CN108103517B - 一种自支撑的金属纳米粒子/多孔氮掺碳膜及其制备方法和应用 - Google Patents

一种自支撑的金属纳米粒子/多孔氮掺碳膜及其制备方法和应用 Download PDF

Info

Publication number
CN108103517B
CN108103517B CN201711370331.4A CN201711370331A CN108103517B CN 108103517 B CN108103517 B CN 108103517B CN 201711370331 A CN201711370331 A CN 201711370331A CN 108103517 B CN108103517 B CN 108103517B
Authority
CN
China
Prior art keywords
porous
carbon film
film
preparation
doping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201711370331.4A
Other languages
English (en)
Other versions
CN108103517A (zh
Inventor
王鸿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nankai University
Original Assignee
Nankai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nankai University filed Critical Nankai University
Priority to CN201711370331.4A priority Critical patent/CN108103517B/zh
Publication of CN108103517A publication Critical patent/CN108103517A/zh
Application granted granted Critical
Publication of CN108103517B publication Critical patent/CN108103517B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)

Abstract

一种可自支撑的金属纳米粒子/多孔氮掺杂碳基薄膜及制备方法和应用,属于新能源材料领域。本发明首先合成聚离子液体/聚丙烯酸多孔复合膜。然后将吸附金属离子的聚离子液体/聚丙烯酸/多孔复合膜一步碳化,可得金属纳米粒子/多孔氮掺杂薄膜,亦可以先合成多孔氮掺杂碳膜,再通过水热反应的方法制备金属纳米粒子/多孔氮掺杂薄膜。制备的杂化碳膜具有可控的厚度、孔径、可设计的形状,易大规模制备。本发明制备的杂化碳膜可以作为自支撑的电极材料,大规模的将空气中的氮气高效稳定的通过电催化转化为氨气,每平方米碳膜每小时可制备0.36克氨气。本发明制备的金属纳米粒子/多孔氮掺杂碳膜在能源转化领域具有广阔的实际应用前景。

