CN106513029A - 一种负载金属纳米粒子的氮掺杂多孔石墨烯的制备方法 - Google Patents

一种负载金属纳米粒子的氮掺杂多孔石墨烯的制备方法 Download PDF

Info

Publication number
CN106513029A
CN106513029A CN201611108184.9A CN201611108184A CN106513029A CN 106513029 A CN106513029 A CN 106513029A CN 201611108184 A CN201611108184 A CN 201611108184A CN 106513029 A CN106513029 A CN 106513029A
Authority
CN
China
Prior art keywords
porous graphene
graphene
preparation
doping porous
loaded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611108184.9A
Other languages
English (en)
Other versions
CN106513029B (zh
Inventor
奚江波
柳津
柏正武
季珉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Bozhi ChuangSheng Pharmaceutical Co.,Ltd.
Original Assignee
Wuhan Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Institute of Technology filed Critical Wuhan Institute of Technology
Priority to CN201611108184.9A priority Critical patent/CN106513029B/zh
Publication of CN106513029A publication Critical patent/CN106513029A/zh
Application granted granted Critical
Publication of CN106513029B publication Critical patent/CN106513029B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明属于碳材料技术领域,具体涉及一种负载金属纳米粒子的氮掺杂多孔石墨烯的制备方法,该方法将金属前驱体、致孔剂过氧化氢、氮源氨加入到氧化石墨烯水溶液中,再将混合溶液加热至100‑220℃进行水热反应一步即可制得负载金属纳米粒子的氮掺杂多孔石墨烯复合材料。该方法在构建石墨烯多孔结构的同时实现氮掺杂和金属纳米粒子的负载,整个工艺简单,对设备要求低,反应条件较为温和,生产成本低,所制备的金属纳米粒子/氮掺杂多孔石墨烯具有比表面积大、催化性能优异、负载的金属纳米粒子分布均匀等特点,可用于电催化、超级电容器、锂离子电池和有机催化等领域。

Description

一种负载金属纳米粒子的氮掺杂多孔石墨烯的制备方法
技术领域
本发明属于碳材料与有机催化技术领域,具体涉及一种负载金属纳米粒子的氮掺杂多孔石墨烯的制备方法。
背景技术
石墨烯因具有独特的石墨化平面结构、高比表面积和良好的导电性等众多优异性质,成为催化剂的理想载体。邱建丁等[CN201010523363.5]将Pt纳米粒子负载于功能化的石墨烯上,用于电催化领域。对石墨烯进行N掺杂,一方面可以实现对石墨烯碳材料表面电荷分布及表面缺陷程度的有效调控[ACS Nano2012,6,7084-7091],另一方面掺杂的N还对石墨烯负载的金属(如M=Pt,Pd,Co等)催化剂纳米粒子的成核和生长以及M―C之间的相互作用产生影响,从而进一步改变石墨烯基负载型催化剂的性能[Acta Phys.-Chim.Sin.2014,30,1267-1273]。因此,N掺杂石墨烯作为催化剂的载体显示出很大的应用潜力,在氮掺杂石墨烯上负载金属纳米粒子则可以进一步拓展其应用。
然而,石墨烯片层之间有较强的π-π作用力,容易导致堆叠,降低其比表面积而影响催化性能[Angew.Chem.Int.Ed.2013,126,254-258],而利用活化造孔的方法来提高其比表面积并加强传质[Nat.Commun.2014,5,4554],可以有效增强其催化活性。因此,通过在氮掺杂石墨烯上构建多孔结构是提高氮掺杂石墨烯基比表面积的有效手段,同时可以提高负载金属纳米粒子氮掺杂石墨烯的催化剂活性。
目前,负载金属纳米粒子的氮掺杂多孔石墨烯的制备方法还未见报道。因而,发展一种简易、高效的负载金属纳米粒子的氮掺杂多孔石墨烯的制备方法,在催化领域无疑具有十分重要的应用价值。
发明内容
为克服现有技术存在的上述不足,本发明的首要目的在于提供一种负载金属纳米粒子的氮掺杂多孔石墨烯的制备方法,该方法在构建石墨烯多孔结构的同时实现了氮掺杂和金属纳米粒子的负载,工艺简单,对设备要求低。为实现上述目的,本发明的技术方案如下:
一种负载金属纳米粒子的氮掺杂多孔石墨烯的制备方法,包括以下步骤:配制氧化石墨烯水溶液,分别向其中加入金属前驱体、致孔剂和氮源,将溶液混合均匀,水热反应后得负载金属纳米粒子的氮掺杂多孔石墨烯复合材料。
上述方案中,所述氧化石墨烯水溶液的浓度为3-10mg/mL。
上述方案中,所述金属前驱体为金、银、铂、钯、钌、铑、铁、钴、镍、锰、锌、铜、钛、锡、钼、镉、钨、铋、铈的水溶性盐类化合物中的一种及其组合。
上述方案中,所述致孔剂为过氧化氢,其水溶液质量分数为0.2-30%。
上述方案中,所述氮源为氨,其水溶液质量分数为28-30%。
上述方案中,氧化石墨烯与金属前驱体、致孔剂、氮源的质量比为1:0.001-1:0.05-5:0.05-30。
上述方案中,水热反应时的温度为100-220℃,反应时间为5-24h。
与现有技术相比,本发明具有以下有益效果:(1)工艺简单,制备过程无需还原剂,生产效率更高;(2)反应条件温和,所需原料简单易得,无需特殊或复杂反应设备,成本更低;(3)制备出的负载金属纳米粒子的氮掺杂多孔石墨烯复合材料具有比表面积大、催化性能优异等特点,可用于电催化、超级电容器、锂离子电池和有机催化等领域。
附图说明
图1为本发明实施例1制备的负载钯纳米粒子的氮掺杂多孔石墨烯扫描电镜图。
图2为本发明实施例1制备的负载钯纳米粒子的氮掺杂多孔石墨烯透射电镜图。
图3为本发明实施例1制备的负载钯纳米粒子的氮掺杂多孔石墨烯的X-射线光电子能谱测试结果图。
图4为本发明实施例1制备的负载钯纳米粒子的氮掺杂多孔石墨烯的N2吸附脱附曲线图(A)和孔径分布图(B)。
具体实施方式
为使本领域普通技术人员充分理解本发明的技术方案和有益效果,以下结合具体实施例进行进一步充分说明。
一种负载金属纳米粒子的氮掺杂多孔石墨烯的制备方法,首先配制氧化石墨烯水溶液,向其中加入金属前驱体(金、银、铂、钯、钌、铑、铁、钴、镍、锰、锌、铜、钛、锡、钼、镉、钨、铋、铈的水溶性盐类化合物中的一种及其组合)、浓度为0.2-30wt%的过氧化氢、浓度为28-30wt%的氨水并混合均匀,将混合物加热至100-220℃进行水热反应5-24h,最终得到负载金属纳米粒子的氮掺杂多孔石墨烯复合材料。氧化石墨烯与金属前驱体、过氧化氢、氨三者纯物质的质量比为1:0.001-1:0.05-5:0.05-30
实施例1
按氧化石墨烯、金属前驱体、过氧化氢、氨1:0.033:0.05:30的质量比投料。取50mL浓度为6mg/mL的氧化石墨烯水溶液,将其装入100mL聚四氟乙烯反应釜内胆中,在搅拌条件下加入5mL质量分数为0.3%的过氧化氢溶液和30mL质量分数为28-30%的氨水溶液以及10mg氯亚钯酸钾。将混合均匀的反应物,装入水热反应釜中,在180℃烘箱中水热反应6h,得负载钯纳米粒子的氮掺杂多孔石墨烯。
为了更充分的了解本实施例制得的负载钯纳米粒子的氮掺杂多孔石墨烯的结构特征及其性能,分别对其进行了SEM、TEM、XPS、吸附脱附以及孔径分布测试。
如图1所示,本实施例制备的负载钯纳米粒子的氮掺杂多孔石墨烯呈片状褶皱;由图2可以看到,片状石墨烯被刻蚀成为多孔结构且石墨烯纳米片上负载有大量分布均匀的纳米粒子;图3 XPS分析表明,制备的负载钯纳米粒子的氮掺杂多孔石墨烯中含有C,O,N,Pd元素,其中掺杂氮元素含量为5.49wt.%,钯的负载量为1.64wt.%;图4显示制备的负载钯纳米粒子的氮掺杂多孔石墨烯比表面积为191.1m2/g,孔径分布在微孔和介孔范围。
实施例2
按氧化石墨烯与金属前驱体、过氧化氢、氨1:0.001:0.05:0.05的质量比投料。取75mL浓度为4mg/mL氧化石墨烯水溶液,装入100mL聚四氟乙烯反应釜内胆中,在搅拌条件下加入5mL质量分数为0.3%的过氧化氢溶液和0.05mL质量分数为28-30%的氨水溶液以及0.3mg氯亚铂酸钾。将混合均匀的反应物,装入水热反应釜中,在120℃烘箱中水热反应24h,得负载铂纳米粒子的氮掺杂多孔石墨烯。
实施例3
按氧化石墨烯与金属前驱体、过氧化氢、氨1:0.008:0.05:24的质量比投料。取50mL浓度为5mg/mL氧化石墨烯水溶液,装入100mL聚四氟乙烯反应釜内胆中,在搅拌条件下加入5mL质量分数为0.3%的过氧化氢溶液和20mL质量分数为28-30%的氨水溶液以及2mg氯金酸钾。将混合均匀的反应物,装入水热反应釜中,在180℃烘箱中水热反应10h,得负载金纳米粒子的氮掺杂多孔石墨烯。
实施例4
按氧化石墨烯与金属前驱体、过氧化氢、氨1:0.028:0.05:8.333的质量比投料。取36mL浓度为10mg/mL氧化石墨烯水溶液,装入100mL聚四氟乙烯反应釜内胆中,在搅拌条件下加入9mL质量分数为0.2%的过氧化氢溶液和10mL质量分数为28-30%的氨水溶液以及10mg氯钯酸钾。将混合均匀的反应物,装入水热反应釜中,在180℃烘箱中水热反应5h,得负载钯纳米粒子的氮掺杂多孔石墨烯。
实施例5
按氧化石墨烯与金属前驱体、过氧化氢、氨1:0.05:0.2:7.5的质量比投料。取60mL浓度6mg/mL氧化石墨烯水溶液,装入100mL聚四氟乙烯反应釜内胆中,在搅拌条件下加入9mL质量分数为0.8%的过氧化氢溶液和9mL质量分数为28-30%的氨水溶液以及8mg氯铂酸钾。将混合均匀的反应物,装入水热反应釜中,在180℃烘箱中水热反应6h,得负载铂纳米粒子的氮掺杂多孔石墨烯。
实施例6
按氧化石墨烯与金属前驱体、过氧化氢、氨1:1:5:30的质量比投料。取60mL浓度5mg/mL氧化石墨烯水溶液,装入100mL聚四氟乙烯反应釜内胆中,在搅拌条件下加入1mL质量分数为30%的过氧化氢溶液和30mL质量分数为28-30%的氨水溶液以及300mg氯铂酸钾。将混合均匀的反应物,装入水热反应釜中,在180℃烘箱中水热反应6h,得负载铂纳米粒子的氮掺杂多孔石墨烯。
以上所述仅为本发明的部分实施例,并非限制本发明的保护范围。凡是利用本发明技术方案所进行的修改,或者对其中部分或全部技术特征进行等同替换,均应落入本发明的保护范围之内。

Claims (7)

1.一种负载金属纳米粒子的氮掺杂多孔石墨烯的制备方法,其特征在于,包括以下步骤:配制氧化石墨烯水溶液,分别向其中加入金属前驱体、致孔剂和氮源,将溶液混合均匀,水热反应后得负载金属纳米粒子的氮掺杂多孔石墨烯复合材料。
2.如权利要求1所述的一种负载金属纳米粒子的氮掺杂多孔石墨烯的制备方法,其特征在于:所述氧化石墨烯水溶液的浓度为3-10mg/mL。
3.如权利要求1所述的一种负载金属纳米粒子的氮掺杂多孔石墨烯的制备方法,其特征在于:所述金属前驱体为金、银、铂、钯、钌、铑、铁、钴、镍、锰、锌、铜、钛、锡、钼、镉、钨、铋、铈的水溶性盐类化合物中的一种及其组合。
4.如权利要求1所述的一种负载金属纳米粒子的氮掺杂多孔石墨烯的制备方法,其特征在于:所述致孔剂为过氧化氢,其水溶液质量分数为0.2-30%。
5.如权利要求1所述的一种负载金属纳米粒子的氮掺杂多孔石墨烯的制备方法,其特征在于:所述氮源为氨,其水溶液质量分数为28-30%。
6.如权利要求1所述的一种负载金属纳米粒子的氮掺杂多孔石墨烯的制备方法,其特征在于:氧化石墨烯与金属前驱体、致孔剂、氮源的质量比为1:0.001-1:0.05-5:0.05-30。
7.如权利要求1所述的一种负载金属纳米粒子的氮掺杂多孔石墨烯的制备方法,其特征在于:水热反应时的温度为100-220℃,反应时间为5-24h。
CN201611108184.9A 2016-12-06 2016-12-06 一种负载金属纳米粒子的氮掺杂多孔石墨烯的制备方法 Active CN106513029B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611108184.9A CN106513029B (zh) 2016-12-06 2016-12-06 一种负载金属纳米粒子的氮掺杂多孔石墨烯的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611108184.9A CN106513029B (zh) 2016-12-06 2016-12-06 一种负载金属纳米粒子的氮掺杂多孔石墨烯的制备方法

Publications (2)

Publication Number Publication Date
CN106513029A true CN106513029A (zh) 2017-03-22
CN106513029B CN106513029B (zh) 2019-05-03

Family

ID=58342479

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611108184.9A Active CN106513029B (zh) 2016-12-06 2016-12-06 一种负载金属纳米粒子的氮掺杂多孔石墨烯的制备方法

Country Status (1)

Country Link
CN (1) CN106513029B (zh)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107017412A (zh) * 2017-04-28 2017-08-04 哈尔滨工业大学 一种有单分散金属原子掺杂的sp2杂化碳材料及其制备方法
CN107185573A (zh) * 2017-05-17 2017-09-22 上海电力学院 一种镍基非贵金属光催化助催化剂及其制备方法
CN107827103A (zh) * 2017-12-07 2018-03-23 太原理工大学 氮掺杂多孔石墨烯的制备方法及其应用
CN107983334A (zh) * 2017-11-23 2018-05-04 浙江大学 一种石墨烯负载锡钨双金属催化剂及其制备方法和应用
CN108103517A (zh) * 2017-12-19 2018-06-01 南开大学 一种自支撑的金属纳米粒子/多孔氮掺碳膜及其制备方法和应用
CN108321404A (zh) * 2018-03-01 2018-07-24 哈尔滨工业大学 一种金属或金属氧化物/掺杂型石墨烯核壳型催化剂载体与担载型催化剂及其制备方法
CN109261190A (zh) * 2018-11-03 2019-01-25 东华大学 一种Ni-Mo/g-C3N4复合光催化剂及其制备和应用
CN109382125A (zh) * 2017-08-02 2019-02-26 中国科学技术大学 一种镍氮共掺杂碳基电催化剂、其制备方法及应用
CN109772411A (zh) * 2019-02-22 2019-05-21 山西大学 一种非贵金属双原子电催化剂及其制备方法和应用
CN110451491A (zh) * 2019-08-20 2019-11-15 中国航发北京航空材料研究院 一种多孔石墨烯颗粒材料的制备方法
CN110465652A (zh) * 2019-07-30 2019-11-19 华中科技大学 一种氮掺杂碳层包覆的铂铁金属间化合物及其制备与应用
CN110721719A (zh) * 2019-10-21 2020-01-24 徐州工程学院 一种铋、氮共掺杂碳材料的制备方法及应用
CN111072018A (zh) * 2020-01-13 2020-04-28 江苏理工学院 一种负载金属的氮掺杂褶皱石墨烯的制备方法及应用
CN111068726A (zh) * 2019-11-26 2020-04-28 浙江大学 一种铁掺杂磷化镍复合掺氮还原氧化石墨烯电催化材料的制备方法
CN111282590A (zh) * 2020-03-13 2020-06-16 武汉工程大学 一种负载金属单原子的氮掺杂多孔石墨烯复合催化剂及其制备方法
CN111957337A (zh) * 2020-08-18 2020-11-20 中国科学院福建物质结构研究所 一种析氢电催化材料及其制备方法和应用
CN115043463A (zh) * 2022-06-20 2022-09-13 南通科顺建筑新材料有限公司 双金属-石墨烯复合电极、制备方法及水处理装置
CN115184423A (zh) * 2022-07-05 2022-10-14 武汉工程大学 一种负载金属纳米粒子的氮硫共掺杂多孔石墨烯薄膜及其制备方法和应用
CN115440507A (zh) * 2022-08-23 2022-12-06 西安建筑科技大学 一种锡基氧化物/氮掺杂石墨烯复合材料及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014188454A1 (en) * 2013-05-24 2014-11-27 Council Of Scientific And Industrial Research Process for preparation of nanoporous graphene and graphene quantum dots
CN104607227A (zh) * 2015-01-23 2015-05-13 哈尔滨工业大学 一种α-Fe2O3介孔纳米片/氮掺杂石墨烯复合材料的制备方法
CN105562057A (zh) * 2016-01-30 2016-05-11 镇江市高等专科学校 一种氮掺杂三维石墨烯负载钯纳米复合催化剂及其制备方法和应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014188454A1 (en) * 2013-05-24 2014-11-27 Council Of Scientific And Industrial Research Process for preparation of nanoporous graphene and graphene quantum dots
CN104607227A (zh) * 2015-01-23 2015-05-13 哈尔滨工业大学 一种α-Fe2O3介孔纳米片/氮掺杂石墨烯复合材料的制备方法
CN105562057A (zh) * 2016-01-30 2016-05-11 镇江市高等专科学校 一种氮掺杂三维石墨烯负载钯纳米复合催化剂及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GUOXIU WANG ET AL.: "Sn/graphene nanocomposite with 3D architecture for enhanced reversible lithium storage in lithium ion batteries", 《JOURNAL OF MATERIALS CHEMISTRY》 *
XIAOPENG WANG ET AL.: "High-Density Monolith of N-Doped Holey Graphene for Ultrahigh Volumetric Capacity of Li-Ion Batteries", 《ADV. ENERGY MATER.》 *

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107017412A (zh) * 2017-04-28 2017-08-04 哈尔滨工业大学 一种有单分散金属原子掺杂的sp2杂化碳材料及其制备方法
CN107017412B (zh) * 2017-04-28 2019-07-16 哈尔滨工业大学 一种有单分散金属原子掺杂的sp2杂化碳材料的制备方法
CN107185573A (zh) * 2017-05-17 2017-09-22 上海电力学院 一种镍基非贵金属光催化助催化剂及其制备方法
CN109382125B (zh) * 2017-08-02 2020-06-26 中国科学技术大学 一种镍氮共掺杂碳基电催化剂、其制备方法及应用
CN109382125A (zh) * 2017-08-02 2019-02-26 中国科学技术大学 一种镍氮共掺杂碳基电催化剂、其制备方法及应用
CN107983334A (zh) * 2017-11-23 2018-05-04 浙江大学 一种石墨烯负载锡钨双金属催化剂及其制备方法和应用
CN107983334B (zh) * 2017-11-23 2021-01-15 浙江大学 一种石墨烯负载锡钨双金属催化剂及其制备方法和应用
CN107827103A (zh) * 2017-12-07 2018-03-23 太原理工大学 氮掺杂多孔石墨烯的制备方法及其应用
CN108103517B (zh) * 2017-12-19 2019-06-21 南开大学 一种自支撑的金属纳米粒子/多孔氮掺碳膜及其制备方法和应用
CN108103517A (zh) * 2017-12-19 2018-06-01 南开大学 一种自支撑的金属纳米粒子/多孔氮掺碳膜及其制备方法和应用
CN108321404B (zh) * 2018-03-01 2021-07-23 哈尔滨工业大学 一种掺杂型石墨烯核壳型催化剂载体及其制备方法和应用
CN108321404A (zh) * 2018-03-01 2018-07-24 哈尔滨工业大学 一种金属或金属氧化物/掺杂型石墨烯核壳型催化剂载体与担载型催化剂及其制备方法
CN109261190A (zh) * 2018-11-03 2019-01-25 东华大学 一种Ni-Mo/g-C3N4复合光催化剂及其制备和应用
CN109772411A (zh) * 2019-02-22 2019-05-21 山西大学 一种非贵金属双原子电催化剂及其制备方法和应用
CN110465652A (zh) * 2019-07-30 2019-11-19 华中科技大学 一种氮掺杂碳层包覆的铂铁金属间化合物及其制备与应用
CN110451491A (zh) * 2019-08-20 2019-11-15 中国航发北京航空材料研究院 一种多孔石墨烯颗粒材料的制备方法
CN110721719A (zh) * 2019-10-21 2020-01-24 徐州工程学院 一种铋、氮共掺杂碳材料的制备方法及应用
CN111068726A (zh) * 2019-11-26 2020-04-28 浙江大学 一种铁掺杂磷化镍复合掺氮还原氧化石墨烯电催化材料的制备方法
CN111072018A (zh) * 2020-01-13 2020-04-28 江苏理工学院 一种负载金属的氮掺杂褶皱石墨烯的制备方法及应用
CN111282590A (zh) * 2020-03-13 2020-06-16 武汉工程大学 一种负载金属单原子的氮掺杂多孔石墨烯复合催化剂及其制备方法
CN111282590B (zh) * 2020-03-13 2023-09-26 武汉工程大学 一种负载金属单原子的氮掺杂多孔石墨烯复合催化剂及其制备方法
CN111957337A (zh) * 2020-08-18 2020-11-20 中国科学院福建物质结构研究所 一种析氢电催化材料及其制备方法和应用
CN111957337B (zh) * 2020-08-18 2022-02-18 中国科学院福建物质结构研究所 一种析氢电催化材料及其制备方法和应用
CN115043463A (zh) * 2022-06-20 2022-09-13 南通科顺建筑新材料有限公司 双金属-石墨烯复合电极、制备方法及水处理装置
CN115184423A (zh) * 2022-07-05 2022-10-14 武汉工程大学 一种负载金属纳米粒子的氮硫共掺杂多孔石墨烯薄膜及其制备方法和应用
CN115440507A (zh) * 2022-08-23 2022-12-06 西安建筑科技大学 一种锡基氧化物/氮掺杂石墨烯复合材料及其制备方法和应用

Also Published As

Publication number Publication date
CN106513029B (zh) 2019-05-03

Similar Documents

Publication Publication Date Title
CN106513029B (zh) 一种负载金属纳米粒子的氮掺杂多孔石墨烯的制备方法
Osmieri et al. Influence of different transition metals on the properties of Me–N–C (Me= Fe, Co, Cu, Zn) catalysts synthesized using SBA-15 as tubular nano-silica reactor for oxygen reduction reaction
Li et al. Co 9 S 8 nanoparticles embedded in a N, S co-doped graphene-unzipped carbon nanotube composite as a high performance electrocatalyst for the hydrogen evolution reaction
Wang et al. Metal phosphide catalysts anchored on metal-caged graphitic carbon towards efficient and durable hydrogen evolution electrocatalysis
Razmjooei et al. Enhanced electrocatalytic activity due to additional phosphorous doping in nitrogen and sulfur-doped graphene: a comprehensive study
Wang et al. The enhanced electrocatalytic activity of okara-derived N-doped mesoporous carbon for oxygen reduction reaction
Liu et al. One-step scalable preparation of N-doped nanoporous carbon as a high-performance electrocatalyst for the oxygen reduction reaction
Ma et al. Hierarchically porous Co3C/Co-NC/G modified graphitic carbon: a trifunctional corrosion-resistant electrode for oxygen reduction, hydrogen evolution and oxygen evolution reactions
Videla et al. Varying the morphology of Fe-NC electrocatalysts by templating Iron Phthalocyanine precursor with different porous SiO2 to promote the Oxygen Reduction Reaction
Choi et al. Doped porous carbon nanostructures as non-precious metal catalysts prepared by amino acid glycine for oxygen reduction reaction
Wang et al. Low-loading Pt nanoparticles combined with the atomically dispersed FeN4 sites supported by FeSA-NC for improved activity and stability towards oxygen reduction reaction/hydrogen evolution reaction in acid and alkaline media
Komba et al. Iron (II) phthalocyanine/N-doped graphene: A highly efficient non-precious metal catalyst for oxygen reduction
Akula et al. Transition metal (Fe, Co, Mn, Cu) containing nitrogen-doped porous carbon as efficient oxygen reduction electrocatalysts for anion exchange membrane fuel cells
Encalada et al. Combined effect of porosity and surface chemistry on the electrochemical reduction of oxygen on cellular vitreous carbon foam catalyst
Chen et al. N, S co-doped carbon spheres with highly dispersed CoO as non-precious metal catalyst for oxygen reduction reaction
Kwak et al. Amino acid-derived non-precious catalysts with excellent electrocatalytic performance and methanol tolerance in oxygen reduction reaction
Zhu et al. Facile synthesis of boron and nitrogen-dual-doped graphene sheets anchored platinum nanoparticles for oxygen reduction reaction
Hu et al. Polyvinyl pyrrolidone mediated fabrication of Fe, N-codoped porous carbon sheets for efficient electrocatalytic CO2 reduction
Osmieri et al. Optimization of a Fe–N–C electrocatalyst supported on mesoporous carbon functionalized with polypyrrole for oxygen reduction reaction under both alkaline and acidic conditions
Wang et al. Electrocatalysis of carbon black-or poly (diallyldimethylammonium chloride)-functionalized activated carbon nanotubes-supported Pd–Tb towards methanol oxidation in alkaline media
Luo et al. Boosting the primary Zn–air battery oxygen reduction performance with mesopore-dominated semi-tubular doped-carbon nanostructures
Peng et al. Sewage sludge-derived Fe-and N-containing porous carbon as efficient support for Pt catalyst with superior activity towards methanol electrooxidation
Kim et al. Highly efficient supporting material derived from used cigarette filter for oxygen reduction reaction
Jiang et al. Pt electrocatalyst supported on metal ion-templated hierarchical porous nitrogen-doped carbon from chitosan for methanol electrooxidation
Wang et al. Single-step pyrolytic preparation of Mo 2 C/graphitic carbon nanocomposite as catalyst carrier for the direct liquid-feed fuel cells

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20220408

Address after: 101299 floors 1-3, No. 1, nanchazi street, Pinggu District, Beijing

Patentee after: Beijing Bozhi ChuangSheng Pharmaceutical Co.,Ltd.

Address before: 430074, No. 693 Xiong Chu street, Hongshan District, Hubei, Wuhan

Patentee before: WUHAN INSTITUTE OF TECHNOLOGY

Patentee before: Ji min

TR01 Transfer of patent right