量的赋值如下:
上式与式(19)联立,其意义表示初始历元钟差为0,并且是准确的。以后历元的钟差估计值皆表示相对于初始历元的相对钟差;
模糊度状态变量估计值的赋值如下:
卡尔曼滤波,滤波系数如下:
K=P-HT(HP-HT+R) (24)
则状态量的估计值更新如下:
上式中,上标“+”表示更新后的量,下文出现不再叙述;
以式(25)的一步估计值,作为初始历元的最终解算结果;
状态变量方差阵P更新如下:
P+=(1-KH)P- (26)
步骤三:构建载波相位历元差分观测模型,求解相对位置变化量
由式(9)给出的载波相位历元差分方程,带入k历元与k-1历元的坐标位置如下:
上式中,GPS卫星位置、钟差以及k-1历元接收机位置皆为已知量;
k历元与k-1历元接收机位置、钟差有如下关系:
上式中,Δx,Δy,Δz,Δδtr分别表示从k-1历元到k历元,接收机位置变换量与钟差变化量;
将式(28)带入式(27),则ΔΦc成为一个关于状态变量y=(Δx,Δy,Δz,cΔδtr)T的非线性函数,记为下式:
ΔΦc=f(Δx,Δy,Δz,Δδtr) (29)
给出状态变量估计值的初始值如下:
计算载波相位历元差分观测量的计算值ΔL:
非线性方程(29)在带入估计值泰勒展开,取一阶项,求H阵:
上式,各个量含义与(14)中各量含义类似,不再叙述;
由式(10),给出载波相位历元差分观测量的噪声阵R,如下:
由最小二乘估计:
Δy=(HTR-1H)-1(HTR-1(ΔΦc-ΔL)) (34)
更新状态变量的估计值:
作为新的初值,带入式(30),计算式(31)~(35);重复以上过程直到满足下式:
||Δy||<10-3m (36)
或超出最大迭代次数时终止;
状态变量y的方差阵P由下式给出:
上式中PdR为位置变化量信息方差阵;PtdR,PdRt为位置变化量与钟差变化量协方差阵;Pt为钟差变化量方差阵;I为单位阵;Q为电离层控制因子,用来控制不同历元间电离层残差影响;
步骤四:模糊度信息与位置信息传递
k-1历元的位置信息与模糊度信息已知,由步骤三也已解算出k-1历元到k历元的位置变化量;此步骤便是要把位置信息与模糊度信息传递到k历元;
k历元的位置信息传递如下:
上式中下标“0”,表示初值;
K历元的模糊度信息传递如下:
方差信息传递如下:
上式中下标“0”,表示初值;
因为不对钟差进行传递,所以,对式(41)中钟差的方差设为106,对均设为0;
步骤五:模糊度信息与方差信息调整
若从k-1历元到k历元若发生换星,则进行该步骤。否则跳过步骤五,执行步骤六;
从k-1历元到k历元若发生换星,位置信息不发生变化,模糊度改变;要对步骤四中的式(40)与式(41)中和模糊度有关的项进行修改;
对式(40)的调整,保留k-1历元与k历元共同观测的GPS卫星模糊度,去掉只在k-1历元观测到的卫星模糊度,增加k历元新增的GPS卫星模糊度,将其模糊度设为0。得到模糊度信息为(N0)q×1,‘q’表示k历元所观测到的总的GPS卫星个数;
对式(41)的调整,保留k-1历元与k历元共同观测的GPS卫星模糊度方差与协方差,去掉只在k-1历元观测到的卫星的方差与协方差,增加k历元新增的GPS卫星方差与协方差,方差值取106,协方差取0;得到的模糊度方差阵为
步骤六:构建模糊度与位置信息虚拟观测方程
使用步骤四传递,步骤五调整过的位置信息与模糊度信息作为虚拟测量的测量值,如下:
上式中x,y,z为接收机三个位置坐标,标“v”,表示虚拟测量;q表示k历元所观测到的GPS卫星总数;
虚拟观测方程如下:
上式中,(Nk)q×1为k历元代估模糊度向量;
观测方程矩阵形式如下:
上式中Hv表达式如下:
Hv=I(3+q)×(3+q) (45)
虚拟观测量的噪声阵由下式给出:
若发生了换星,则式(46)中PN0由步骤五得到;若未发生换星,则
步骤七:GRAPHIC组合观测方程与虚拟观测方程共同进行最小二乘估计,解算最终定位结果
观测方程如下:
上式中,HG的计算步骤与步骤二中GRAPHIC组合H阵计算相同;Hv由步骤六中给出;υ为噪声向量;
观测量的噪声阵,由下式给出:
上式中RG由(16)给出;
最小二乘估计:
Δx=(HTR-1H)-1R-1(z-Z) (49)
上式中,z为观测量的测量值,如下:
Z为观测量的计算值,如下:
上式中G'由式(11)计算,V'为下式:
更新状态变量x:
将更新后的状态量估计值作为新的初值带入式(47)计算H阵;重复(47)~(53),直到满足下式:
或迭代次数超过最大迭代次数时停止;
得到状态量的最小二乘估计,其k历元的最终定位结果为(xk yk zk)T,计算状态变量的协方差阵:
回到步骤三,重复以后步骤,进行下一个历元的相对定位,信息传递以及运动学定位解算;
通过上述步骤,提出了一种基于GNSS的单频高精度定位方法;该方法仅采用单个接收机的单频GPS数据,使用载波相位历元差分辅助的GRAPHIC组合运动学定位算法,提高了运动学导航定位精度;采用精密星历可以对低轨卫星进行高精度定轨,采用广播星历则可以实现实时导航定位。该方法,不受导航定位过程中换星影响,可靠度高。并且该方法的实现只需一个单频GPS接收机,具有成本低廉的优势,数据处理简单,利于普及与应用。
(三)优点
本发明提供的一种基于GNSS的单频高精度定位方法,即一种基于GNSS的单频高精度定位方法相较于传统的GNSS导航方法的优点在于:
①本发明中,创新的使用了载波相位历元差分求解相对位置变化量辅助GRAPHIC组合运动学导航,极大的抑制了单频接收机GRAPHIC运动学定位的结果噪声。
②本发明提出的方法,具有更加广泛的应用性。使用广播星历,可为船舶、汽车、航拍无人机等需实时定位的载体提供高精度定位结果。使用精密星历进行事后处理,可以得到更高精度的定位结果;
③本发明提出的方法,实现成本低廉。只需要一个单频GNSS接收机便可实现,对接收机的性能要求大幅度降低,成本控制方面具有突出优势,在民用高精度定位方面具有普及优势。
附图说明
图1是本发明所述方法流程图。
具体实施方式
下面将结合图1和技术方案对本发明的具体实施过程做进一步的详细说明。
本发明一种基于GNSS的单频高精度定位方法,见图1所示,其步骤如下:
步骤一:初始历元位置解算
构建GRAPHIC组合观测量理论值Z。
由公式(4),可知GRAPHIC组合观测方程是一个关于状态变量x=(xr,yr,zr,δtr,N1…Np)T的非线性方程,其中模糊度下标表示当前历元共观测到的 GPS卫星数目。GRAPHIC组合观测量计算值Z,计算如下:
其中ρ0的关系式如下:
其中,上式符号“~”表示估计值,为接收机的三个位置估计分量,(xs,ys,zs)T为GPS卫星的三个位置分量。
采用卡尔曼滤波器一步估计状态变量x=(xr,yr,zr,δtr,N1…Np)T。因为GRAPHIC组合观测方程是关于状态变量x=(xr,yr,zr,δtr,N1…Np)T的非线性方程,因此要对其线性化。线性化过程如下:
将GRAPHIC组合观测方程(4),写成如下形式:
Gc=h(x)+εG (58)
在估计值处线性化:
其中便是上面所求的GRAPHIC组合观测量的计算值Z。Δx为状态变量x的实际值与估计值之差。H模型观测量对状态量x的偏导数雅克比矩阵,有:
认为每个GRAPHIC组合观测量是相互独立的,观测噪声阵有如下形式:
状态变量的协方差阵P-如下:
式(62),是一个分块对角阵。其中为位置信息先验方差阵;为接收机钟差先验方差阵;为模糊度先验方差阵,取值如下:
其中,取值一般为伪距单点定位误差的一半,现取30米。
式(64),表示初始历元钟差δtr的初始估计值是准确的,在后面估计出的各个历元接收机钟差项全都是相对于第一历元时刻的相对钟差,下文不再叙述。
式(65),给模糊度了一个非常大的方差值,这是因为初始历元并没有模糊度信息的先验值,所以如此处理表示方差的初始带入值是完全不可信的。给状态变量的估计值赋初值,其中位置状态变量的估计值赋值如下:
其中,(xspp,yspp,zspp)T表示由伪距单点定位得出的接收机位置,单点定位在此不再叙述。
钟差状态变量的赋值如下:
上式与式(64)联立,其意义表示初始历元钟差为0,并且是准确的。以后历元的钟差估计值皆表示相对于初始历元的相对钟差。
模糊度状态变量估计值的赋值如下:
卡尔曼滤波,滤波系数如下:
K=P HT(HP-HT+R) (69)
则状态量的估计值更新如下:
上式中,上标“+”表示更新后的量,下文出现不再叙述。
以式(70)的一步估计值,作为初始历元的最终解算结果。
状态变量方差阵P更新如下:
P+=(1-KH)P- (71)
该步骤对应图1中的第二个方框。
步骤三:构建载波相位历元差分观测模型,求解位置变化量
由式(9)给出的载波相位历元差分方程,带入k历元与k-1历元的坐标位置如下:
上式中,GPS卫星位置、钟差以及k-1历元接收机位置皆为已知量。
k历元与k-1历元接收机位置、钟差有如下关系:
上式中,Δx,Δy,Δz,Δδtr分别表示从k-1历元到k历元,接收机位置变换量与钟差变化量。