Description

一种自支撑的金属纳米粒子/多孔氮掺碳膜及其制备方法和 应用
技术领域
本发明属于新能源材料领域,具体为一种自支撑的金属纳米粒子/多孔氮掺碳基薄膜及其制备方法和应用。
背景技术
氨气(NH3)无论作为农业肥料、新的能量载体,在人类社会中都充当着一个相当重要的角色[1-4],是人们生活当中不可或缺的化学原料。仅在2015年全世界的NH3总产量甚至已经达到了1.46亿吨[1]。氮气N2是工业合成NH3的主要原料,虽然空气中N2的含量高达78%,但是由于N2分子中N≡N具有极高的键能(940.95kJ mol-1)和缺乏永久的偶极距,其在常温常压下异常稳定。因此工业利用N2制备NH3的方法非常苛刻。目前,哈伯法(HaberProcess)是工业生产NH3的主要方法,其过程是N2与H2在高温高压 (400–500℃,200–250大气压)的作用下生成氨气。哈伯法制备NH3每年所需的能量总值约占全世界能量总产值的1%-3%[4]。此外,利用哈伯法制备NH3过程中,H2的生产更是需要燃烧大量的化石燃料(CH4+2H2O→4H2+CO2),排放出大量的温室气体CO2,严重污染环境。
随着世界人口增长对粮食的需求也日趋增大,再加上工业发展和军事上的迫切需要,使人工固氮在本世纪初成了世界性的重大研究课题。无论是节约成本,还是环境保护,若能将空气中的N2在常温常压下转化为高附加值的氨气,那么这对优化我国能源结构具有重大的战略意义,同时也将产生巨大的经济效益。电催化技术具有效率高、操作简便、易实现自动化等优点[5-6],而水是一种来源广、环境友好的绿色溶剂,因此在水溶液中电催化转化N2具有很强的实际应用前景。实现大规模N2电催化转化应用的核心技术是研发高效、稳定可大规模生产的电催化剂。
由于杂原子掺杂的碳材料价廉易得,具有独特的抗氧化性、高的比表面积、可调控电化学活性及在酸碱条件下高的稳定性,其在电化学催化领域有着非常巨大的发展前景[7-10]。此外,研究表明,当金属纳米粒子或者半导体金属纳米粒子负载于氮掺杂碳材料上,可以发生Mott-Schottky效应(有效的电子转移,可激发氮掺碳和金属纳米材料的协同催化活性),进而能够有效提高金属纳米材料及氮掺杂碳的催化活性和稳定性。进一步大幅度提高杂化材料的催化性能。但是杂原子掺杂的碳基电催化剂作为N2还原的新型材料在国内外目前还没有文献报道。
发明内容
本发明目的是解决目前工业氨气合成方法的缺点,比如:苛刻的反应条件(高温高压),排放出大量的温室效应气体,以及巨大的能源消耗等问题,提供一种价廉易得、易大规模制备、具有高的电催化活性和稳定性的一种自支撑的金属纳米粒子/多孔氮掺碳基薄膜(简称碳膜)及其在氮气固定中的应用。该碳膜可以在常温常压下,水溶液中高效的将氮气转化为氨气,为环境友好、低能耗的条件下制备氨气提供一种技术支撑。
本发明提供的金属纳米粒子/多孔氮掺碳膜的制备方法,包含以下两种方法:
方法1、将聚离子液体/聚丙烯酸多孔复合膜浸泡在含有金属离子的无机盐溶液中1~ 24小时进行金属离子吸附,然后直接碳化吸附有金属离子的聚离子液体/聚丙烯酸/多孔复合膜,一步得到金属纳米粒子/多孔氮掺杂碳膜,碳化温度为300℃~1200℃,碳化时间为1~10小时。
方法2、将聚离子液体/聚丙烯酸多孔复合膜直接碳化制备多孔氮掺杂碳膜,碳化温度为300℃~1200℃,碳化时间为1~10小时。然后利用水热合成的方法将多孔氮掺杂碳膜浸入浓度为0.0001M~10M的金属离子溶液中,制备金属纳米粒子/多孔氮掺杂碳膜,水热反应2~48小时,水热温度为80℃~250℃。
本发明提供的制备金属纳米粒子/多孔氮掺杂碳膜的无机盐为含有金属离子的化合物;具有以下结构:NaCl,KCl,LiCl,CsCl,AlCl3,InCl3,MgCl2,CaCl2,BaCl2,HAuCl4,H2PtCl6,PdCl2,IrCl3,K2PdCl4,HgCl2,K2PtCl6,RuCl3,FeCl3,CoCl2,MnCl4,NiCl2,CuCl2, Os(Cl)3,ZnCl2,CrCl3,VCl5,TiCl4,LaCl3,BiCl3,SrCl2,NaNO3,In(NO3)3,Co(NO3)2,Fe(NO3)3,Ni(NO3)2,Os(NO3)3,Ir(NO3)3,Mn(NO3)2,Hg(NO3)3,NiNO3,Cu(NO3)2,Cr(NO3)3,V(NO3)5,Na2SO4,CuSO4,NiSO4,CoSO4,FeSO4,Cu(CH3COO)2,Co(CH3COO)2,Ag(CH3COO), Ir(CH3COO)3,Hg(CH3COO)2,Ni(CH3COO)2,Fe(CH3COO)2,Mn(CH3COO)3,Au(CH3COO)3, In(CH3COO)3,Pd(CH3COO)2,Ru(CH3COO)3,V(CO)6,Cr(CO)6,Mo(CO)6,W(CO)6,Tc2(CO)10, Ru(CO)5,Os(CO)5,Ir2(CO)8,Rh2(CO)8
