CN115184423A - 一种负载金属纳米粒子的氮硫共掺杂多孔石墨烯薄膜及其制备方法和应用 - Google Patents

一种负载金属纳米粒子的氮硫共掺杂多孔石墨烯薄膜及其制备方法和应用 Download PDF

Info

Publication number
CN115184423A
CN115184423A CN202210789725.8A CN202210789725A CN115184423A CN 115184423 A CN115184423 A CN 115184423A CN 202210789725 A CN202210789725 A CN 202210789725A CN 115184423 A CN115184423 A CN 115184423A
Authority
CN
China
Prior art keywords
sulfur
film
nitrogen
graphene
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210789725.8A
Other languages
English (en)
Other versions
CN115184423B (zh
Inventor
奚江波
张玥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Institute of Technology
Original Assignee
Wuhan Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Institute of Technology filed Critical Wuhan Institute of Technology
Priority to CN202210789725.8A priority Critical patent/CN115184423B/zh
Publication of CN115184423A publication Critical patent/CN115184423A/zh
Application granted granted Critical
Publication of CN115184423B publication Critical patent/CN115184423B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/308Electrodes, e.g. test electrodes; Half-cells at least partially made of carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/194After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/198Graphene oxide
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3278Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction involving nanosized elements, e.g. nanogaps or nanoparticles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/48Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/20Graphene characterized by its properties
    • C01B2204/22Electronic properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Electrochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种负载金属纳米粒子的氮硫共掺杂多孔石墨烯薄膜的制备方法,首先将含氮硫化合物溶解于氧化石墨烯水溶液中,干燥成膜后进行高温退火,得到N、S共掺薄膜前驱体;然后浸渍于金属盐水溶液中,进行负载反应,再经洗涤、干燥得到。本发明首先在氮硫共掺杂的同时构建石墨烯薄膜的多孔结构,然后采用简单的浸渍法,通过金属离子与杂原子间的电荷转移以及金属离子与氧化石墨烯之间的相互作用,实现金属纳米粒子在石墨烯片层表面和片层间的均匀负载;所得石墨烯薄膜具有结构多孔、柔性、自支撑、电催化性能优异等特点;适用于电催化生物传感等领域;且涉及的制备方法较简单、对设备要求低,反应条件温和可控,生产成本低,适合推广应用。

Description

一种负载金属纳米粒子的氮硫共掺杂多孔石墨烯薄膜及其制 备方法和应用
技术领域
本发明属于功能材料技术领域,具体涉及一种负载金属纳米粒子的氮硫共掺杂多孔石墨烯薄膜及其制备方法和应用。
背景技术
石墨烯薄膜具有良好的导电性,柔韧性和机械强度,可在不加入其他电极组件的情况下,直接用于制备无支撑的轻薄柔性电极。然而,基于无支撑石墨烯纸电极构建的无酶型电化学传感器件及其应用研究还处于初级阶段,其灵敏度和选择性仍有待进一步提高。
通常,可以石墨烯纸作为基底,再将各种金属或合金纳米粒子负载于石墨烯复合纸上,以其作为无支撑柔性电极来构建电化学生物传感器。然而,由于活性位点仅存在于石墨烯纸基体表面,石墨烯纸基体的内部无活性位点,限制了载体内部结构的充分利用。其次,也可以在石墨烯纸基体表面和内部皆负载活性金属,以增加电催化活性位点;此类复合纸通常采用石墨烯纳米片在π-π作用下层层堆叠而成[Saha,B.;Baek,S.;Lee,J.Highlysensitive bendable and foldable paper sensors based on reduced grapheneoxide.ACS Appl.Mater.Interfaces 2017,9,4658–4666.],其结构层次较紧密,传质效果较差;进而导致电解质难以扩散至复合纸内部与负载的活性金属接触,限制内部活性位点的催化贡献。此外,石墨烯载体自身无催化活性,且与负载金属间的相互作用弱,制约了石墨烯复合纸生物传感器的活性和稳定性。一般而言,负载型催化剂的活性与其暴露活性位点的数量、微纳结构和组分间的协同作用密切相关[Liu,J.;Bo,X.J.;Zhao,Z.;Guo,L.P.Highly exposed Pt nanoparticles supported on porous graphene forelectrochemical detection of hydrogen peroxide in livingcells.Biosens.Bioelectron.2015,74,71-77.]。常规的负载型石墨烯纸电极在其电极结构和性能方面存在一定局限性,限制了石墨烯复合纸电极材料性能的充分发挥。进一步探索简易、高效的石墨烯薄膜的制备方法,具有重要的研究及应用价值。
发明内容
本发明的主要目的在于针对现有技术存在的问题和不足,提供一种负载金属纳米粒子氮硫共掺杂多孔石墨烯薄膜,首先在氮硫共掺杂的同时构建石墨烯薄膜的多孔结构,然后采用简单的浸渍法,通过金属离子与杂原子间的电荷转移,以及金属离子与氧化石墨烯之间的相互作用,实现金属纳米粒子在石墨烯片层表面和片层间的均匀负载;所得石墨烯薄膜具有结构多孔、柔性、自支撑、电催化性能优异等特点;适用于电催化生物传感等领域;且涉及的制备方法较简单、对设备要求低,反应条件温和可控,生产成本低,适合推广应用。
为实现上述目的,本发明采用的技术方案如下:
一种负载金属纳米粒子的氮硫共掺杂多孔石墨烯薄膜的制备方法,包括以下步骤:
1)将含氮硫化合物溶解于氧化石墨烯水溶液中,混合均匀并搅拌至完全溶解,干燥成膜后进行高温退火,并通过一步退火完成两种杂原子的掺杂,以得到N、S共掺薄膜前驱体;
2)将所得N、S共掺薄膜前驱体浸渍于金属盐水溶液中,进行负载反应,再经洗涤、干燥,即得所述负载金属纳米粒子的氮硫共掺杂多孔石墨烯薄膜。
上述方案中,所述氧化石墨烯水溶液的浓度为3-10mg/mL。
上述方案中,所述含氮硫化合物为硫脲、硫氰酸铵等中的至少一种;其与石墨烯的质量比为(0.5-5):1。
优选的,所述干燥成膜步骤采用冷冻干燥法,其温度为-60~-48℃,真空度为7-25Pa,时间为8~12h。真空冷冻干燥条件下,水分直接升华,充分保证了薄膜的片层结构不会堆叠,同时低温也保证了氧化石墨烯不会在干燥的过程中被还原。传统的烘箱干燥以及自然风干均无法规避片层堆叠的问题,且烘箱干燥会使得氧化石墨烯受热还原。
上述方案中,所述高温退火温度为380-1000℃,时间为2-6h。
上述方案中,所述金属盐选自铁盐、镍盐、钴盐、铜盐、钯盐、金盐、铂盐、银盐等中的一种几种。
进一步地,所述铁盐可选用氯化铁、硝酸铁等中的一种或几种;镍盐可选用氯化镍、硝酸镍等中的一种或几种;钴盐可选用氯化钴、硝酸钴等中的一种或几种;铜盐可选用氯化铜、硝酸铜等中的一种或几种;钯盐可选用氯钯酸钾、氯亚钯酸钾等中的一种或几种,金盐可选用氯金酸钾等;铂盐可选用氯铂酸钾等;银盐可选用硝酸银等。
上述方案中,步骤2)中引入的N、S共掺薄膜前驱体与金属盐引入金属元素的质量比为1:(0.005-0.1)。
优选的,所述金属盐选用钯盐时,引入的N、S共掺薄膜前驱体与金属盐引入金属元素的质量比为1:(0.005-0.05)。
上述方案中,所述负载反应采用避光冰浴条件,以保证纳米粒子不会收到光照和温度的影响而被还原;负载时间为4-10h。
根据上述方案制备的负载金属纳米粒子的氮硫共掺杂多孔石墨烯薄膜,氮元素以石墨氮、吡啶氮和吡咯氮的形式存在于石墨烯结构中,而硫元素则以噻吩硫的形式存在,金属颗粒以极细的纳米颗粒(1-10nm)存在于石墨烯片层的表面和片层间;所得到的薄膜具有褶皱均匀与微米级孔隙结构;金属元素含量为0.5-5wt.%。
将上述方案所得负载金属纳米粒子的氮硫共掺杂多孔石墨烯薄膜作为自支撑电极,应用于电化学生物传感等领域;尤其适用于构建无酶型电化学传感器件。
本发明采用“惰性基体掺杂增效”、“高密度纳米金属负载”和“多孔传质结构构建”的新策略,使石墨烯基体表面和内部的活性位点充分暴露,以及金属纳米粒子在石墨烯片层表面和片层间的均匀负载;实现石墨烯薄膜催化电极性能的调控和增敏电极界面的构筑,既能实现(掺杂)石墨烯多孔骨架结构与金属纳米粒子的多层次结合,又能充分发挥石墨烯优良的电学、化学、力学性能,利用各组分间的协同效应综合提升其电催化活性,可有效突破常规电极结构局限、提高电化学传感性能。
本发明上述手段可为新型无支撑柔性石墨烯基多孔复合纸电极材料的制备提供关键技术,对高灵敏度无酶型电化学生物传感器的研制等具有一定推动作用。
与现有技术相比,该发明具有以下有益效果:
1)本发明涉及的制备工艺简单,整个流程无需额外引入还原剂,生产效率高;且涉及的反应条件温和可控,无需复杂的反应设备,易于实施,具有较好的应用前景;
2)本发明通过在氧化石墨烯薄膜的制备过程中,引入硫脲等同时用作致孔剂和氮硫源,可同步实现氮硫等杂原子的高效、共掺杂以及石墨烯薄膜多孔结构的构筑,并有利于后续金属纳米粒子的均匀负载,进而显著提升所得复合材料的电催化活性;且涉及的操作简便,成本更低,适合推广应用;
3)所制备的负载金属纳米粒子的氮硫共掺杂的多孔石墨烯材料具有超大比表面积、催化性能优异等特点,可应用于电催化、有机催化、生物传感等领域。
附图说明
图1为本发明实施例1所得负载Pd纳米粒子氮硫共掺杂的多孔石墨烯薄膜的形貌图;图a为展开形貌,b、c为不同折叠条件的形貌;
图2为本发明实施例1所得负载Pd纳米粒子氮硫共掺杂的多孔石墨烯薄膜(图a、c为薄膜正面,图b为薄膜背面,d截面)的扫描电镜图;
图3为本发明实施例1所得负载Pd纳米粒子氮硫共掺杂的多孔石墨烯薄膜表面和截面的透射电镜图;
图4为本发明实施例1所得负载Pd纳米粒子氮硫共掺杂的多孔石墨烯薄膜Raman光谱图;
图5为本发明实施例1所得负载Pd纳米粒子氮硫共掺杂的多孔石墨烯薄膜XRD测试图;
图6为本发明实施例1所得负载Pd纳米粒子氮硫共掺杂的多孔石墨烯薄膜XPS谱图;
图7为本发明实施例1所得负载Pd纳米粒子氮硫共掺杂的多孔石墨烯薄膜的EDS元素面扫图;
图8本发明实施例1所得负载Pd纳米粒子氮硫共掺杂的多孔石墨烯薄膜对不同浓度过氧化氢的电催化性能测试结果;
图9为对比例1所得负载Pd纳米粒子的多孔石墨烯薄膜的电催化性能测试结果;
图10为对比例2所得负载Pd纳米粒子的多孔石墨烯薄膜的扫描电镜图;
图11为对比例2所得负载Pd纳米粒子的多孔石墨烯薄膜对过氧化氢的电催化性能测试结果。
具体实施方式
下面通过具体实施方式来进一步说明本发明的技术方案。为更好地说明本发明,便于理解本发明的技术方案,本发明的典型但非限制性的实施例如下。
以下实施例中,采用的氧化石墨烯以石墨粉(购自青岛华泰润滑密封科技有限公司)、浓硫酸、硝酸钠和高锰酸钾为原料,通过改性Hummers法制备而成;具体制备步骤包括如下:向500mL三颈烧瓶中加入2.00g石墨粉、1.00g硝酸钠和69mL浓硫酸(98%),在冰浴及机械搅拌的条件下混合均匀,称取6.00gKMnO4于研钵中研磨粉碎,缓慢加入三颈烧瓶中,加入过程控制温度为5℃左右,加入完毕后,保持冰浴条件搅拌2h;然后升温至35℃,搅拌反应2h,向三颈烧瓶中缓慢滴加90mL蒸馏水,滴加完成后升温至95℃,并保持温度搅拌0.5h;向所得反应液中缓慢滴加280mL蒸馏水,保持温度反应5min后停止加热,待反应也冷却至室温后,向其中缓慢滴加4.0mL H2O2(30%);静置分层,移去上层清液,依次用盐酸(3.3%)及蒸馏水洗涤下层固体,洗涤至近中性后,即得到GO分散液,装瓶备用。(通过冻干手段即可获得GO的浓度)。
以下实施例中,氮硫共掺杂多孔石墨烯薄膜的电化学性能测试方法包括如下步骤:在实验室环境温度(25℃)下,首先配置pH值为7.4的KH2PO4-K2HPO4缓冲体系(PBS)和1M的H2O2溶液,控制工作电极浸入液面以下的面积为0.6cm×1cm;利用三电极体系(Ag/AgCl电极为参比电极,铂丝电极为对电极,裁剪后的氮硫共掺杂多孔石墨烯薄膜为工作电极)进行循环伏安及电流-时间测试,获得循环伏安曲线及电流时间曲线,并计算得到标准曲线及方程循环伏安测试电压在-0.8-0.8V之间,以扫速为50mV/s进行;每次加入H2O2溶液后,计算并记录H2O2的梯度浓度,开启磁力搅拌至液体混合均匀,完全混合后停止搅拌,进行循环伏安测试。
实施例1
一种负载金属纳米粒子氮硫共掺杂多孔石墨烯薄膜,具体制备步骤如下:
1)取25mL浓度为4mg/mL的氧化石墨烯水溶液,加入100mg的固体硫脲(氧化石墨烯与含氮硫化合物按1:1的质量比投料),搅拌至硫脲完全溶解后,冻干成膜(冷冻干燥法,-50℃、20Pa,时间为8h),然后在700℃条件下进行高温退火2h,冷却至室温后称重,得N、S共掺薄膜前驱体0.1897g;
2)取0.0117g氯亚钯酸钾固体溶解于100mL冰水中,将所得N、S共掺薄膜前驱体加入到冰水溶液中(N、S共掺薄膜前驱体与氯亚钯酸钾固体引入钯元素的质量比为1:0.02),遮光冰浴负载6h,取出,使用去离子水多次洗涤,冻干成膜(冻干前的液态薄膜体积2.5mL、表面直径50mm),得到负载Pd纳米粒子的氮硫共掺杂多孔石墨烯薄膜。
本实施例所得产物采用电感耦合等离子体质谱(ICP-MS)测试其金属含量为1.8wt.%。
图1为本实施例所得产物的形貌图,所得薄膜具有较好的机械性能(可弯曲、可对折、可裁剪)。
图2为本实施例所得产物的SEM图,可以看出,制备的薄膜催化剂呈片层褶皱结构,存在丰富的多孔结构,且孔隙分布均匀、孔径大小分布广泛。
图3为本实施例所得产物的HAADF-STEM测试图,可以看出,金属呈现极细的纳米粒子1-5nm左右。
图4为本实施例所得产物的拉曼光谱图,ID/IG的对比结果表明,硫脲的掺入增加了薄膜催化剂的缺陷程度。
图5为本实施例所得产物的XRD谱图,可以看出,在26°左右处观察到对应石墨碳[002]晶面的衍射峰,在43°左右观察到石墨碳[100]晶面的衍射峰。
图6为本实施例所得产物的XPS谱图,谱图结果显示,所得产物主要由C、N、O、S和Pd元素组成,氮和硫的原子含量分别为6.75%和0.67%,且可以得知不同的元素在材料中具体的存在形式。
图7为本实施例所得产物的EDS元素面扫图,由图可知C、N、S、Pd都均匀的分散在复合体系中,进一步佐证了氮硫的均匀掺杂和Pd纳米粒子的均匀负载。
图8为对本实施例所得产物进行裁剪并进行面积调控,使电极浸入液下的面积保持不变后,制备为工作电极以进行电化学传感测试循环伏安(CV)的结果,结果表明所制备的材料用作电化学生物传感电极,对过氧化氢具有较好的响应,且在8mM以内均有所检出。
实施例2
一种负载金属纳米粒子氮硫共掺杂多孔石墨烯薄膜,具体制备步骤如下:
1)取25mL浓度为6mg/mL的氧化石墨烯水溶液,加入75mg的固体硫脲(氧化石墨烯与含氮硫化合物按2:1的质量比投料),搅拌至硫脲完全溶解后,冻干(-50℃,20pa)成膜,然后在400℃条件下进行高温退火4h,冷却至室温后称重,得N、S共掺薄膜前驱体0.1788g;
2)取0.0274g氯亚钯酸钾固体溶解于100mL冰水中,将所得N、S共掺薄膜前驱体加入到冰水溶液中(N、S共掺薄膜前驱体与氯亚钯酸钾固体引入钯元素的质量比为1:0.05),遮光冰浴负载4h,取出,使用去离子水多次洗涤,冻干成膜(冻干前的液态薄膜体积2.5mL、表面直径50mm),得到负载Pd纳米粒子的氮硫共掺杂多孔石墨烯薄膜。
实施例3
一种负载金属纳米粒子氮硫共掺杂多孔石墨烯薄膜,具体制备步骤如下:
1)取15mL浓度为5mg/mL的氧化石墨烯水溶液,加入150mg的固体硫脲(氧化石墨烯与含氮硫化合物按1:2的质量比投料),搅拌至硫脲完全溶解后,冻干成膜(冻干前的液态薄膜体积2.5mL、表面直径50mm),然后在450℃条件下进行高温退火3.5h,冷却至室温后称重,得N、S共掺薄膜前驱体0.1973g;
2)取0.0060g氯亚钯酸钾固体溶解于100mL冰水中,将所得N、S共掺薄膜前驱体加入到冰水溶液中(N、S共掺薄膜前驱体与氯亚钯酸钾固体引入钯元素的质量比为1:0.01),遮光冰浴负载5h,取出,使用去离子水多次洗涤,冻干成膜(冻干前的液态薄膜体积2.5mL、表面直径50mm),得到负载Pd纳米粒子的氮硫共掺杂多孔石墨烯薄膜。
实施例4
一种负载金属纳米粒子氮硫共掺杂多孔石墨烯薄膜,具体制备步骤如下:
1)取30mL浓度为6mg/mL的氧化石墨烯水溶液,加入540mg的固体硫脲(氧化石墨烯与含氮硫化合物按1:3的质量比投料),搅拌至硫脲完全溶解后,冻干膜(冻干前的液态薄膜体积2.5mL、表面直径50mm),然后在550℃条件下进行高温退火3h,冷却至室温后备用称重,得N、S共掺薄膜前驱体0.1688g;
2(取0.0186g氯化钴固体溶解于100mL冰水中,将所得N、S共掺薄膜前驱体加入到冰水溶液中(N、S共掺薄膜前驱体与氯化钴固体引入钴元素的质量比为1:0.05),遮光冰浴负载10h,取出,使用去离子水多次洗涤,冻干成膜(冻干前的液态薄膜体积2.5mL、表面直径50mm),得到负载Pd纳米粒子的氮硫共掺杂多孔石墨烯薄膜。
实施例5
一种负载金属纳米粒子氮硫共掺杂多孔石墨烯薄膜,具体制备步骤如下:
1)取25mL浓度为3mg/mL的氧化石墨烯水溶液,加入300mg的固体硫脲(氧化石墨烯与含氮硫化合物按1:4的质量比投料),搅拌至硫脲完全溶解后,冻干成膜(冻干前的液态薄膜体积2.5mL、表面直径50mm),然后在800℃条件下进行高温退火2h,冷却至室温后备用称重,得N、S共掺薄膜前驱体0.1548g;
2)取0.0027g氯亚铂酸钾固体溶解于100mL冰水中,将所得N、S共掺薄膜前驱体加入到冰水溶液中(N、S共掺薄膜前驱体与氯亚铂酸钾固体引入铂元素的质量比为1:0.005),遮光冰浴负载4h,取出,使用去离子水多次洗涤,冻干成膜(冻干前的液态薄膜体积2.5mL、表面直径50mm),得到负载Pt纳米粒子的氮硫共掺杂多孔石墨烯薄膜。
实施例6
一种负载金属纳米粒子氮硫共掺杂多孔石墨烯薄膜,具体制备步骤如下:
1)取35mL浓度为5mg/mL的氧化石墨烯水溶液,加入700mg的固体硫脲(氧化石墨烯与含氮硫化合物按1:4的质量比投料),搅拌至硫脲完全溶解后,冻干成膜(冻干前的液态薄膜体积2.5mL、表面直径50mm),然后在900℃条件下进行高温退火4.5h,冷却至室温后备用称重,得N、S共掺薄膜前驱体0.1709g;
2)取0.0003g硝酸铁固体溶解于100mL冰水中,将所得N、S共掺薄膜前驱体加入到冰水溶液中(N、S共掺薄膜前驱体与硝酸铁中铁的质量比为1:0.0005),遮光冰浴负载10h,取出,使用去离子水多次洗涤,冻干成膜(冻干前的液态薄膜体积2.5mL、表面直径50mm),得到负载Fe纳米粒子的氮硫共掺杂多孔石墨烯薄膜。
对比例1
一种负载金属纳米粒子石墨烯薄膜,具体制备步骤如下:
1)取25mL浓度为4mg/mL的氧化石墨烯水溶液,制膜后,直接冻干成膜(-50℃、20Pa),然后在相同条件下(700℃条件下进行高温退火2h)退火,冷却至室温后称重,得前驱体薄膜0.1809g;
2)以钯纳米粒子理论负载量为2%准确称取0.011g氯亚钯酸钾固体溶解于100mL冰水中,将前驱体薄膜加入到冰水溶液中(前驱体薄膜与氯亚钯酸钾固体的质量比为1:0.02),遮光冰浴负载6h,取出,使用去离子水多次洗涤,冻干成膜(冻干前的液态薄膜体积2.5mL、表面直径50mm),得到负载Pd纳米粒子的多孔石墨烯薄膜。
经测试,该前驱体具有较好的机械性能,制备为工作电极以进行电化学传感的循环伏安(CV),测试结果表明,该材料对1mM过氧化氢溶液几乎无法检出,具体测试结果如图9所示。
对比例2
一种负载金属纳米粒子的氮硫共掺杂多孔石墨烯薄膜,其制备方法包括如下步骤:
1)取25mL浓度为4mg/mL的氧化石墨烯水溶液,制膜后,直接冻干成膜(-50℃、20Pa),称量其质量为0.0903g;将所的薄膜裁剪成条状,在薄膜表面均匀铺上质量比为1:1的硫脲后,在相同条件下(700℃条件下进行高温退火2h)退火,冷却至室温后称重,得前驱体薄膜0.1657g;
2)以钯纳米粒子理论负载量为2%准确称0.0102g氯亚钯酸钾固体溶解于100mL冰水中,将前驱体薄膜加入到冰水溶液中(前驱体薄膜与氯亚钯酸钾固体的质量比为1:0.02),遮光冰浴负载6h,取出,使用去离子水多次洗涤,冻干成膜,得到负载Pd纳米粒子的多孔石墨烯薄膜。
对本对比例所得复合材料的结构进行表征,扫描电镜图见图10,可以看出,先制备氧化石墨是薄膜再与硫脲复合所得产物未能得到多孔的结构。此外,石墨烯片层堆叠结构不利于内层石墨烯的掺杂(将复合薄膜外层剥离后,取内层材料进行XPS分析的结果显示,氮和硫的原子含量分别为0.86%和0.12%),薄膜内部材料亦无法负载活性金属与电解质接触,进而导致薄膜催化材料内部无催化贡献。
根据上述方法,对本实施例所得产物进行循环伏安测试,结果如图11所示,由结果可知,本实施例所得产物对过氧化氢有较小响应信号,远小于实施例1所得产物的信号值。
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

Claims (9)

1.一种负载金属纳米粒子的氮硫共掺杂多孔石墨烯薄膜的制备方法,其特征在于,包括以下步骤:
1)将含氮硫化合物溶解于氧化石墨烯水溶液中,混合均匀并搅拌至完全溶解,干燥成膜后进行高温退火,得到N、S共掺薄膜前驱体;
2)将所得N、S共掺薄膜前驱体浸渍于金属盐水溶液中,进行负载反应,再经洗涤、干燥,即得所述负载金属纳米粒子的氮硫共掺杂多孔石墨烯薄膜。
2.根据权利要求1所述的制备方法,其特征在于,所述氧化石墨烯水溶液的浓度为3-10mg/mL。
3.根据权利要求1所述的制备方法,其特征在于,所述含氮硫化合物为硫脲、硫氰酸铵中的至少一种;其与石墨烯的质量比为(0.5-5):1。
4.根据权利要求1所述的制备方法,其特征在于,所述高温退火温度为380-1000℃,时间为2-6h。
5.根据权利要求1所述的制备方法,其特征在于,所述金属盐选自铁盐、镍盐、钴盐、铜盐、钯盐、金盐、铂盐、银盐中的一种几种。
6.根据权利要求1所述的制备方法,其特征在于,步骤2中引入的N、S共掺薄膜前驱体与金属盐引入的金属元素的质量比为1:(0.005-0.1)。
7.根据权利要求1所述的制备方法,其特征在于,所述负载反应采用避光冰浴条件,负载时间为4-10h。
8.权利要求1~7任一项所述制备方法制备的氮硫共掺杂多孔石墨烯薄膜。
9.权利要求8所述负载金属纳米粒子的氮硫共掺杂多孔石墨烯薄膜作为自支撑电极,在电化学生物传感中的应用。
CN202210789725.8A 2022-07-05 2022-07-05 一种负载金属纳米粒子的氮硫共掺杂多孔石墨烯薄膜及其制备方法和应用 Active CN115184423B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210789725.8A CN115184423B (zh) 2022-07-05 2022-07-05 一种负载金属纳米粒子的氮硫共掺杂多孔石墨烯薄膜及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210789725.8A CN115184423B (zh) 2022-07-05 2022-07-05 一种负载金属纳米粒子的氮硫共掺杂多孔石墨烯薄膜及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN115184423A true CN115184423A (zh) 2022-10-14
CN115184423B CN115184423B (zh) 2024-06-18

Family

ID=83517342

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210789725.8A Active CN115184423B (zh) 2022-07-05 2022-07-05 一种负载金属纳米粒子的氮硫共掺杂多孔石墨烯薄膜及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN115184423B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104860292A (zh) * 2015-05-07 2015-08-26 常州大学 一种二维氮硫磷掺杂石墨烯的制备方法
CN105665735A (zh) * 2016-01-11 2016-06-15 淮阴师范学院 一步制备掺氮石墨烯-金纳米粒子复合材料的溶剂热方法
CN106513029A (zh) * 2016-12-06 2017-03-22 武汉工程大学 一种负载金属纳米粒子的氮掺杂多孔石墨烯的制备方法
CN109817998A (zh) * 2018-12-24 2019-05-28 岭南师范学院 一种S掺杂碳材料负载Pt复合催化剂及其制备方法和应用
CN110627033A (zh) * 2018-06-22 2019-12-31 武汉大学 氮、硫共掺杂多级多孔碳复合材料及其制备方法和应用
CN111223688A (zh) * 2020-01-13 2020-06-02 北京化工大学 一种氮硫共掺杂石墨烯纤维超级电容器电极材料的制备方法
CN111282590A (zh) * 2020-03-13 2020-06-16 武汉工程大学 一种负载金属单原子的氮掺杂多孔石墨烯复合催化剂及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104860292A (zh) * 2015-05-07 2015-08-26 常州大学 一种二维氮硫磷掺杂石墨烯的制备方法
CN105665735A (zh) * 2016-01-11 2016-06-15 淮阴师范学院 一步制备掺氮石墨烯-金纳米粒子复合材料的溶剂热方法
CN106513029A (zh) * 2016-12-06 2017-03-22 武汉工程大学 一种负载金属纳米粒子的氮掺杂多孔石墨烯的制备方法
CN110627033A (zh) * 2018-06-22 2019-12-31 武汉大学 氮、硫共掺杂多级多孔碳复合材料及其制备方法和应用
CN109817998A (zh) * 2018-12-24 2019-05-28 岭南师范学院 一种S掺杂碳材料负载Pt复合催化剂及其制备方法和应用
CN111223688A (zh) * 2020-01-13 2020-06-02 北京化工大学 一种氮硫共掺杂石墨烯纤维超级电容器电极材料的制备方法
CN111282590A (zh) * 2020-03-13 2020-06-16 武汉工程大学 一种负载金属单原子的氮掺杂多孔石墨烯复合催化剂及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XIN WANG等: "One-pot synthesis of nitrogen and sulfur co-doped graphene as efficient metal-free electrocatalysts for the oxygen reduction reaction", 《CHEM. COMMUN.》, vol. 50, pages 4839 - 4842 *

Also Published As

Publication number Publication date
CN115184423B (zh) 2024-06-18

Similar Documents

Publication Publication Date Title
Zhao et al. Synthesis and electrochemical properties of Co3O4-rGO/CNTs composites towards highly sensitive nitrite detection
Fu et al. FeCo–Nx embedded graphene as high performance catalysts for oxygen reduction reaction
Nguyen et al. Nickel/cobalt oxide-decorated 3D graphene nanocomposite electrode for enhanced electrochemical detection of urea
Niu et al. One-pot synthesis of nitrogen-rich carbon dots decorated graphene oxide as metal-free electrocatalyst for oxygen reduction reaction
Zhang et al. Multifunctional high-activity and robust electrocatalyst derived from metal–organic frameworks
Masa et al. On the role of metals in nitrogen‐doped carbon electrocatalysts for oxygen reduction
Zhang et al. Detection of trace Cd2+, Pb2+ and Cu2+ ions via porous activated carbon supported palladium nanoparticles modified electrodes using SWASV
Cui et al. A simple and green pathway toward nitrogen and sulfur dual doped hierarchically porous carbons from ionic liquids for oxygen reduction
Liu et al. Co 3 O 4 nanowires supported on 3D N-doped carbon foam as an electrochemical sensing platform for efficient H 2 O 2 detection
Yu et al. FeCo-doped hollow bamboo-like CN composites as cathodic catalysts for zinc-air battery in neutral media
Li et al. Sulfur-doped carbon nanotubes as catalysts for the oxygen reduction reaction in alkaline medium
Zhang et al. In situ formation of N-doped carbon film-immobilized Au nanoparticles-coated ZnO jungle on indium tin oxide electrode for excellent high-performance detection of hydrazine
Nguyen et al. Novel nanoscale Yb-MOF used as highly efficient electrode for simultaneous detection of heavy metal ions
Zhang et al. Fe3C-functionalized 3D nitrogen-doped carbon structures for electrochemical detection of hydrogen peroxide
Yang et al. In situ construction of hollow carbon spheres with N, Co, and Fe co-doping as electrochemical sensors for simultaneous determination of dihydroxybenzene isomers
Zhou et al. Soybean-derived mesoporous carbon as an effective catalyst support for electrooxidation of methanol
Zhang et al. A N-self-doped carbon catalyst derived from pig blood for oxygen reduction with high activity and stability
CN112968185B (zh) 植物多酚改性的超分子网络框架结构锰基纳米复合电催化剂的制备方法
Mo et al. Nitrogen-doped carbon dodecahedron embedded with cobalt nanoparticles for the direct electro-oxidation of glucose and efficient nonenzymatic glucose sensing
Wang et al. Electrocatalytic oxidation of methanol on glassy carbon electrode modified with nickel–manganese salen complexes encapsulated in mesoporous zeolite A
Zhang et al. Towards understanding ORR activity and electron-transfer pathway of M-Nx/C electro-catalyst in acidic media
Guo et al. Fe/Ni bimetal and nitrogen co-doped porous carbon fibers as electrocatalysts for oxygen reduction reaction
Liu et al. Nitrogen-doped hollow carbon nanospheres for highly sensitive electrochemical sensing of nitrobenzene
Abbas et al. Facilely green synthesis of 3D nano-pyramids Cu/carbon hybrid sensor electrode materials for simultaneous monitoring of phenolic compounds
Nie et al. Simultaneous formation of nitrogen and sulfur-doped carbon nanotubes-mesoporous carbon and its electrocatalytic activity for oxygen reduction reaction

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant