CN109261190A - 一种Ni-Mo/g-C3N4复合光催化剂及其制备和应用 - Google Patents

一种Ni-Mo/g-C3N4复合光催化剂及其制备和应用 Download PDF

Info

Publication number
CN109261190A
CN109261190A CN201811304182.6A CN201811304182A CN109261190A CN 109261190 A CN109261190 A CN 109261190A CN 201811304182 A CN201811304182 A CN 201811304182A CN 109261190 A CN109261190 A CN 109261190A
Authority
CN
China
Prior art keywords
catalyst
preparation
composite photo
alloy
presoma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811304182.6A
Other languages
English (en)
Inventor
张青红
韩鑫
王宏志
李耀刚
侯成义
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Donghua University
National Dong Hwa University
Original Assignee
Donghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Donghua University filed Critical Donghua University
Priority to CN201811304182.6A priority Critical patent/CN109261190A/zh
Publication of CN109261190A publication Critical patent/CN109261190A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0266Processes for making hydrogen or synthesis gas containing a decomposition step
    • C01B2203/0277Processes for making hydrogen or synthesis gas containing a decomposition step containing a catalytic decomposition step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种Ni‑Mo/g‑C3N4复合光催化剂及其制备和应用,催化剂是由Ni‑Mo合金纳米颗粒和g‑C3N4材料构筑而成的复合物;该催化剂的制备方法是以g‑C3N4为基体,通过一步还原法还原g‑C3N4与Ni‑Mo合金的前驱体制备得到;该复合光催化剂可有效降低光生电子与空穴的复合,提高光生电子与空穴的利用率,延长光催化剂的使用寿命,可用于光分解水制氢反应并具有较高的效率;其制备方法和所需设备简单,成本低,制备周期短且易于大规模生产。

Description

一种Ni-Mo/g-C3N4复合光催化剂及其制备和应用
技术领域
本发明属于可见光催化剂及其制备和应用领域,特别涉及一种Ni-Mo/g-C3N4复合光催化剂及其制备和应用。
背景技术
氢能是公认的清洁能源,作为低碳和零碳能源正在脱颖而出。21世纪,我国和美国、日本、加拿大、欧盟等都制定了氢能发展规划,并且目前我国已在氢能领域取得了多方面的进展,在不久的将来有望成为氢能技术和应用领先的国家之一。世界各国正在研究如何能大量而廉价的生产氢。利用太阳能来分解水是一个主要研究方向,在光的作用下将水分解成氢气和氧气,关键在于找到一种合适的催化剂。近年来,一种新型的、可见光下响应的非金属材料g-C3N4,由于禁带宽度(约2.7eV)较窄、化学稳定性好、制备方法简便等优点受到广泛的关注。但g-C3N4在光照下所产生的光生电子与空穴极易复合,导致其光催化的效果并不理想。为了抑制光生电子-空穴对的复合,可以将一些贵金属沉积在g-C3N4的表面作为助催化剂,提升其光生电子的输送效率,并抑制光生电子和空穴的复合,从而提高光催化效率。已见报道的贵金属主要包括Pt、Ag、Ir、Au、Ru、Pd、Rh等,其中有关Pt的报道最多,效果也最好。
然而,Pt等贵金属在地壳中含量稀少,价格昂贵,严重制约了Pt等贵金属在光催化领域中的应用。因此,开发廉价的地壳中富含的元素组成的非贵金属材料作为半导体光催化剂的共催化剂就显得尤为重要。我们注意到,在光电催化领域中已经被广泛研究的非贵金属Ni-Mo合金可能是一种有望能在光催化领域中代替贵金属Pt的一种理想的非贵金属共催化剂。然而现有技术只能将Ni-Mo合金沉积到光电催化剂负载的导电基底上制备成合适的电极进行应用,这并不能满足其在粉末光催化体系中的应用。
发明内容
本发明所要解决的技术问题是提供一种Ni-Mo/g-C3N4复合光催化剂及其制备和应用,克服现有技术中采用贵金属沉积在g-C3N4的表面作为助催化剂成本高、不利于推广的技术缺陷,该制备方法简单,工艺参数容易控制,易于大规模化生产,得到的复合催化剂成本低,且具有较高的可见光分解水产氢的效率以及稳定性。
本发明的一种Ni-Mo/g-C3N4复合光催化剂的制备方法,包括:
(1)将镍源和钼源加入去水中至全部溶解,然后加入氨水溶液,再加入二甘醇,搅拌,加热,离心水洗,干燥,得到Ni-Mo合金的前驱体;
(2)将g-C3N4与步骤(1)的Ni-Mo合金的前驱体混合,在还原气氛下煅烧,得到Ni-Mo/g-C3N4复合光催化剂。
上述制备方法的优选方式如下:
所述镍源为六水合硝酸镍;钼源为七钼酸铵。
所述步骤(1)中镍源与钼源的质量比为1:9~9:1;加入的氨水溶液、二甘醇和水的体积比为1:45:5~5:45:5。
所述步骤(1)中加热温度为100-180℃;干燥温度为60-120℃。
所述步骤(2)中g-C3N4与Ni-Mo合金的前驱体的质量比为1:1~9:1。
所述步骤(2)中还原气氛下煅烧为:氩氢混合气为还原气氛,煅烧温度为200~500℃,升温速率为4~10℃/min。
所述煅烧为:以4~10℃/min的升温速率先200-250℃保温20-35min,再升至400-500℃保温0.5-1h。
本发明提高一种所述方法制备的Ni-Mo/g-C3N4复合光催化剂。
所述催化剂为Ni-Mo纳米颗粒和g-C3N4材料构筑而成的复合物,其中Ni-Mo合金的负载量为1wt%-30wt%。
本发明的一种所述Ni-Mo/g-C3N4复合光催化剂的应用。
有益效果
(1)本发明工艺和设备简单,工艺参数容易控制,成本低廉,易于大规模生产;
(2)本发明复合光催化剂可有效降低光生电子与空穴的复合,提高光生电子与空穴的利用率,光催化剂的光催化性能较好,可用于光分解水制氢反应并具有较高的效率;其制备方法和所需设备简单,成本低,制备周期短且易于大规模生产;
(3)本发明通过一步还原煅烧法制备了一种Ni-Mo/g-C3N4复合光催化剂,成本低廉;Ni-Mo合金纳米颗粒可均匀分散于g-C3N4表面,并能与g-C3N4材料形成较好的接触,有利于光生电子快速向Ni-Mo合金转移,有效提高材料的光生电子与空穴的分离效率,提升其光催化性能,得到的Ni-Mo/g-C3N4复合光催化剂材料在可见光下具有较好的光催化产氢性能,其性能是纯g-C3N4的7.5倍左右,并且具有较好的光催化循环稳定性;
(4)本发明制备得到的Ni-Mo/g-C3N4复合材料在可见光下的产氢性能基本达到了贵金属Pt负载的g-C3N4光催化剂的性能,因此Ni-Mo合金是能在光催化领域中代替贵金属Pt的一种理想的非贵金属共催化剂;
(5)本发明制备得到的Ni-Mo/g-C3N4复合材料结晶性好,颗粒细小且分布均匀,导电性良好,具有较好的光催化性能,在光催化、废水处理等领域有应用价值。
附图说明
图1是实施例1制备的Ni-Mo/g-C3N4复合光催化剂与纯g-C3N4的XRD图;
图2是实施例1制备的Ni-Mo/g-C3N4复合光催化剂与纯g-C3N4的紫外可见漫反射光谱;
图3是实施例1制备的Ni-Mo/g-C3N4复合光催化剂与纯g-C3N4的光催化产氢曲线;
图4是实施例1制备的Ni-Mo/g-C3N4复合光催化剂的循环光催化产氢曲线;
图5是实施例3制备的Ni-Mo/g-C3N4复合光催化剂的TEM图像;
图6是实施例1和对比例1中的光催化剂的光催化产氢率的对比图。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
实施例1
(1)将3g六水合硝酸镍和2.76g七钼酸铵加入5mL的去离子水中搅拌5min,然后在搅拌状态下加入2ml 28%的氨水溶液,随后加入45ml二甘醇,继续搅拌5min,将上述混合溶液置于油浴锅中加热至130℃后取出自然冷却30s,然后离心水洗三次并于60℃下干燥,得到Ni-Mo合金的前驱体。
(2)将0.18gg-C3N4与0.02g步骤(1)中的Ni-Mo合金的前驱体置于研钵中并充研磨,置于管式炉中,在氩氢混合气下,以5℃/min的升温速率先200℃保温30min再升至450摄氏度保温1h,随后自然冷却到室温后便得到Ni-Mo/g-C3N4复合光催化剂。
将该Ni-Mo/g-C3N4复合光催化剂和纯g-C3N4进行光催化产氢,光催化产氢的条件为:20mg催化剂置于含有10vol%三乙醇胺的水溶液中,用带有≧420nm可见光滤光片的300W氙灯为可见光光源,在可见光光源的连续照射下每一小时取样一次并用气相色谱检测氢气的产量。
图1表明:本实施例得到的Ni-Mo/g-C3N4复合光催化剂材料在2θ=13°,27.5°出现了g-C3N4的特征峰,在2θ=44.5°,51.9°出现了Ni-Mo合金的特征峰,说明本实施例最终制备的物质为g-C3N4与Ni-Mo合金的复合物。
图2表明:本实施例得到的Ni-Mo/g-C3N4复合光催化剂材料相比于纯g-C3N4有更好的吸光性能。
图3表明:本实施例得到的Ni-Mo/g-C3N4复合光催化剂材料在可见光下具有较好的光催化产氢性能,其性能是纯g-C3N4的7.5倍左右。
图4表明:本实施例得到的Ni-Mo/g-C3N4复合光催化剂材料经过5次光催化产氢循环试验后其性能没有明显的下降,因此此复合光催化剂材料具有较好的光催化循环稳定性。
实施例2
(1)将3g六水合硝酸镍和1.2g七钼酸铵加入5mL的去离子水中搅拌5min,然后在搅拌状态下加入3ml28%的氨水溶液,随后加入45ml二甘醇,继续搅拌5min,将上述混合溶液置于油浴锅中加热至140℃后取出自然冷却30s,然后离心水洗三次并于120℃下干燥,得到Ni-Mo合金的前驱体。
(2)将0.19gg-C3N4与0.01g步骤(1)中的Ni-Mo合金的前驱体置于研钵中并充研磨,置于管式炉中,在氩氢混合气下,以4℃/min的升温速率先200℃保温30min再升至400摄氏度保温1h,随后自然冷却到室温后便得到Ni-Mo/g-C3N4复合光催化剂。
实施例3
(1)将1.5g六水合硝酸镍和0.92g七钼酸铵加入5mL的去离子水中搅拌5min,然后在搅拌状态下加入3ml28%的氨水溶液,随后加入45ml二甘醇,继续搅拌5min,将上述混合溶液置于油浴锅中加热至120℃后取出自然冷却30s,然后离心水洗三次并于100℃下干燥,得到Ni-Mo合金的前驱体。
(2)将0.13gg-C3N4与0.7g步骤(1)中的Ni-Mo合金的前驱体置于研钵中并充研磨,置于管式炉中,在氩氢混合气下,以10℃/min的升温速率先200℃保温30min再升至450摄氏度保温1h,随后自然冷却到室温后便得到Ni-Mo/g-C3N4复合光催化剂。
从图5中可以看出Ni-Mo纳米颗粒附着在g-C3N4片层的表面,有利于g-C3N4的光生电子的传导,但因本实施例中Ni-Mo合金的含量过高导致其在g-C3N4的表面分布的并不均匀且发生了团聚现象。
实施例4
(1)将0.9g六水合硝酸镍和0.1g七钼酸铵加入5mL的去离子水中搅拌5min,然后在搅拌状态下加入1ml28%的氨水溶液,随后加入45ml二甘醇,继续搅拌5min,将上述混合溶液置于油浴锅中加热至180℃后取出自然冷却30s,然后离心水洗三次并于120℃下干燥,得到Ni-Mo合金的前驱体。
(2)将0.09gg-C3N4与0.01g步骤(1)中的Ni-Mo合金的前驱体置于研钵中并充研磨,置于管式炉中,在氩氢混合气下,以10℃/min的升温速率先200℃保温30min再升至500摄氏度保温1h,随后自然冷却到室温后便得到Ni-Mo/g-C3N4复合光催化剂。
对比例1
贵金属Pt负载的g-C3N4光催化剂的光催化产氢性能的测试。光催化产氢的条件为:20mg g-C3N4催化剂置于含有10vol%三乙醇胺和1.1mg氯铂酸的水溶液中,用带有≧420nm可见光滤光片的300W氙灯为可见光光源,在可见光光源的连续照射下每一小时取样一次并用气相色谱检测氢气的产量。
图6表明:实施例1中制备得到的Ni-Mo/g-C3N4复合光催化剂在可见光下的产氢性能可达到贵金属Pt负载的g-C3N4催化剂的性能的84%,非贵金属助催化剂Ni-Mo合金可替代金属Pt在光催化领域中应用。

Claims (8)

1.一种Ni-Mo/g-C3N4复合光催化剂的制备方法,包括:
(1)将镍源和钼源加入去水中至全部溶解,然后加入氨水溶液,再加入二甘醇,搅拌,加热,离心水洗,干燥,得到Ni-Mo合金的前驱体;
(2)将g-C3N4与步骤(1)的Ni-Mo合金的前驱体混合,在还原气氛下煅烧,得到Ni-Mo/g-C3N4复合光催化剂。
2.根据权利要求1所述制备方法,其特征在于,所述镍源为六水合硝酸镍;钼源为七钼酸铵。
3.根据权利要求1所述制备方法,其特征在于,所述步骤(1)中镍源与钼源的质量比为1:9~9:1;加入的氨水溶液、二甘醇和水的体积比为1:45:5~5:45:5。
4.根据权利要求1所述制备方法,其特征在于,所述步骤(1)中加热温度为100-180℃;干燥温度为60-120℃。
5.根据权利要求1所述制备方法,其特征在于,所述步骤(2)中g-C3N4与Ni-Mo合金的前驱体的质量比为1:1~9:1。
6.根据权利要求1所述制备方法,其特征在于,所述步骤(2)中还原气氛下煅烧为:氩氢混合气为还原气氛,煅烧温度为200~500℃,升温速率为4~10℃/min。
7.一种权利要求1所述方法制备的Ni-Mo/g-C3N4复合光催化剂。
8.一种权利要求1所述Ni-Mo/g-C3N4复合光催化剂的应用。
CN201811304182.6A 2018-11-03 2018-11-03 一种Ni-Mo/g-C3N4复合光催化剂及其制备和应用 Pending CN109261190A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811304182.6A CN109261190A (zh) 2018-11-03 2018-11-03 一种Ni-Mo/g-C3N4复合光催化剂及其制备和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811304182.6A CN109261190A (zh) 2018-11-03 2018-11-03 一种Ni-Mo/g-C3N4复合光催化剂及其制备和应用

Publications (1)

Publication Number Publication Date
CN109261190A true CN109261190A (zh) 2019-01-25

Family

ID=65191785

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811304182.6A Pending CN109261190A (zh) 2018-11-03 2018-11-03 一种Ni-Mo/g-C3N4复合光催化剂及其制备和应用

Country Status (1)

Country Link
CN (1) CN109261190A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111244487A (zh) * 2019-02-14 2020-06-05 南京攀峰赛奥能源科技有限公司 一种质子交换膜燃料电池电极催化剂、制备方法及质子交换膜燃料电池
CN113398971A (zh) * 2021-06-15 2021-09-17 华东理工大学 二维RuNi/g-C3N4复合光催化剂及其制备方法和应用
CN113856735A (zh) * 2021-11-23 2021-12-31 廊坊师范学院 一种复合型光催化剂及其制备方法和应用
CN114345390A (zh) * 2022-01-17 2022-04-15 山东大学 一种光催化剂、其制备方法、应用及光催化塑料重整方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101411986A (zh) * 2007-10-19 2009-04-22 中国科学院大连化学物理研究所 一种炭载过渡金属碳氮化合物及其制备和应用
CN102139920A (zh) * 2010-01-28 2011-08-03 中国科学院青岛生物能源与过程研究所 一种纳米级过渡金属氮化物/碳复合材料的制备方法
CN102616739A (zh) * 2012-04-06 2012-08-01 天津大学 一种光催化水分解的装置及应用
CN106513029A (zh) * 2016-12-06 2017-03-22 武汉工程大学 一种负载金属纳米粒子的氮掺杂多孔石墨烯的制备方法
CN108607596A (zh) * 2018-05-11 2018-10-02 东华大学 一种具有可见光分解水制氢性能的复合化Pt/TiO2-xNx催化剂及其制备和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101411986A (zh) * 2007-10-19 2009-04-22 中国科学院大连化学物理研究所 一种炭载过渡金属碳氮化合物及其制备和应用
CN102139920A (zh) * 2010-01-28 2011-08-03 中国科学院青岛生物能源与过程研究所 一种纳米级过渡金属氮化物/碳复合材料的制备方法
CN102616739A (zh) * 2012-04-06 2012-08-01 天津大学 一种光催化水分解的装置及应用
CN106513029A (zh) * 2016-12-06 2017-03-22 武汉工程大学 一种负载金属纳米粒子的氮掺杂多孔石墨烯的制备方法
CN108607596A (zh) * 2018-05-11 2018-10-02 东华大学 一种具有可见光分解水制氢性能的复合化Pt/TiO2-xNx催化剂及其制备和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XIN HAN ET AL.: "Ni-Mo nanoparticles as co-catalyst for drastically enhanced photocatalytic hydrogen production activity over g-C3N4", 《APPLIED CATALYSIS B: ENVIRONMENTAL》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111244487A (zh) * 2019-02-14 2020-06-05 南京攀峰赛奥能源科技有限公司 一种质子交换膜燃料电池电极催化剂、制备方法及质子交换膜燃料电池
CN111244487B (zh) * 2019-02-14 2021-03-26 南京攀峰赛奥能源科技有限公司 一种质子交换膜燃料电池电极催化剂、制备方法及质子交换膜燃料电池
CN113398971A (zh) * 2021-06-15 2021-09-17 华东理工大学 二维RuNi/g-C3N4复合光催化剂及其制备方法和应用
CN113856735A (zh) * 2021-11-23 2021-12-31 廊坊师范学院 一种复合型光催化剂及其制备方法和应用
CN114345390A (zh) * 2022-01-17 2022-04-15 山东大学 一种光催化剂、其制备方法、应用及光催化塑料重整方法

Similar Documents

Publication Publication Date Title
Zhang et al. Carbon layer derived carrier transport in Co/g-C3N4 nanosheet junctions for efficient H2O2 production and NO removal
CN109261190A (zh) 一种Ni-Mo/g-C3N4复合光催化剂及其制备和应用
CN104324733B (zh) 无贵金属高活性光解水制氢催化剂的制备方法
CN113437314B (zh) 氮掺杂碳负载低含量钌和Co2P纳米粒子的三功能电催化剂及其制备方法和应用
CN108404934A (zh) 一种z型结构的杂化二氧化钛光催化剂的制备及应用
CN109174144B (zh) Ni3C@Ni核壳助催化剂和Ni3C@Ni/光催化剂复合材料及其制备方法与应用
CN104577145B (zh) 一种铝空气电池空气电极催化剂及其制备方法
CN105498820A (zh) 高可见光电子转移Au/g-C3N4负载型光催化材料的制备方法
CN106334554A (zh) 一种在可见光下具有高效光催化活性的ZnO/Ag复合纳米光催化剂
CN107497468A (zh) 一种氢氧化镍修饰的石墨相氮化碳复合光催化剂的制备方法及其应用
CN103007935A (zh) 一种Pt/锑掺杂二氧化锡-石墨烯催化剂的制备方法
CN110339852B (zh) 一种CoO@氮硫共掺杂碳材料/CdS复合光催化材料、制备方法及其应用
CN111167476B (zh) 一种碳载RhNi-Ni(OH)2复合析氢电催化剂的制备方法
Xiang et al. Co2P/CoP quantum dots surface heterojunction derived from amorphous Co3O4 quantum dots for efficient photocatalytic H2 production
CN110071300B (zh) 一种过渡金属/氮掺杂碳纤维电催化剂的制备方法
CN108043437A (zh) 一种空心SiC载体型Ir-Ru催化剂的制备方法
CN111437820B (zh) 一种用于光催化分解水产氢的复合纳米材料及其制备方法
CN114452990A (zh) 过渡金属碳化物的制备方法和复合催化剂
CN102074712B (zh) 一种直接甲醇燃料电池阳极催化剂的制备方法
CN112657521A (zh) 一种原位生长在碳布上的铬掺杂磷化钴纳米棒阵列的制备方法
CN115069291B (zh) 一种Ni/VN/g-C3N4复合光催化剂及其制备方法和应用
CN116377505A (zh) 一种MnO2/RuO2异质析氧反应电催化剂及制备方法和应用
CN112774659B (zh) 一种石墨烯/氢化氧化铟复合光催化剂及其制备方法
CN113649054B (zh) 一种NiFe@NC/Al-SrTiO3复合光催化剂及其应用
CN113856717B (zh) 一种超级稳定的光催化材料促进剂及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190125