将式(73)带入式(72),则ΔΦc成为一个关于状态变量y=(Δx,Δy,Δz,cΔδtr)T的非线性函数,记为下式:
ΔΦc=f(Δx,Δy,Δz,Δδtr) (74)
给出状态变量估计值的初始值如下:
计算载波相位历元差分观测量的计算值ΔL:
非线性方程(74)在带入估计值处线性化,求H阵:
上式,各个量含义与(14)中各量含义类似,不再叙述。
由式(10),给出载波相位历元差分观测量的噪声阵R,如下:
由最小二乘估计:
更新状态变量的估计值:
作为新的初值,带入式(75),计算式(76)~(80)。重复以上过程直到满足下式:
||Δy||<10-3m (81)
或超出最大迭代次数时终止。
状态变量y的方差阵P由下式给出:
上式中PdR为位置变化量信息协方差阵;PtdR,PdRt为位置变化量与钟差变化量协方差阵;Pt为钟差变化量协方差阵;I为单位阵;Q为电离层控制因子。
该步骤对应图1中的第三个方框。
步骤四:模糊度信息与位置信息传递
k-1历元的位置信息与模糊度信息已知,由步骤三也已解算出k-1历元到k历元的位置变化量。此步骤便是要把位置信息与模糊度信息传递到k历元。
k历元的位置信息传递如下:
上式中下标“0”,表示初值。
K历元的模糊度信息传递如下:
方差信息传递如下:
上式中下标“0”,表示初值。
不对钟差进行传递,所以,对式(86)中钟差的方差设为106,对均设为0。
该步骤对应图1中的第四个方框。
步骤五:构建GRAPHIC组合观测模型
如步骤一中,构建k历元的GRAPHIC组合观测模型,得到GRAPHIC组合测量量的计算值Z。
该步骤对应图1中的第五个方框。
步骤六:判断是否发生换星
判断从k-1历元到k历元,是否发生换星。若是,则执行步骤七;否则,执行步骤八。
该步骤对应附图一种的第六个方框
步骤七:模糊度信息与方差信息的调整
从k-1历元到k历元若发生换星,位置信息不发生变化,模糊度改变。要对步骤四中的式(85)与式(86)中和模糊度有关的项进行修改。
对式(85)的调整,保留k-1历元与k历元共同观测的GPS卫星模糊度,去掉只在k-1历元观测到的卫星模糊度,增加k历元新增的GPS卫星模糊度,将其模糊度设为 0。得到模糊度信息为(N0)q×1
对式(86)的调整,保留k-1历元与k历元共同观测的GPS卫星模糊度方差与协方差,去掉只在k-1历元观测到的卫星的方差与协方差,增加k历元新增的GPS卫星方差与协方差,方差值取106,协方差取0。得到的模糊度方差阵为
该步骤对应图1中的第七个方框。
步骤八:构建虚拟测量方程
使用步骤四传递,步骤七调整过的位置信息与模糊度信息作为虚拟测量量的测量值,如下:
上式中下标“v”,表示虚拟测量;q表示k历元所观测到的GPS卫星总数。
虚拟观测方程如下:
上式中,(Nk)q×1为k历元代估模糊度向量。
观测方程矩阵形式如下:
上式中Hv表达式如下:
Hv=I(3+q)×(3+q) (90)
虚拟测量量的噪声阵由下式给出:
若发生了换星,则上式中PN0由步骤七得到;若未发生换星,则
该步骤对应图1中的第八个方框。
步骤九:GRAPHIC组合观测方程与虚拟观测方程共同进行最小二乘估计,解算最终定位结果
测量方程如下:
上式中,HG的计算步骤与步骤一中GRAPHIC组合H阵计算相同;Hv由步骤八中给出;υ为噪声向量。
观测量的噪声阵,由下式给出:
上式中RG由(16)给出。
最小二乘估计:
Δx=(HTR-1H)-1R-1(z-Z) (94)
上式中,z为测量量的测量值,如下:
Z为测量量的计算值,如下:
上式中G'由式(11)计算,V'为下式:
更新状态变量x:
将更新后的状态量估计值作为新的初值带入式(92)计算H阵。重复(92)~(98),直到满足下式:
或迭代次数超过最大迭代次数时停止。
得到状态量的最小二乘估计,其k历元的最终定位结果为(xk yk zk)T,计算状态变量的协方差阵:
该步骤对应附图一中的第九个方框。
步骤十:判断导航是否结束
若导航结束,则终止导航流程;否则执行步骤三。
该步骤对应图1中的第十个方框。
通过上述步骤,提出了一种基于GNSS的单频高精度定位方法。该方法仅采用单个单频GPS接收机,使用载波相位历元差分辅助的GRAPHIC组合运动学导航算法,抑制了定位噪声误差,提高了运动学导航定位精度。采用精密星历可以对低轨卫星进行高精度定轨,采用广播星历则可以实现实时导航定位。该方法,不受导航定位过程中换星影响,可靠度高。可对地面、海面以及空中静止的或运动的载体进行的高精度的定位导航。单频GPS接收机,具有成本低廉的优势,利于在民用高精度定位导航方面的普及与应用。

Claims (1)

1.一种基于GNSS的单频高精度定位方法,其特征在于:其步骤如下:
步骤一:准备工作
首先给出伪距观测方程:
P=ρ+c(δtr-δts)+δionrelp·········(1)
式(1)中,P伪距观测量,以米(m)为单位;ρ为GPS卫星到接收机的真实几何距离;c为真空中的光速;δtr为接收机钟差;δts为GPS卫星钟差;δion为电离层延迟;δrel为相对论效应引起的误差;εp为伪距观测噪声,其符合方差为的白噪声;
给出载波相位观测方程:
式(2)中,Φ为载波相位观测量,以米为单位,为载波相位观测量,以周为单位;λ为载波波长;ρ为GPS卫星到接收机的真实几何距离;c为真空中光速;δtr为接收机钟差;δts为GPS卫星钟差;N为模糊度;δion为电离层延迟;δrel为相对论效应引起的误差;为载波相位观测噪声,其符合方差为的白噪声;
为了消除电离层误差,利用伪距观测方程(1)和载波相位观测方程(2)中电离层延迟一阶项,大小相等,符号相反的性质,得到以下消除电离层误差项的GRAPHIC组合观测方程为:
上式中δts通过外部星历得到,为已知项;δrel通过建模得到并进行修正,合并已知项的观测方程为:
Gc=ρ+cδtr+λNGG···········(4)
其中Gc为误差修正后的GRAPHIC组合观测量,NG为GRAPHIC组合模糊度,表达式如下:
下文在不引起歧义的情况下,统一将NG简写为N,并称为模糊度;
εG为GRAPHIC组合观测噪声,表达式如下:
其噪声方差如下:
式(7)是GRAPHIC组合观测量的噪声方差,其中D(·)为求方差算子是由伪距噪声方差与载波噪声方差组合得到;伪距的测量噪声能达米级,而载波相位的测量噪声一般为毫米级;由上式能看到GRAPHIC组合的噪声水平处于伪距噪声和载波相位噪声之间,为分米级,使用这种组合进行传统的GRAPHIC组合运动学定轨、定位和导航,结果的误差在分米级,难以满足高精度定位要求;
给出载波相位历元差分观测方程:
上式(8)中,k表示当前历元,k-1表示上一历元;其他符号与上文相同;其中,GPS卫星钟差项δts通过外部星历得到;相对论引起的误差项δrel通过建模得到;而当历元时间较短时,相邻历元电离层变化不大,残留项(δion,kion,k-1)忽略;因此得到整理后的载波相位历元差分观测方程:
上式中ΔΦc为GPS接收机钟差,相对论效应修正后的载波相位历元差分观测量;其观测噪声方差为:
从(10)中看出,载波相位历元差分观测量的噪声水平与载波相位观测量的水平相当;
以上,给出了载波相位历元差分测量模型,该模型用于相邻历元的相对位置求解,其结果将传递到下一历元用于构建位置信息虚拟观测量;使用最小二乘估计对当前时刻接收机的位置和钟差信息进行估计;以下给出一种基于GNSS的单频高精度定位方法具体步骤;
步骤二:初始历元位置解算
由于初始历元是导航定位过程的第一个历元,其没有来自上一历元的先验信息,因此对于初始历元要进行单独处理,初始化它的位置信息与模糊度信息;
构建GRAPHIC组合观测量计算值Z;
由公式(4),得知GRAPHIC组合观测方程是一个关于状态变量x=(xr,yr,zr,δtr,N1…Np)T的非线性方程,其中模糊度下标表示当前历元共观测到的GPS卫星数目;GRAPHIC组合观测量计算值Z,计算如下:
其中的关系式如下:
其中,上式符号“~”表示估计值,为接收机的三个位置估计分量,(xs,ys,zs)T为GPS卫星的三个位置分量;
采用卡尔曼滤波器一步估计状态变量x=(xr,yr,zr,δtr,N1…Np)T;因为GRAPHIC组合观测方程是关于状态变量x=(xr,yr,zr,δtr,N1…Np)T的非线性方程,因此要对其线性化,线性化过程如下:
将GRAPHIC组合观测方程(4),写成如下形式:
Gc=h(x)+εG············(13)
在参考点处线性化:
其中便是上面所求的GRAPHIC组合观测量的计算值Z;Δx为状态变量x的实际值与估计值之差;H模型观测量对状态量x的偏导数雅克比矩阵,有:
认为每个GRAPHIC组合观测量是相互独立的,观测噪声阵有如下形式:
状态变量初始值的先验协方差阵P-如下:
式(17),是一个分块对角阵;其中为位置信息初始先验方差阵;Pt -为接收机钟差初始先验方差阵;为模糊度方差阵,取值如下:
其中,取值一般为伪距单点定位误差的一半,现取30米;
Pt -=0··············(19)
式(19),表示初始历元钟差δtr的初始带入值是准确的,在后面估计出的各个历元接收机钟差项全都是相对于第一历元时刻的相对钟差,后边不再叙述;
式(20),模糊度方差值为一个极大值,这是因为初始历元并没有模糊度信息的先验值,所以如此处理表示方差的初始带入值是完全不可信的;
给状态变量的估计值赋初值,其中位置状态变量的估计值赋值如下:
其中,(xspp,yspp,zspp)T表示由伪距单点定位得出的接收机位置,单点定位在此不再叙述;
钟差状态变量的赋值如下:
上式与式(19)联立,其意义表示初始历元钟差为0,并且是准确的;以后历元的钟差估计值皆表示相对于初始历元的相对钟差;
模糊度状态变量估计值的赋值如下:
卡尔曼滤波,滤波系数如下:
K=P-HT(HP-HT+R)··········(24)
则状态量的估计值更新如下:
上式中,上标“+”表示更新后的量,下文出现不再叙述;
以式(25)的一步估计值,作为初始历元的最终解算结果;
状态变量方差阵P更新如下:
P+=(1-KH)P-···········(26);
步骤三:构建载波相位历元差分观测模型,求解相对位置变化量
由式(9)给出的载波相位历元差分方程,带入k历元与k-1历元的坐标位置如下:
上式中,GPS卫星位置、钟差以及k-1历元接收机位置皆为已知量;
k历元与k-1历元接收机位置、钟差有如下关系:
上式中,Δx,Δy,Δz,Δδtr分别表示从k-1历元到k历元,接收机位置变换量与钟差变化量;
将式(28)带入式(27),则ΔΦc成为一个关于状态变量y=(Δx,Δy,Δz,cΔδtr)T的非线性函数,记为下式:
ΔΦc=f(Δx,Δy,Δz,Δδtr)··········(29)
给出状态变量估计值的初始值如下:
计算载波相位历元差分观测量的计算值ΔL:
非线性方程(29)在带入估计值泰勒展开,取一阶项,求H阵:
上式,各个量含义与(14)中各量含义类似,不再叙述;
由式(10),给出载波相位历元差分观测量的噪声阵R,如下:
由最小二乘估计:
Δy=(HTR-1H)-1(HTR-1(ΔΦc-ΔL))·······(34)
更新状态变量的估计值:
作为新的初值,带入式(30),计算式(31)~(35);重复以上过程直到满足下式:
||Δy||<10-3m············(36)
或超出最大迭代次数时终止;
状态变量y的方差阵P由下式给出:
上式中PdR为位置变化量信息方差阵;PtdR,PdRt为位置变化量与钟差变化量协方差阵;Pt为钟差变化量方差阵;I为单位阵;Q为电离层控制因子,用来控制不同历元间电离层残差影响;
步骤四:模糊度信息与位置信息传递
k-1历元的位置信息与模糊度信息已知,由步骤三也已解算出k-1历元到k历元的位置变化量;此步骤便是要把位置信息与模糊度信息传递到k历元;
k历元的位置信息传递如下:
xk0=xk-1+Δx
yk0=yk-1+Δy············(38)
zk0=zk-1+Δz
PR0=PRk-1+PdR············(39)
上式中下标“0”,表示初值;
K历元的模糊度信息传递如下:
方差信息传递如下:
上式中下标“0”,表示初值;
因为不对钟差进行传递,所以,对式(41)中钟差的方差设为106,对均设为0;
步骤五:模糊度信息与方差信息调整
若从k-1历元到k历元若发生换星,则进行该步骤;否则跳过步骤五,执行步骤六;
从k-1历元到k历元若发生换星,位置信息不发生变化,模糊度改变;要对步骤四中的式(40)与式(41)中和模糊度有关的项进行修改;
对式(40)的调整,保留k-1历元与k历元共同观测的GPS卫星模糊度,去掉只在k-1历元观测到的卫星模糊度,增加k历元新增的GPS卫星模糊度,将其模糊度设为0,得到模糊度信息为(N0)q×1,‘q’表示k历元所观测到的总的GPS卫星个数;
对式(41)的调整,保留k-1历元与k历元共同观测的GPS卫星模糊度方差与协方差,去掉只在k-1历元观测到的卫星的方差与协方差,增加k历元新增的GPS卫星方差与协方差,方差值取106,协方差取0;得到的模糊度方差阵为
步骤六:构建模糊度与位置信息虚拟观测方程
使用步骤四传递,步骤五调整过的位置信息与模糊度信息作为虚拟测量的测量值,如下:
上式中x,y,z为接收机三个位置坐标,标“v”,表示虚拟测量;q表示k历元所观测到的GPS卫星总数;
虚拟观测方程如下:
上式中,(Nk)q×1为k历元代估模糊度向量;
观测方程矩阵形式如下:
上式中Hv表达式如下:
Hv=I(3+q)×(3+q)············(45)
虚拟观测量的噪声阵由下式给出:
若发生了换星,则式(46)中由步骤五得到;若未发生换星,则
步骤七:GRAPHIC组合观测方程与虚拟观测方程共同进行最小二乘估计,解算最终定位结果
观测方程如下:
上式中,HG的计算步骤与步骤二中GRAPHIC组合H阵计算相同;Hv由步骤六中给出;υ为噪声向量;
观测量的噪声阵,由下式给出:
上式中RG由(16)给出;
最小二乘估计:
Δx=(HTR-1H)-1R-1(z-Z)·········(49)
上式中,z为观测量的测量值,如下:
Z为观测量的计算值,如下:
上式中G'由式(11)计算,V'为下式:
更新状态变量x:
将更新后的状态量估计值作为新的初值带入式(47)计算H阵;重复(47)~(53),直到满足下式:
及迭代次数超过最大迭代次数时停止;
得到状态量的最小二乘估计,其k历元的最终定位结果为(xk yk zk)T,计算状态变量的协方差阵:
回到步骤三,重复以后步骤,进行下一个历元的相对定位,信息传递以及运动学定位解算;
通过上述步骤,提出了一种基于GNSS的单频高精度定位方法;该方法仅采用单个接收机的单频GPS数据,使用载波相位历元差分辅助的GRAPHIC组合运动学定位算法,提高了运动学导航定位精度;采用精密星历能对低轨卫星进行高精度定轨,采用广播星历则能实现实时导航定位;该方法,不受导航定位过程中换星影响,可靠度高,并且该方法的实现只需一个单频GPS接收机,具有成本低廉的优势,数据处理简单,利于普及与应用。
CN201610855464.XA 2016-09-27 2016-09-27 一种基于gnss的单频高精度定位方法 Active CN106569241B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610855464.XA CN106569241B (zh) 2016-09-27 2016-09-27 一种基于gnss的单频高精度定位方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610855464.XA CN106569241B (zh) 2016-09-27 2016-09-27 一种基于gnss的单频高精度定位方法

Publications (2)

Publication Number Publication Date
CN106569241A true CN106569241A (zh) 2017-04-19
CN106569241B CN106569241B (zh) 2019-04-23

Family

ID=58532532

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610855464.XA Active CN106569241B (zh) 2016-09-27 2016-09-27 一种基于gnss的单频高精度定位方法

Country Status (1)

Country Link
CN (1) CN106569241B (zh)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107356952A (zh) * 2017-07-04 2017-11-17 北京航空航天大学 一种利用单接收机自主进行基于gnss的高精度相对导航方法
CN107621644A (zh) * 2017-08-09 2018-01-23 上海移为通信技术股份有限公司 一种gps定位系统的抗干扰控制方法
CN108205146A (zh) * 2017-12-26 2018-06-26 航天天绘科技有限公司 一种基于地面接收机的导航卫星快速寻星定轨方法
CN108267135A (zh) * 2017-12-25 2018-07-10 中铁第四勘察设计院集团有限公司 用于轨道自动测量车的精确定位方法及系统
CN108363084A (zh) * 2018-01-18 2018-08-03 和芯星通科技(北京)有限公司 利用卫星定位的方法和装置、卫星导航接收机、存储介质
CN108873023A (zh) * 2017-05-15 2018-11-23 上海华测导航技术股份有限公司 一种提高定位精度的观测量的处理方法
CN109001776A (zh) * 2018-06-04 2018-12-14 北京未来导航科技有限公司 一种基于云计算的导航数据处理方法及系统
CN109085629A (zh) * 2018-08-29 2018-12-25 广州市中海达测绘仪器有限公司 Gnss基线向量解算定位方法、装置和导航定位设备
CN109507703A (zh) * 2018-12-17 2019-03-22 成都国星通信有限公司 一种gnss载波相位计算方法
CN109668562A (zh) * 2017-10-13 2019-04-23 北京航空航天大学 一种考虑偏差时引入伪测量的重力梯度运动学导航方法
CN109738919A (zh) * 2019-02-28 2019-05-10 西安开阳微电子有限公司 一种用于gps接收机自主预测星历的方法
CN109900265A (zh) * 2019-03-15 2019-06-18 武汉大学 一种camera/mems辅助北斗的机器人定位算法
CN109901206A (zh) * 2019-04-01 2019-06-18 武汉大学 一种基于低轨卫星无线电测距信号的单星定位与授时方法
CN110398713A (zh) * 2019-07-29 2019-11-01 相维(北京)科技有限公司 一种利用无线信号检测接收机运动状态的方法
CN110703284A (zh) * 2019-09-17 2020-01-17 中国矿业大学 一种基于稀疏核学习的单站gnss瞬时速度和加速度构建方法
CN110824517A (zh) * 2019-11-22 2020-02-21 首都师范大学 一种测码伪距gps绝对定位方法
CN110941002A (zh) * 2019-12-18 2020-03-31 哈尔滨工程大学 一种自适应抗差的序贯最小二乘精密单点定位方法
CN111045066A (zh) * 2019-12-30 2020-04-21 威海欧瑞亚信息科技有限公司 一种基于参数等价约化原理确定gnss位置变化的方法
CN111190208A (zh) * 2020-01-14 2020-05-22 成都纵横融合科技有限公司 一种基于rtk的gnss/ins紧组合导航解算方法
CN111272336A (zh) * 2020-03-23 2020-06-12 中国科学院空间应用工程与技术中心 一种基于gnss观测实现大型低轨航天器质心位移估算的方法
CN111487660A (zh) * 2020-04-24 2020-08-04 北京航空航天大学 一种高精度实时微纳卫星集群导航算法
CN111665533A (zh) * 2019-03-07 2020-09-15 中国科学院上海高等研究院 基于卫星定位有效性的定位方法/系统、介质及设备
CN111694038A (zh) * 2020-07-23 2020-09-22 南京信息工程大学 一种基于uwb辅助导航卫星进行载体快速精密导航定位方法
CN112731496A (zh) * 2020-12-07 2021-04-30 中国科学院空天信息创新研究院 一种面向智能终端的gnss精密单点定位数据质量控制方法
CN112764067A (zh) * 2020-12-23 2021-05-07 深圳创维数字技术有限公司 Gps卫星星历数据的获取方法、装置、车载及可读存储介质
RU2749667C1 (ru) * 2018-06-04 2021-06-16 Бейцзин Фьюче Нэвигейшен Текнолоджи Ко., Лтд Способ и система быстрого и точного позиционирования
CN113296138A (zh) * 2021-04-25 2021-08-24 北京遥测技术研究所 一种陆基导航高精度定位方法
CN115856982A (zh) * 2023-02-22 2023-03-28 广州导远电子科技有限公司 一种相对位置获取方法、装置、存储介质及电子设备
CN116106955A (zh) * 2023-01-10 2023-05-12 北京航空航天大学 一种基于气压计与ppp紧组合的智能终端高精度定位方法
CN116413757A (zh) * 2023-04-13 2023-07-11 中国民航大学 一种基于时间差分载波相位技术的舰船升沉测量方法
CN116953745A (zh) * 2023-09-20 2023-10-27 毫厘智能科技(江苏)有限公司 基于芯片平台的定位方法、装置及计算机可读存储介质
CN117452463A (zh) * 2023-12-22 2024-01-26 开普勒卫星科技(武汉)有限公司 一种适用于复杂环境下单频终端的周跳探测与修复方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007032947A1 (en) * 2005-09-09 2007-03-22 Trimble Navigation Limited Ionosphere modeling apparatus and methods
CN102035774A (zh) * 2009-09-25 2011-04-27 上海伽利略导航有限公司 一种单频载波相位定位的方法及装置
EP2458405A1 (en) * 2010-11-24 2012-05-30 Javad GNSS, Inc. Graphics-aided remote position measurement with handheld geodesic device
CN105676250A (zh) * 2016-01-15 2016-06-15 北京航空航天大学 一种基于gnss的单历元三频模糊度解算方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007032947A1 (en) * 2005-09-09 2007-03-22 Trimble Navigation Limited Ionosphere modeling apparatus and methods
CN102035774A (zh) * 2009-09-25 2011-04-27 上海伽利略导航有限公司 一种单频载波相位定位的方法及装置
EP2458405A1 (en) * 2010-11-24 2012-05-30 Javad GNSS, Inc. Graphics-aided remote position measurement with handheld geodesic device
CN105676250A (zh) * 2016-01-15 2016-06-15 北京航空航天大学 一种基于gnss的单历元三频模糊度解算方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JINLONG LI等: "An analytical study on the carrier-phase linear combinations for triple-frequency GNSS", 《JOURNAL OF GEODESY》 *
张小红等: "GPS 单频精密单点定位软件实现与精度分析", 《武汉大学学报》 *
阮仁桂等: "星间差分GRAPHIC观测量单频精密单点定位算法", 《测绘科学技术学报》 *

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108873023A (zh) * 2017-05-15 2018-11-23 上海华测导航技术股份有限公司 一种提高定位精度的观测量的处理方法
CN108873023B (zh) * 2017-05-15 2022-01-11 上海华测导航技术股份有限公司 一种提高定位精度的观测量的处理方法
CN107356952A (zh) * 2017-07-04 2017-11-17 北京航空航天大学 一种利用单接收机自主进行基于gnss的高精度相对导航方法
CN107621644A (zh) * 2017-08-09 2018-01-23 上海移为通信技术股份有限公司 一种gps定位系统的抗干扰控制方法
CN109668562A (zh) * 2017-10-13 2019-04-23 北京航空航天大学 一种考虑偏差时引入伪测量的重力梯度运动学导航方法
CN108267135A (zh) * 2017-12-25 2018-07-10 中铁第四勘察设计院集团有限公司 用于轨道自动测量车的精确定位方法及系统
CN108205146A (zh) * 2017-12-26 2018-06-26 航天天绘科技有限公司 一种基于地面接收机的导航卫星快速寻星定轨方法
CN108205146B (zh) * 2017-12-26 2022-06-17 航天天绘科技有限公司 一种基于地面接收机的导航卫星快速寻星定轨方法
CN108363084A (zh) * 2018-01-18 2018-08-03 和芯星通科技(北京)有限公司 利用卫星定位的方法和装置、卫星导航接收机、存储介质
CN108363084B (zh) * 2018-01-18 2022-04-08 和芯星通科技(北京)有限公司 利用卫星定位的方法和装置、卫星导航接收机、存储介质
CN109001776A (zh) * 2018-06-04 2018-12-14 北京未来导航科技有限公司 一种基于云计算的导航数据处理方法及系统
RU2749667C1 (ru) * 2018-06-04 2021-06-16 Бейцзин Фьюче Нэвигейшен Текнолоджи Ко., Лтд Способ и система быстрого и точного позиционирования
CN109085629A (zh) * 2018-08-29 2018-12-25 广州市中海达测绘仪器有限公司 Gnss基线向量解算定位方法、装置和导航定位设备
CN109507703A (zh) * 2018-12-17 2019-03-22 成都国星通信有限公司 一种gnss载波相位计算方法
CN109738919A (zh) * 2019-02-28 2019-05-10 西安开阳微电子有限公司 一种用于gps接收机自主预测星历的方法
CN111665533A (zh) * 2019-03-07 2020-09-15 中国科学院上海高等研究院 基于卫星定位有效性的定位方法/系统、介质及设备
CN109900265A (zh) * 2019-03-15 2019-06-18 武汉大学 一种camera/mems辅助北斗的机器人定位算法
CN109901206B (zh) * 2019-04-01 2023-06-13 武汉大学 一种基于低轨卫星无线电测距信号的单星定位与授时方法
CN109901206A (zh) * 2019-04-01 2019-06-18 武汉大学 一种基于低轨卫星无线电测距信号的单星定位与授时方法
CN110398713A (zh) * 2019-07-29 2019-11-01 相维(北京)科技有限公司 一种利用无线信号检测接收机运动状态的方法
CN110703284A (zh) * 2019-09-17 2020-01-17 中国矿业大学 一种基于稀疏核学习的单站gnss瞬时速度和加速度构建方法
CN110824517A (zh) * 2019-11-22 2020-02-21 首都师范大学 一种测码伪距gps绝对定位方法
CN110941002B (zh) * 2019-12-18 2022-12-13 哈尔滨工程大学 一种自适应抗差的序贯最小二乘精密单点定位方法
CN110941002A (zh) * 2019-12-18 2020-03-31 哈尔滨工程大学 一种自适应抗差的序贯最小二乘精密单点定位方法
CN111045066A (zh) * 2019-12-30 2020-04-21 威海欧瑞亚信息科技有限公司 一种基于参数等价约化原理确定gnss位置变化的方法
CN111190208A (zh) * 2020-01-14 2020-05-22 成都纵横融合科技有限公司 一种基于rtk的gnss/ins紧组合导航解算方法
CN111272336B (zh) * 2020-03-23 2021-02-19 中国科学院空间应用工程与技术中心 一种基于gnss观测实现大型低轨航天器质心位移估算的方法
CN111272336A (zh) * 2020-03-23 2020-06-12 中国科学院空间应用工程与技术中心 一种基于gnss观测实现大型低轨航天器质心位移估算的方法
CN111487660A (zh) * 2020-04-24 2020-08-04 北京航空航天大学 一种高精度实时微纳卫星集群导航算法
CN111694038A (zh) * 2020-07-23 2020-09-22 南京信息工程大学 一种基于uwb辅助导航卫星进行载体快速精密导航定位方法
CN111694038B (zh) * 2020-07-23 2022-11-15 南京信息工程大学 一种基于uwb辅助导航卫星进行载体快速精密导航定位方法
CN112731496B (zh) * 2020-12-07 2023-06-06 中国科学院空天信息创新研究院 一种面向智能终端的gnss精密单点定位数据质量控制方法
CN112731496A (zh) * 2020-12-07 2021-04-30 中国科学院空天信息创新研究院 一种面向智能终端的gnss精密单点定位数据质量控制方法
CN112764067A (zh) * 2020-12-23 2021-05-07 深圳创维数字技术有限公司 Gps卫星星历数据的获取方法、装置、车载及可读存储介质
CN112764067B (zh) * 2020-12-23 2023-07-07 深圳创维数字技术有限公司 Gps卫星星历数据的获取方法、装置、车载及可读存储介质
CN113296138A (zh) * 2021-04-25 2021-08-24 北京遥测技术研究所 一种陆基导航高精度定位方法
CN113296138B (zh) * 2021-04-25 2022-12-13 北京遥测技术研究所 一种陆基导航高精度定位方法
CN116106955A (zh) * 2023-01-10 2023-05-12 北京航空航天大学 一种基于气压计与ppp紧组合的智能终端高精度定位方法
CN116106955B (zh) * 2023-01-10 2023-09-05 北京航空航天大学 一种基于气压计与ppp紧组合的智能终端高精度定位方法
CN115856982A (zh) * 2023-02-22 2023-03-28 广州导远电子科技有限公司 一种相对位置获取方法、装置、存储介质及电子设备
CN116413757A (zh) * 2023-04-13 2023-07-11 中国民航大学 一种基于时间差分载波相位技术的舰船升沉测量方法
CN116413757B (zh) * 2023-04-13 2024-03-05 中国民航大学 一种基于时间差分载波相位技术的舰船升沉测量方法
CN116953745A (zh) * 2023-09-20 2023-10-27 毫厘智能科技(江苏)有限公司 基于芯片平台的定位方法、装置及计算机可读存储介质
CN116953745B (zh) * 2023-09-20 2023-11-21 毫厘智能科技(江苏)有限公司 基于芯片平台的定位方法、装置及计算机可读存储介质
CN117452463A (zh) * 2023-12-22 2024-01-26 开普勒卫星科技(武汉)有限公司 一种适用于复杂环境下单频终端的周跳探测与修复方法
CN117452463B (zh) * 2023-12-22 2024-05-14 开普勒卫星科技(武汉)有限公司 一种适用于复杂环境下单频终端的周跳探测与修复方法

Also Published As

Publication number Publication date
CN106569241B (zh) 2019-04-23

Similar Documents

Publication Publication Date Title
CN106569241A (zh) 一种基于gnss的单频高精度定位方法
CN104714244B (zh) 一种基于抗差自适应Kalman滤波的多系统动态PPP解算方法
CN104297773B (zh) 一种高精度北斗三频sins深组合导航系统
CN105372691B (zh) 一种模糊度固定的长基线卫星编队gnss相对定位方法
CN103837879B (zh) 基于北斗系统民用载波相位组合实现高精度定位的方法
CN104597471B (zh) 面向时钟同步多天线gnss接收机的定向测姿方法
CN102590840B (zh) 一种卫星定位载波相位差分方法
CN102608633B (zh) 一种卫星定位伪距差分方法
CN107193028A (zh) 基于GNSS的Kalman相对定位方法
CN110045407A (zh) 一种分布式伪卫星/gnss优化定位方法
CN103675861A (zh) 一种基于星载gnss多天线的卫星自主定轨方法
CN107765269A (zh) 基于抗差最小二乘的gnss选星方法
CN112285745B (zh) 基于北斗三号卫星导航系统的三频模糊度固定方法及系统
CN109613582B (zh) 一种车载实时单频米级伪距定位方法
CN104730551B (zh) 一种星地双基地差分干涉基线坐标以及形变量测量方法
CN115267863A (zh) 一种精密单点定位逐级模糊度固定方法
CN105044741A (zh) 一种伪距相位综合广域差分改正值的求解方法
CN103675858B (zh) 北斗系统b1与gps系统l1载波相位混频差分方法
CN115220078A (zh) 基于载波相位差分的gnss高精度定位方法及导航方法
CN109143289B (zh) 一种gnss单站位移监测方法
CN103543454A (zh) 一种嵌入在移动通讯网中的卫星定轨系统
CN104898144A (zh) 一种北斗系统参考站整周模糊度单历元确定方法
CN104991265B (zh) 一种北斗卫星导航系统用户统一性定位方法
CN104309817B (zh) 基于多台并址接收机的北斗导航卫星区域定轨方法
WO2020044129A1 (en) Attitude determination based on global navigation satellite system information

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant