CN106563442A - 一种超薄二水三氧化钨纳米片的制备方法及其应用 - Google Patents

一种超薄二水三氧化钨纳米片的制备方法及其应用 Download PDF

Info

Publication number
CN106563442A
CN106563442A CN201610945842.3A CN201610945842A CN106563442A CN 106563442 A CN106563442 A CN 106563442A CN 201610945842 A CN201610945842 A CN 201610945842A CN 106563442 A CN106563442 A CN 106563442A
Authority
CN
China
Prior art keywords
water
organic
dihydrate
organic amine
tungsten trioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610945842.3A
Other languages
English (en)
Other versions
CN106563442B (zh
Inventor
吕慧丹
张梦莹
刘勇平
闫艺
杨之书
耿鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guilin University of Technology
Original Assignee
Guilin University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guilin University of Technology filed Critical Guilin University of Technology
Priority to CN201610945842.3A priority Critical patent/CN106563442B/zh
Publication of CN106563442A publication Critical patent/CN106563442A/zh
Application granted granted Critical
Publication of CN106563442B publication Critical patent/CN106563442B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G41/00Compounds of tungsten
    • C01G41/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/01Crystal-structural characteristics depicted by a TEM-image
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/84Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by UV- or VIS- data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • C01P2004/24Nanoplates, i.e. plate-like particles with a thickness from 1-100 nanometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开了一种超薄二水三氧化钨纳米片光催化剂的制备方法。采用溶剂热反应制备有机胺插层的有机‑无机杂化物。将10mL1.0mol/L的钨酸钠溶液与90mL3.0mol/L的盐酸溶液混合反应,得到二水三氧化钨块材粉末。取二水三氧化钨粉末与有机胺混合,100~150℃反应2~3天,得到有机胺插层的有机‑无机杂化物,然后用有机酸液相剥离形成二水三氧化钨超薄纳米片。取有机胺插层的二水三氧化钨与有机酸溶液混合,液相超声剥离得到二水三氧化钨超薄纳米片。本发明方法简便,易于操作,所制备的二水三氧化钨超薄纳米片具有较高的光催化活性。