本发明提供的自支撑的金属纳米粒子/多孔氮掺碳基薄膜制备方法的多孔碳膜其结构中含有碳纳米管、石墨烯或者炭黑。多孔氮掺杂碳膜的厚度为20nm到10cm。
本发明方法中涉及的聚离子液体/聚丙烯酸多孔复合膜的制备方法如下:
(1)将聚离子液体和聚丙烯酸按照1:1~1:3的摩尔比混合,加入10~500mL的二甲基甲酰胺或二甲基亚砜,在25℃到70℃条件下加热溶解;然后将碳纳米管、氧化石墨烯或者炭黑超声分散在上述聚合物溶液中;
(2)将步骤(1)所制备的聚合物溶液倾倒在玻璃板上,在25℃~120℃加热2~48小时,烘干溶剂;
(3)将步骤(2)所制备的聚合物复合膜在0.1wt%~28wt%的氨水溶液中浸泡1~10 小时,得到多孔聚合物膜;
本发明将多孔氮掺杂碳膜作为电极应用于N2还原,具体做法为:将所制备的多孔氮掺杂碳膜直接作为工作电极,Ag/AgCl为参比电极,铂丝为对电极,盐酸水溶液为电解质,其电催化还原氨气的法拉第效率为22%,并且其具有非常高的稳定性,连续测试192小时,其可以持续的将氮气转化为氨气,产率为每平方米碳膜每小时可制备0.36g氨气。
本发明的优点和积极效果:
相比较目前工业生产氨气的方法(高温高压,且在生产氨气的过程中排放出大量的温室气体二氧化碳,严重污染环境,能量消耗非常大),本发明原料价廉易得,制备方法简单,氮气转化效率高。该方法在常温常压、水溶液中进行,有望大规模应用。
附图说明
图1为负载金属钴纳米颗粒的多孔碳基薄膜数码照片;
图2为负载金属钴纳米颗粒的多孔碳基薄膜X射线衍射谱图;
图3为负载金属钴纳米颗粒的多孔碳基薄膜扫描电镜照片;
图4为负载金属钴纳米颗粒的多孔碳基薄膜透射电镜照片;
图5为负载金纳米颗粒的多孔碳/碳纳米管薄膜数码照片;
图6为负载金纳米颗粒的多孔碳/碳纳米管薄膜扫描电镜照片;
图7为负载金纳米颗粒的多孔碳/碳纳米管薄膜的X射线衍射谱图;
图8为负载金纳米颗粒的多孔碳/碳纳米管薄膜透射电镜照片;
图9为负载金纳米颗粒的多孔碳/碳纳米管薄膜高分辨透射电镜照片;
图10为氮气电催化转化为氨气的装置示意图。
图11氮气电催化转化为氨气的性能测试结果,其中(A)是不同电压下氨气的法拉第效率,(B)不同电压下氨气的产率,(C)在-0.1伏特(相对氢标准电极电势)下,制备氨气的稳定性测试。
具体实施方式
下面通过一些实施案例,示例性的说明及帮助进一步理解本发明,但实施例细节仅是为了说明本发明,并不代表本发明构思下所有的技术方案,因此不能理解为对本发明总的技术方案的限定。在技术人员看来,一些不偏离本发明构思的非实质性增加和改动,例如以具有相同或者相似技术效果的技术特征改换或替换,均属于本发明保护范围。
实施例1、聚离子液体/聚丙烯酸多孔复合膜的制备
(1)将1g聚离子液体和0.18g聚丙烯酸混合,加入10mL的二甲基甲酰胺,在25℃溶解;
(2)将步骤(1)所制备的聚合物溶液倾倒在玻璃板上,在80℃加热5小时,烘干溶剂;
(3)将步骤(2)所制备的聚合物复合膜在0.1wt%的氨水溶液中浸泡5小时,得到多孔聚合物膜。
实施例2、聚离子液体/聚丙烯酸/氧化石墨烯多孔复合膜的制备
(1)将1g聚离子液体和0.18g聚丙烯酸混合,加入10mL的二甲基甲酰胺,在50℃溶解;然后将0.1g氧化石墨烯超声分散在上述聚合物溶液中;
(2)将步骤(1)所制备的聚合物溶液倾倒在玻璃板上,在50℃加热48小时,烘干溶剂;
(3)将步骤(2)所制备的聚合物复合膜在0.1wt%的氨水溶液中浸泡5小时,得到多孔聚合物/氧化石墨烯膜。
实施例3、聚离子液体/聚丙烯酸/炭黑多孔复合膜的制备
(1)将5g聚离子液体和1g聚丙烯酸混合,加入100mL的二甲基亚砜,在70℃溶解;然后将1g炭黑超声分散在上述聚合物溶液中;
(2)将步骤(1)所制备的聚合物溶液倾倒在玻璃板上,在120℃加热6小时,烘干溶剂;
(3)将步骤(2)所制备的聚合物复合膜在0.5wt%的氨水溶液中浸泡20小时,得到多孔聚合物/炭黑膜。
实施例4、聚离子液体/聚丙烯酸/碳纳米管多孔复合膜的制备
(1)将10g聚离子液体和2g聚丙烯酸混合,加入100mL的二甲基甲酰胺,在50℃溶解;然后将1g碳纳米管超声分散在上述聚合物溶液中;
(2)将步骤(1)所制备的聚合物溶液倾倒在玻璃板上,在90℃加热6小时,烘干溶剂;
(3)将步骤(2)所制备的聚合物复合膜在0.2wt%的氨水溶液中浸泡20小时,得到多孔聚合物/碳纳米管膜。
实施例5、方法1将实施例1制备的聚离子液体/聚丙烯酸复合膜浸泡在0.1M的CoCl2水溶液中1小时,而后取出吸附了CoCl2的聚离子液体/聚丙烯酸/多孔复合膜,在300℃碳化24小时,可得负载金属钴纳米颗粒的多孔氮掺杂碳膜。
实施例6、方法1
将实施例2制备的聚离子液体/聚丙烯酸多孔复合膜浸泡在1M的FeCl3水溶液中12小时,而后取出吸附了FeCl3的聚离子液体/聚丙烯酸/多孔复合膜,在1200℃碳化1小时,可得负载金属铁纳米颗粒的多孔氮掺杂碳膜。
实施例7、方法1
将实施例1制备的聚离子液体/聚丙烯酸多孔复合膜浸泡在0.5M的HAuCl4水溶液中12小时,而后取出吸附了HAuCl4的聚离子液体/聚丙烯酸/多孔复合膜,在900℃碳化 5小时,可得负载金属镍纳米颗粒的多孔氮掺杂碳膜。
实施例8、方法2
将实施例1制备的聚离子液体/聚丙烯酸多孔复合膜在300℃下,碳化10小时,可得多孔氮掺杂碳膜。将得到的多孔氮掺杂碳膜浸入0.0001M HAuCl4水溶液中,180℃下,水热反应2小时可得金纳米颗粒负载的多孔氮掺杂碳膜。
实施例9、方法2
将实施例2制备的聚离子液体/聚丙烯酸/氧化石墨烯多孔复合膜在900℃,碳化2小时,可得含有石墨烯的多孔氮掺杂碳膜。将含有石墨烯的多孔氮掺杂碳膜浸入1M K2PtCl6水溶液中,80℃下,水热反应48小时可得铂纳米颗粒负载的石墨烯多孔氮掺杂碳膜。
实施例10、方法2
将实施例4制备的聚离子液体/聚丙烯酸/炭黑多孔复合膜在800℃,碳化5小时,可得含有炭黑的多孔氮掺杂碳膜。将含有炭黑的多孔氮掺杂碳膜浸入10M Co(CH3COO)2水溶液中,150℃下,水热反应24小时可得钴纳米颗粒负载的炭黑多孔氮掺杂碳膜。
实施例11、方法2
将实施例4制备的聚离子液体/聚丙烯酸/碳纳米管多孔复合膜在1200℃,碳化1小时,可得含有碳纳米管的多孔氮掺杂碳膜。将含有碳纳米管的多孔氮掺杂碳膜浸入2M Ir(CH3COO)3水溶液中,200℃下,水热反应12小时可得铱纳米颗粒负载的碳纳米管多孔氮掺杂碳膜。
实施例12、应用
将实施例7制备的含有金纳米粒子的多孔氮掺杂碳膜作为电极应用于N2还原。具体做法为:将所制备的含有金纳米粒子的多孔氮掺杂碳膜直接作为工作电极,Ag/AgCl为参比电极,铂丝为对电极,盐酸水溶液为电解质,组成电解池。实验测试表明,金纳米颗粒负载的多孔氮掺杂碳膜转化N2的法拉第效率为22%,并且其具有非常高的稳定性,连续测试4天,其可以持续的将氮气转化为氨气,产率为每平方米碳膜每个小时可制备0.36g 氨气。与目前工业哈勃法制备氨气相比较,本发明工艺简单,原料价廉易得,氨气的制备在常温常压下进行,产率高,节约能源,有望用于大规模氨气的制备。
参考文献:
[1]Bao,D.,Zhang,Q.,Meng,F.-L.eta l.Adv.Mater.2017,29:1604799
[2]Chen,G.-F.,Cao,X.,Wu,S.,et al.J.Am.Chem.Soc.,2017,139:9771–9774
[3]Shi,M.-M.,Bao,D.,Wulan,B.-R.et al.,Adv.Mater.2017,29:1606550
[4]Li,S.-J.,Bao,D.,Wulan,B.-R.et al.,Adv.Mater.2017,29:1700001
[5]Costentin,C.;Robert,M.;Saveant,J.-M.Chem.Soc.Rev.2013,42:2423-2436.
[6]Y.Li,Q.Sun,Adv.Energy Mater.2016,1600463.
[7]Fellinger,T.-P.;Thomas,A.Yuan,J.,et al.,Adv.Mater.,2013,25:5838-5855.
[8]Dai,L.;Xue,Y.,Qu,L.;Choi,H.-J.,et al.,Chem.Rev.,2015,115:4823-4892.
[9]Jiao,Y.,Zheng,Y.,Davey,K.,Qiao,S.-Z.,Nat.Energy,2016,1:16130.
[10]Li,Y.,Zhou,W.,Wang,H.,et al.,Nat.Nanotechnol.2012,7:394-400。

Claims (9)

1.一种自支撑的金属纳米粒子/多孔氮掺杂碳膜的制备方法,其特征在于制备方法具有如下:
方法1、将聚离子液体/聚丙烯酸多孔复合膜,浸泡于无机盐溶液1~24小时进行金属离子吸附,然后直接碳化吸附有金属离子的聚离子液体/聚丙烯酸多孔复合膜,碳化温度为300~1200℃,碳化时间为1~10小时,可得金属纳米粒子/多孔氮掺杂碳膜;
方法2、将所制备的聚离子液体/聚丙烯酸多孔复合膜直接碳化,得到多孔氮掺杂碳膜,碳化温度为300℃~1200℃,碳化时间为1~10小时;然后通过水热的合成方法将所述多孔氮掺杂碳膜浸入浓度为0.0001M~10M的金属离子溶液中,制备金属纳米粒子/多孔氮掺杂碳膜,水热温度为80℃~250℃,水热反应时间为2~48小时;
所述多孔氮掺杂碳膜作为电极应用于N2还原,具体做法为:将所制备的多孔氮掺杂碳膜直接作为工作电极,Ag/AgCl为参比电极,铂丝为对电极,盐酸水溶液为电解质,其电催化还原氨气的法拉第效率为22%,并且其具有非常高的稳定性,连续测试192小时,其可以持续的将氮气转化为氨气,产率为每平方米碳膜每小时可制备0.36g氨气。
2.如权利要求1所述的制备方法,其特征在于方法1所述的无机盐为含有金属离子的化合物。
3.如权利要求1所述的制备方法,其特征在于方法2所述的聚离子液体/聚丙烯酸多孔复合膜含有碳纳米管,石墨烯或活性炭。
4.如权利要求1所述的制备方法,其特征在于方法2所述的多孔氮掺杂碳膜的厚度为20nm到10cm。
5.如权利要求1、3或4所述的制备方法,其特征在于所述方法2制备得到的多孔氮掺杂碳膜具有梯度分布的多级孔结构。
6.如权利要求1或2所述的制备方法,其特征在于方法1或者2中所述的聚离子液体/聚丙烯酸多孔复合膜的制备方法如下:
(1)将聚离子液体和聚丙烯酸按照1:1~1:3的摩尔比混合,加入10~500mL的二甲基甲酰胺或二甲基亚砜,在25℃到70℃条件下加热溶解;然后将碳纳米管、氧化石墨烯或者炭黑超声分散在上述聚合物溶液中;
(2)将步骤(1)所制备的聚合物溶液倾倒在玻璃板上,在50℃~120℃加热2~48小时,烘干溶剂;
(3)将步骤(2)所制备的聚合物复合膜在0.1wt%~28wt%的氨水溶液中浸泡1~10小时,得到聚离子液体/聚丙烯酸多孔复合膜。
7.一种如权利要求1-4之一所述制备方法得到的自支撑的金属纳米粒子/多孔氮掺杂碳膜。
8.一种如权利要求1-4之一所述制备方法得到的金属纳米粒子/多孔氮掺杂碳膜作为电极在电催化领域的应用。
9.如权利要求8所述的应用,其特征在于,将多孔氮掺杂碳膜作为电极应用于N2还原,具体做法为:将所制备的多孔氮掺杂碳膜直接作为工作电极,Ag/AgCl为参比电极,铂丝为对电极,盐酸水溶液为电解质,其电催化还原氨气的法拉第效率为22%,并且其具有非常高的稳定性,连续测试192小时,其可以持续的将氮气转化为氨气,产率为每平方米碳膜每小时可制备0.36g氨气。
CN201711370331.4A 2017-12-19 2017-12-19 一种自支撑的金属纳米粒子/多孔氮掺碳膜及其制备方法和应用 Expired - Fee Related CN108103517B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711370331.4A CN108103517B (zh) 2017-12-19 2017-12-19 一种自支撑的金属纳米粒子/多孔氮掺碳膜及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711370331.4A CN108103517B (zh) 2017-12-19 2017-12-19 一种自支撑的金属纳米粒子/多孔氮掺碳膜及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN108103517A CN108103517A (zh) 2018-06-01
CN108103517B true CN108103517B (zh) 2019-06-21

Family

ID=62209949

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711370331.4A Expired - Fee Related CN108103517B (zh) 2017-12-19 2017-12-19 一种自支撑的金属纳米粒子/多孔氮掺碳膜及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN108103517B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109437151A (zh) * 2018-12-14 2019-03-08 中国科学院长春应用化学研究所 一种基于廉价碳黑制备有序多孔碳材料的方法及应用
CN109908887B (zh) * 2019-02-03 2020-10-02 北京理工大学 一种微氧化导电炭黑担载纳米金属铋催化剂及其应用
CN109759143B (zh) * 2019-02-12 2021-07-30 济南大学 一种Co3O4 NP/CD/Co-MOF复合材料的制备方法和应用
CN111686766B (zh) * 2019-03-11 2021-09-21 中国科学院福建物质结构研究所 一种金属-氟掺杂碳复合材料及其制备方法和在电催化固氮中的应用
CN110217780A (zh) * 2019-06-20 2019-09-10 陕西师范大学 一种负载Co的氮掺杂孔洞石墨烯的制备方法
CN110813293A (zh) * 2019-10-31 2020-02-21 曲阜师范大学 Cu NPs-rGO电催化剂的制备方法及其应用
CN111483999B (zh) * 2020-04-14 2022-11-08 常熟氢能源研究院有限公司 一种氮掺杂碳纳米管的制备方法、氮掺杂碳纳米管及其应用
CN114849757B (zh) * 2022-05-23 2023-05-02 衢州学院 一种固载催化剂及制备方法、使用方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104513955A (zh) * 2013-09-26 2015-04-15 中国科学院宁波材料技术与工程研究所 一种氮掺杂多孔碳薄膜的制备方法及其产品
CN105264118A (zh) * 2013-03-26 2016-01-20 俄亥俄州立大学 在碱性介质中的氨的电化学合成
CN106129358A (zh) * 2016-07-15 2016-11-16 新疆大学 一种多孔氮掺杂类石墨烯碳膜包覆磷酸铁锂复合物的制备方法
CN106513029A (zh) * 2016-12-06 2017-03-22 武汉工程大学 一种负载金属纳米粒子的氮掺杂多孔石墨烯的制备方法
CN106602078A (zh) * 2016-12-30 2017-04-26 华南理工大学 一种石墨烯支撑氮掺杂碳膜包覆四氧化三钴复合材料及制备与应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105264118A (zh) * 2013-03-26 2016-01-20 俄亥俄州立大学 在碱性介质中的氨的电化学合成
CN104513955A (zh) * 2013-09-26 2015-04-15 中国科学院宁波材料技术与工程研究所 一种氮掺杂多孔碳薄膜的制备方法及其产品
CN106129358A (zh) * 2016-07-15 2016-11-16 新疆大学 一种多孔氮掺杂类石墨烯碳膜包覆磷酸铁锂复合物的制备方法
CN106513029A (zh) * 2016-12-06 2017-03-22 武汉工程大学 一种负载金属纳米粒子的氮掺杂多孔石墨烯的制备方法
CN106602078A (zh) * 2016-12-30 2017-04-26 华南理工大学 一种石墨烯支撑氮掺杂碳膜包覆四氧化三钴复合材料及制备与应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Efficient Electrocatalytic Reduction of CO2 by Nitrogen-Doped Nanoporous Carbon/Carbon Nanotube Membranes: A Step Towards the Electrochemical CO2 Refinery";Hong Wang et al;《Angewandte Chemie》;20170512;第129卷(第27期);第7955-7960页

Also Published As

Publication number Publication date
CN108103517A (zh) 2018-06-01

Similar Documents

Publication Publication Date Title
CN108103517B (zh) 一种自支撑的金属纳米粒子/多孔氮掺碳膜及其制备方法和应用
Mondal et al. NiO hollow microspheres as efficient bifunctional electrocatalysts for overall water-splitting
Song et al. Metal-organic framework derived Fe/Fe3C@ N-doped-carbon porous hierarchical polyhedrons as bifunctional electrocatalysts for hydrogen evolution and oxygen-reduction reactions
Liu et al. Co 3 O 4 nanowires supported on 3D N-doped carbon foam as an electrochemical sensing platform for efficient H 2 O 2 detection
Peng et al. Zn doped ZIF67-derived porous carbon framework as efficient bifunctional electrocatalyst for water splitting
Rezaee et al. 3D ternary Ni x Co 2− x P/C nanoflower/nanourchin arrays grown on HCNs: a highly efficient bi-functional electrocatalyst for boosting hydrogen production via the urea electro-oxidation reaction
Zhang et al. Implanted metal-nitrogen active sites enhance the electrocatalytic activity of zeolitic imidazolate zinc framework-derived porous carbon for the hydrogen evolution reaction in acidic and alkaline media
Chen et al. MOF derived porous carbon modified rGO for simultaneous determination of hydroquinone and catechol
Hua et al. Pt nanoparticles supported on submicrometer-sized TiO2 spheres for effective methanol and ethanol oxidation
Xie et al. Cu metal-organic framework-derived Cu Nanospheres@ Porous carbon/macroporous carbon for electrochemical sensing glucose
Wang et al. Vertically aligned MoS 2 nanosheets on N-doped carbon nanotubes with NiFe alloy for overall water splitting
Zuo et al. NaCl crystal tuning nitrogen self-doped porous graphitic carbon nanosheets for efficient oxygen reduction
Shan-Shan et al. Progress on electrocatalysts of hydrogen evolution reaction based on carbon fiber materials
Li et al. Preparation of three-dimensional Fe–N co-doped open-porous carbon networks as an efficient ORR electrocatalyst in both alkaline and acidic media
Dey et al. Fabrication of porous nickel (II)-based MOF@ carbon nanofiber hybrid mat for high-performance non-enzymatic glucose sensing
Liu et al. Three-dimensional nanoarchitectures of Co nanoparticles inlayed on N-doped macroporous carbon as bifunctional electrocatalysts for glucose fuel cells
Liu et al. N-doped hollow porous carbon spheres@ Co Cu Fe alloy nanospheres as novel non-precious metal electrocatalysts for HER and OER
CN105271217A (zh) 一种氮掺杂的三维石墨烯的制备方法
CN108660473A (zh) 一种基于MXene与过渡金属碳化物复合纳米结构的电解海水制氢催化剂及其合成方法
Zhang et al. Engineering a lignin-based hollow carbon with opening structure for highly improving the photocatalytic activity and recyclability of ZnO
CN106757143A (zh) 一种水分解反应用催化电极及其制备方法
Gao et al. Novel porous carbon felt cathode modified by cyclic voltammetric electrodeposited polypyrrole and anthraquinone 2-sulfonate for an efficient electro-Fenton process
Liu et al. Co (OH) 2 hollow nanoflowers as highly efficient electrocatalysts for oxygen evolution reaction
Xu et al. Heteroatom doped mesoporous carbon/graphene nanosheets as highly efficient electrocatalysts for oxygen reduction
Abd El-Lateef et al. An efficient and non-precious anode electrocatalyst of NiO-modified carbon nanofibers towards electrochemical urea oxidation in alkaline media

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190621

Termination date: 20201219