Description

一种超薄二水三氧化钨纳米片的制备方法及其应用
技术领域
本发明所属技术领域为光催化、光电化学材料技术领域,特别涉及三氧化钨超薄纳米片光催化剂的制备方法。
背景技术
三氧化钨为一种宽禁带的n型半导体材料,室温下的禁带宽度为2.63eV,可吸收500nm以下的可见光及紫外光,在电致变色、气敏传感器、光催化与光电转换领域具有重要的应用价值。纳米三氧化钨与传统的半导体材料相比,禁带宽度较窄,在可见光条件下具有良好的光电响应性能,并且价格低廉、性能稳定、无害、无毒,可作为光催化剂,利用太阳光降解水中的有机污染物和空气中的废气,高效节能、清洁、无污染。然而,WO3的性能和实际应用与它的晶相、形态、尺寸、形貌、晶体缺陷以及表面性能紧密相关,而这些又主要取决于WO3的制备方法及制备条件。其中,2D超薄纳米结构是一种厚度在单分子层或少分子层范围的特殊形貌,其平铺尺寸从几十个纳米到微米以上,具有超高的比表面积,表现出高度的各向异性和量子限域效应。当这种特殊的超薄结构材料作为光催化剂时,光生载流子从体内扩散到表面所需要的时间变短,光生电荷分离效率明显提高。因此,2D超薄纳米材料将比其体相材料具有更高的光催化活性。
目前,已经报导的WO3纳米片的合成方法产率过低或需特殊仪器设备,因此,采用插层-剥离的方法制备超薄WO3纳米片,提高光催化性能,用于高效降解有机污染物,以及光电水分解制氢/制氧,对于环境治理、有效提高太阳光利用率和节约能源具有重要的意义。
发明内容
本发明的目的是提供一种二维的超薄二水三氧化钨纳米片的制备方法及其应用,本发明方法简单,易于操作,所制备的超薄二水三氧化钨纳米片具有较高的光电性能以及能够较好地应用于可见光响应光催化领域。
具体步骤为:
(1)采用沉淀法,将10mL1.0mol/L的钨酸钠溶液加入到90mL 3.0mol/L的盐酸溶液中,冰水浴磁力搅拌30分钟,出现黄色产物,用去离子水清洗3次,然后冷冻干燥,得到二水三氧化钨块材粉末;
(2)将0.2g步骤(1)所得二水三氧化钨块材粉末和5~10mL有机胺混合均匀,加入到25mL的聚四氟乙烯反应釜中,在100~150℃条件下反应2~3天,自然冷却至室温后,先后用蒸馏水和乙醇离心洗涤3次,再60℃真空干燥得到有机胺插层的有机-无机杂化物;
(3)取0.1g步骤(2)所得有机胺插层的有机-无机杂化物加入到15mL1.0~3.0mol/L的有机酸溶液中,冰水浴磁力搅拌6~10小时后,用离心机在5000转/分的转速下离心5分钟,然后取上清液,再用离心机在15000转/分的转速下离心收集剥离好的二水三氧化钨超薄纳米片;
所述有机胺为正丙胺、正丁胺、正辛胺和甲酰胺中的一种;
所述有机酸为乙酸、酒石酸、草酸和柠檬酸中的一种;
所述化学试剂纯度均为化学纯以上纯度。
本发明的有益效果是:
本发明所制备的超薄二水三氧化钨纳米片是厚度为2~5nm,面积为1.5~5μm的少层结构,其禁带宽度为2.3~2.7eV之间,紫外区吸收增强,能够吸收可见光。超薄二水三氧化钨纳米片在可见光照射下,能够产生快速的光电流响应,与块体二水三氧化钨相比,催化性能明显增强。因此,超薄二水三氧化钨纳米片作为一种可见光响应的纳米材料,在光催化降解有机污染物,光催化分解水制氢/制氧,太阳能电池等方面有巨大的应用潜力。
附图说明
图1是本发明实施例1制备的二水三氧化钨(WO3·2H2O)块体(a)和超薄二水三氧化钨(WO3·2H2O)纳米片(b)的XRD衍射图谱。
图2是本发明实施例1制备的超薄二水三氧化钨(WO3·2H2O)纳米片的透射电镜(TEM)图,其中(a-d)为不同分辨率倍数的TEM图。
图3是本发明实施例1制备的二水三氧化钨(WO3·2H2O)块体和二水三氧化钨(WO3·2H2O)超薄纳米片的紫外-可见-近红外漫反射光谱图。
图4是本发明实施例1制备的二水三氧化钨(WO3·2H2O)块体和二水三氧化钨(WO3·2H2O)超薄纳米片的电流密度-电位图。
具体实施方式
实施例1:
(1)采用沉淀法,将10mL1.0mol/L的钨酸钠溶液加入到90mL3.0mol/L的盐酸溶液中,冰水浴磁力搅拌30分钟,将所得产物离心,用去离子水清洗3次,然后冷冻干燥,得到二水三氧化钨块材粉末。
(2)将0.2g步骤(1)所得二水三氧化钨块材粉末与5mL正丙胺混合均匀,加入到25mL聚四氯乙烯反应釜中,在100℃反应3天,自然冷却至室温后,将样品离心,先后用蒸馏水和乙醇离心洗涤3次,再60℃真空干燥得到有机胺插层的有机-无机杂化物。
(3)取0.1g步骤(2)所得有机-无机杂化物加入到15mL 3.0mol/L的醋酸溶液中,冰水浴磁力搅拌10小时后,用离心机在5000转/分的转速下离心5分钟,然后取上清液,再用离心机在15000转/分的转速下离心收集剥离好的二水三氧化钨超薄纳米片;
图1显示了实施例1制备的二水三氧化钨块体(a)和二水三氧化钨纳米片(b)的XRD衍射图谱,可见块体二水三氧化钨是单斜相晶体,而二水三氧化钨纳米片是正交相晶体。图2是实施例1制备的超薄二水三氧化钨纳米片的透射电镜(TEM)图,其中(a-d)为不同分辨率倍数的TEM图,几乎透明的片状结构表明成功获得了超薄二水三氧化钨纳米片。图3是实施例1制备的二水三氧化钨块体和二水三氧化钨纳米片的紫外-可见-近红外漫反射光谱图,图3显示二水三氧化钨纳米片的吸收带边明显蓝移,说明存在量子限域效应。
所制备的二水三氧化钨超薄纳米片,通过旋涂法在ITO表面做成光电极,制备电极作为工作电极,辅助电极为铂电极,饱和甘汞电极(SCE)作为参比电极,0.5mol/L Na2SO4为支持电解质溶液,在太阳光模拟器(一个太阳的光强)下测试光电化学性能,外加电压的范围为0.2V~0.8V,测试从低压开始一直扫到高压区,采用光源均为590W的氙灯(NEWPORT-9115X型太阳光模拟器),以光切换的方式来测试。从图4可以看出二水三氧化钨超薄纳米片的光电流远远高于二水三氧化钨块体粉末的光电流。由以上结果可知超薄二水三氧化钨纳米片能作为一种可见光响应的纳米材料应用于光催化领域。
实施例2:
(1)采用沉淀法,将10mL1.0mol/L的钨酸钠溶液加入到90mL3.0mol/L的盐酸溶液中,冰水浴磁力搅拌30分钟,将所得产物离心,用去离子水清洗3次,然后冷冻干燥,得到二水三氧化钨块材粉末。
(2)将0.2g步骤(1)所得二水三氧化钨粉末与10mL正丁胺混合于聚四氯乙烯反应釜内胆中,在120℃反应2天,自然冷却至室温后,将样品离心,先后用蒸馏水和乙醇离心洗涤3次,再60℃真空干燥得到有机胺插层的有机-无机杂化物。
(3)取0.1g步骤(2)所得有机-无机杂化物,加入到15mL1.0mol/L的酒石酸溶液中,冰水浴磁力搅拌6小时后,用离心机在5000转/分的转速下离心5分钟,然后取上清液,再用离心机在15000转/分的转速下离心收集剥离好的二水三氧化钨超薄纳米片。
实施例3:
(1)采用沉淀法,将10mL 1.0mol/L的钨酸钠溶液加入到90mL 3.0mol/L的盐酸溶液中,冰水浴磁力搅拌30分钟,将所得产物离心,用去离子水清洗3次,然后冷冻干燥,得到二水三氧化钨块材粉末。
(2)将0.2g步骤(1)所得块状二水三氧化钨粉末和8mL正辛胺混合均匀,加入聚四氯乙烯反应釜中,在150℃反应2天,自然冷却至室温后,将样品离心,先后用蒸馏水和乙醇离心洗涤3次,再60℃真空干燥得到有机胺插层的有机-无机杂化物。
(3)取0.1g步骤(2)所得有机-无机杂化物,加入到15mL 1.5mol/L的柠檬酸溶液中,冰水浴磁力搅拌8小时后,用离心机在5000转/分的转速下离心5分钟,然后取上清液,再用离心机在15000转/分的转速下离心收集剥离好的二水三氧化钨超薄纳米片。
实施例4:
(1)采用沉淀法,将10mL1.0mol/L的钨酸钠溶液加入到90mL3.0mol/L的盐酸溶液中,冰水浴磁力搅拌30分钟,出现黄色产物,用去离子水清洗2~3次,然后冷冻干燥,得到二水三氧化钨块材粉末;
(2)将0.2g步骤(1)所得二水三氧化钨块材粉末和10mL甲酰胺混合均匀,加入到25mL的聚四氟乙烯反应釜中,在100℃条件下反应3天,自然冷却至室温后,先后用蒸馏水和乙醇离心洗涤3次,再60℃真空干燥得到有机胺插层的有机-无机杂化物;
(3)取0.1g步骤(2)所得有机胺插层的有机-无机杂化物加入到15mL 2.0mol/L的醋酸溶液中,冰水浴磁力搅拌10小时后,用离心机在5000转/分的转速下离心5分钟,然后取上清液,再用离心机在15000转/分的转速下离心收集剥离好的二水三氧化钨超薄纳米片;
以上实施例所述化学试剂纯度均为化学纯以上纯度。

Claims (2)

1.一种超薄二水三氧化钨纳米片的制备方法,其特征在于具体步骤为:
(1)采用沉淀法,将10mL1.0mol/L的钨酸钠溶液加入到90mL 3.0mol/L的盐酸溶液中,冰水浴磁力搅拌30分钟,出现黄色产物,用去离子水清洗3次,然后冷冻干燥,得到二水三氧化钨块材粉末;
(2)将0.2g步骤(1)所得二水三氧化钨块材粉末和5~10mL有机胺混合均匀,加入到25mL的聚四氟乙烯反应釜中,在100~150℃条件下反应2~3天,自然冷却至室温后,先后用蒸馏水和乙醇离心洗涤3次,再60℃真空干燥得到有机胺插层的有机-无机杂化物;
(3)取0.1g步骤(2)所得有机胺插层的有机-无机杂化物加入到15mL1.0~3.0mol/L的有机酸溶液中,冰水浴磁力搅拌6~10小时后,用离心机在5000转/分的转速下离心5分钟,然后取上清液,再用离心机在15000转/分的转速下离心收集剥离好的二水三氧化钨超薄纳米片;
所述有机胺为正丙胺、正丁胺、正辛胺和甲酰胺中的一种;
所述有机酸为乙酸、酒石酸、草酸和柠檬酸中的一种;
所述钨酸钠、盐酸、有机胺、有机酸均为化学纯以上纯度。
2.权利要求1所述的制备方法得到的超薄二水三氧化钨纳米片在可见光响应光催化领域中的应用。
CN201610945842.3A 2016-11-02 2016-11-02 一种超薄二水三氧化钨纳米片的制备方法及其应用 Active CN106563442B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610945842.3A CN106563442B (zh) 2016-11-02 2016-11-02 一种超薄二水三氧化钨纳米片的制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610945842.3A CN106563442B (zh) 2016-11-02 2016-11-02 一种超薄二水三氧化钨纳米片的制备方法及其应用

Publications (2)

Publication Number Publication Date
CN106563442A true CN106563442A (zh) 2017-04-19
CN106563442B CN106563442B (zh) 2018-09-11

Family

ID=58536562

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610945842.3A Active CN106563442B (zh) 2016-11-02 2016-11-02 一种超薄二水三氧化钨纳米片的制备方法及其应用

Country Status (1)

Country Link
CN (1) CN106563442B (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107324391A (zh) * 2017-08-16 2017-11-07 广东工业大学 一种单层水合三氧化钨纳米片及其制备方法
CN108607539A (zh) * 2018-04-23 2018-10-02 南京信息工程大学 一种片状三氧化钨及其制备方法和用作光催化剂的用途
CN110194487A (zh) * 2018-02-27 2019-09-03 中国科学技术大学 一种表面分散有铂单原子的复合材料及其制备方法、气敏材料
CN110639581A (zh) * 2019-09-01 2020-01-03 桂林理工大学 一种WP2/g-C3N4异质结光催化剂的制备方法
CN110918085A (zh) * 2019-12-16 2020-03-27 桂林理工大学 一种多孔wo3/c纳米片介孔复合光催化剂的制备方法
CN111514911A (zh) * 2020-05-08 2020-08-11 桂林理工大学 一种具有介孔结构的碳掺杂wp纳米片电催化剂及其制备方法
CN112499684A (zh) * 2020-12-04 2021-03-16 合肥工业大学 一种基于离子斥力作用分散剥离多层wo3纳米片的方法
CN112844371A (zh) * 2021-02-03 2021-05-28 黑河学院 一种用于光解水制氧的催化剂及其制备方法
CN113955803A (zh) * 2021-11-02 2022-01-21 云南锡业集团(控股)有限责任公司研发中心 一种粒度可调控的氧化钨粉及钨粉的制备方法
CN114606510A (zh) * 2022-03-21 2022-06-10 吉林大学 一种层状铱基钙钛矿纳米片催化剂、制备方法及其在电催化析氧反应中的应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6355694B1 (en) * 1999-03-30 2002-03-12 Nissan Chemical Industries, Ltd. Modified stannic oxide—zirconium oxide complex sol and preparation method thereof
CN101318702A (zh) * 2007-06-08 2008-12-10 郑州大学 一种三氧化钨纳米片及其制备方法
CN103030179A (zh) * 2013-01-08 2013-04-10 江苏大学 水热法制备三氧化钨纳米片及其应用
CN103969308A (zh) * 2014-05-05 2014-08-06 上海师范大学 一种可室温工作的印制式no2气敏元件及其制备方法
CN104874408A (zh) * 2015-06-15 2015-09-02 桂林理工大学 一种二硫化锡超薄纳米片光催化剂的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6355694B1 (en) * 1999-03-30 2002-03-12 Nissan Chemical Industries, Ltd. Modified stannic oxide—zirconium oxide complex sol and preparation method thereof
CN101318702A (zh) * 2007-06-08 2008-12-10 郑州大学 一种三氧化钨纳米片及其制备方法
CN103030179A (zh) * 2013-01-08 2013-04-10 江苏大学 水热法制备三氧化钨纳米片及其应用
CN103969308A (zh) * 2014-05-05 2014-08-06 上海师范大学 一种可室温工作的印制式no2气敏元件及其制备方法
CN104874408A (zh) * 2015-06-15 2015-09-02 桂林理工大学 一种二硫化锡超薄纳米片光催化剂的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LINZHI LI ET AL.,: ""Oxalic acid mediated synthesis of WO3•H2O nanoplates and self-assembled nanoflowers under mild conditions"", 《JOURNAL OF SOLID STATE CHEMISTRY》 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107324391B (zh) * 2017-08-16 2019-01-22 广东工业大学 一种单层水合三氧化钨纳米片及其制备方法
CN107324391A (zh) * 2017-08-16 2017-11-07 广东工业大学 一种单层水合三氧化钨纳米片及其制备方法
CN110194487B (zh) * 2018-02-27 2020-10-27 中国科学技术大学 一种表面分散有铂单原子的复合材料及其制备方法、气敏材料
CN110194487A (zh) * 2018-02-27 2019-09-03 中国科学技术大学 一种表面分散有铂单原子的复合材料及其制备方法、气敏材料
CN108607539A (zh) * 2018-04-23 2018-10-02 南京信息工程大学 一种片状三氧化钨及其制备方法和用作光催化剂的用途
CN110639581B (zh) * 2019-09-01 2022-09-27 桂林理工大学 一种WP2/g-C3N4异质结光催化剂的制备方法
CN110639581A (zh) * 2019-09-01 2020-01-03 桂林理工大学 一种WP2/g-C3N4异质结光催化剂的制备方法
CN110918085A (zh) * 2019-12-16 2020-03-27 桂林理工大学 一种多孔wo3/c纳米片介孔复合光催化剂的制备方法
CN111514911A (zh) * 2020-05-08 2020-08-11 桂林理工大学 一种具有介孔结构的碳掺杂wp纳米片电催化剂及其制备方法
CN111514911B (zh) * 2020-05-08 2023-04-07 桂林理工大学 一种具有介孔结构的碳掺杂wp纳米片电催化剂及其制备方法
CN112499684A (zh) * 2020-12-04 2021-03-16 合肥工业大学 一种基于离子斥力作用分散剥离多层wo3纳米片的方法
CN112844371A (zh) * 2021-02-03 2021-05-28 黑河学院 一种用于光解水制氧的催化剂及其制备方法
CN113955803A (zh) * 2021-11-02 2022-01-21 云南锡业集团(控股)有限责任公司研发中心 一种粒度可调控的氧化钨粉及钨粉的制备方法
CN113955803B (zh) * 2021-11-02 2024-03-22 云南锡业集团(控股)有限责任公司研发中心 一种粒度可调控的氧化钨粉及钨粉的制备方法
CN114606510A (zh) * 2022-03-21 2022-06-10 吉林大学 一种层状铱基钙钛矿纳米片催化剂、制备方法及其在电催化析氧反应中的应用
CN114606510B (zh) * 2022-03-21 2023-06-27 吉林大学 一种层状铱基钙钛矿纳米片催化剂、制备方法及其在电催化析氧反应中的应用

Also Published As

Publication number Publication date
CN106563442B (zh) 2018-09-11

Similar Documents

Publication Publication Date Title
CN106563442B (zh) 一种超薄二水三氧化钨纳米片的制备方法及其应用
Lu et al. Significant tetracycline hydrochloride degradation and electricity generation in a visible-light-driven dual photoelectrode photocatalytic fuel cell using BiVO4/TiO2 NT photoanode and Cu2O/TiO2 NT photocathode
Tang et al. CdS/Cu2S co-sensitized TiO2 branched nanorod arrays of enhanced photoelectrochemical properties by forming nanoscale heterostructure
Lei et al. Fabrication, characterization, and photoelectrocatalytic application of ZnO nanorods grafted on vertically aligned TiO2 nanotubes
Huang et al. Broad spectrum response flower spherical-like composites CQDs@ CdIn2S4/CdS modified by CQDs with up-conversion property for photocatalytic degradation and water splitting
Yu et al. ZnS/ZnO heteronanostructure as photoanode to enhance the conversion efficiency of dye-sensitized solar cells
Ju et al. Fully blossomed WO3/BiVO4 structure obtained via active facet engineering of patterned FTO for highly efficient Water splitting
Guo et al. Fabrication of TiO2 nano-branched arrays/Cu2S composite structure and its photoelectric performance
CN107262116B (zh) 一种分级结构MoS2/Cu2S复合材料及其制备方法
CN104646037A (zh) BiOXs光催化剂、石墨烯复合的BiOXs光催化剂、及其制备方法
Liu et al. Electrodeposition of ZnO nanoflake-based photoanode sensitized by carbon quantum dots for photoelectrochemical water oxidation
CN106498372A (zh) 光沉积制备Bi/BiVO4复合光电阳极材料的方法
Guo et al. Hierarchical TiO 2–CuInS 2 core–shell nanoarrays for photoelectrochemical water splitting
Zhang et al. Novel method of constructing CdS/ZnS heterojunction for high performance and stable photocatalytic activity
Abdalla et al. Au/Ga2O3/ZnO heterostructure nanorods arrays for effective photoelectrochemical water splitting
CN108579765A (zh) 硫化铜/钒酸铋双层膜复合材料的制备及作为光电阳极的应用
Wang et al. Efficient carrier transfer route via the bridge of C60 particle to TiO2 nanoball based coverage layer enables stable and efficient cadmium free GeSe photocathode for solar hydrogen evolution
CN105771953B (zh) 一种钛酸锌/二氧化钛复合纳米材料的制备方法
Lu et al. Silicon nanowires@ Co3O4 arrays film with Z‑scheme band alignment for hydrogen evolution
Wang et al. Integrating the plasmonic sensitizer and electron relay into ZnO/Au/CdS sandwich nanotube array photoanode for efficient solar-to-hydrogen conversion with 3.2% efficiency
Shen et al. Enhancing efficiency of CdS/TiO2 nanorod arrays solar cell through improving the hydrophilicity of TiO2 nanorod surface
CN107051425A (zh) 一种石墨烯量子点/二水氧化钨超薄纳米片复合光催化剂的制备方法
Wang et al. The feasible photoanode of graphene oxide/zinc aluminum mixed metal oxides for the dye-sensitized solar cell
CN104275200B (zh) 一种核壳结构ZnS/Ni2P复合物微球的制备方法
CN104282440B (zh) 一种硫族量子点敏化氧化物半导体光阳极的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant