CN106492220A - 具有控释功能的纳米介孔硅复合水凝胶的制备方法 - Google Patents

具有控释功能的纳米介孔硅复合水凝胶的制备方法 Download PDF

Info

Publication number
CN106492220A
CN106492220A CN201610940440.4A CN201610940440A CN106492220A CN 106492220 A CN106492220 A CN 106492220A CN 201610940440 A CN201610940440 A CN 201610940440A CN 106492220 A CN106492220 A CN 106492220A
Authority
CN
China
Prior art keywords
medicine
preparation
composite aquogel
release function
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610940440.4A
Other languages
English (en)
Inventor
何创龙
张骞骞
陈良
秦明
冯炜
周小军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Donghua University
National Dong Hwa University
Original Assignee
Donghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Donghua University filed Critical Donghua University
Priority to CN201610940440.4A priority Critical patent/CN106492220A/zh
Publication of CN106492220A publication Critical patent/CN106492220A/zh
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/02Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0002Galenical forms characterised by the drug release technique; Application systems commanded by energy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/06Ointments; Bases therefor; Other semi-solid forms, e.g. creams, sticks, gels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/52Hydrogels or hydrocolloids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/60Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
    • A61L2300/602Type of release, e.g. controlled, sustained, slow

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Transplantation (AREA)
  • Dermatology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Dispersion Chemistry (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明公开了一种具有控释功能的纳米介孔硅复合水凝胶的制备方法:将小分子药物负载在介孔硅纳米粒子内;配制氧化透明质酸和羧甲基壳聚糖溶液,将载药纳米粒子加入到透明质酸溶液中超声后搅拌均匀;制备载药纳米复合水凝胶载体。本发明制备的纳米复合水凝胶具有良好的力学性能、生物相容性、可降解性和药物缓释作用,具有被应用于组织工程、生物医药治疗领域的潜能;此外,这种纳米复合水凝胶的制备方法简单、成本低,可实现大规模生产。

Description

具有控释功能的纳米介孔硅复合水凝胶的制备方法
技术领域
本发明属于复合水凝胶材料的制备领域,特别涉及一种具有控释功能的纳米介孔硅复合水凝胶的制备方法。
背景技术
生长因子是组织工程构建的重要因素之一,生长因子在受损部位的释放行为影响着受损组织的再生行为。合理的生长因子浓度能够促进细胞在支架上黏附增殖和诱导分化,而过量的生长因子累积在受损组织周围会产生低毒性和致癌性。其中小分子药物类生长因子在体液的环境内很容易产生突释现象,导致支架植入体内初期大量的生长因子聚集在受损部位产生低毒性或者生长因子扩散至全身而不能集中治疗。所以,构建一种合适的小分子药物释放载体支架是组织工程支架功能化的重要条件。
水凝胶具有三维多孔结构,能够吸收高于本身质量几百倍的水而不溶解于水中,具有良好的生物相容性和力学性等性能,使其在组织工程和药物缓释中得到广泛应用。另外,水凝胶在吸水溶胀后具有一定的弹性,能够降低材料对生物体组织的摩擦,减少对生物体的伤害。在药物缓释中,常用的水凝胶分为两类:天然高分子聚合物形成的水凝胶和合成高分子聚合物形成的水凝胶。合成高分子聚合物水凝胶具有较好的力学性能,但是对比于天然高分子水凝胶具有较差的生物相容性和生物可降解性;天然高分子聚合物水凝胶却因为具有较差的力学性能而限制了其使用范围。因此,探索一种新的复合水凝胶能够同时实现上述两种类型水凝胶的优点应用于药物缓释成为研究重点。
小分子药物在组织中的扩散速率远快于蛋白质类大分子药物,所以应选择合适的药物载体控制小分子药物在受损部位的集中释放,避免药物在体内突释造成药物的大量积累。介孔二氧化硅纳米粒子在构建小分子药物智能释放载体方面具有广泛的应用,已作为治疗性药物的载体用于组织工程和抗癌治疗领域。其具有有序的孔隙网络,孔径尺寸均一,可以精密控制药物装载和释放;高孔隙容积,可以贮存更多所需量的药品;高比表面积,意味较强的药物吸附能力;表面含有硅醇基,其官能团功能化使之更好地控制药物装载和释放。将载药的介孔二氧化硅纳米粒子包裹在水凝胶的内部,通过对水凝胶的降解释放出载药的纳米粒,再在体液中释放出包封在纳米粒中的药物,达到减缓药物在体内释放的速率延长治疗周期。
将介孔二氧化硅纳米粒子引入天然高分子基水凝胶内能够明显增加水凝胶的力学性能,弥补了纯天然高分子水凝胶在力学性能方面的不足。另外,体外小分子药物释放实验结果显示纳米复合水凝胶能够缓慢释放出药物,与纯水凝胶对比明显降低药物释放速率。
发明内容
本发明所要解决的技术问题是提供一种缓慢控制释放小分子药物的介孔纳米粒复合水凝胶的制备方法。
为了解决上述问题,本发明提供了一种具有控释功能的纳米介孔硅复合水凝胶的制备方法,其特征在于,包括以下步骤:
步骤1):将介孔硅纳米粒子分散在去离子水中,待纳米颗粒均匀分散后,将药物加入纳米粒子悬浮液中并搅拌过夜;经离心洗涤并冷冻干燥得到载药的介孔硅纳米粒子;
步骤2):将透明质酸粉末溶解在去离子水中,待透明质酸完全溶解后逐滴加入高碘酸钠溶液中,反应24小时后加入乙二醇终止反应,将最终反应液透析在去离子水中,经冷冻干燥后得到氧化透明质酸固体;
步骤3):将氧化透明质酸、羧甲基壳聚糖分别溶解在磷酸盐缓冲液中,然后在氧化透明质酸溶液中加入载药的介孔硅纳米粒子,取等体积的两种溶液混合均匀后即得载药纳米粒子复合水凝胶。
优选地,所述步骤1)中药物为盐酸阿霉素(DOX)、姜黄素、1-磷酸鞘氨醇、地塞米松、紫杉醇和维生素中的任意一种。
更有旋地,所述维生素为维生素A或维生素D。
优选地,所述步骤1)中介孔硅纳米粒子溶解后的溶液浓度为0.1-0.5wt%;药物负载过程中纳米粒子与药物的质量比为10∶1。
优选地,所述步骤2)中透明质酸溶解后的溶液浓度为1-5wt%;高碘酸钠加入量与透明质酸的摩尔比为4∶5,其中高碘酸钠的浓度为0.2g/mL,反应条件为常温避光。
优选地,所述步骤3)中氧化透明质酸与羧甲基壳聚糖溶液的浓度均为2-8wt%;载药的介孔硅纳米粒子相对于氧化透明质酸和羧甲基壳聚糖的总质量的质量百分比为1%-10%。
本发明将包封药物的介孔硅纳米粒子和透明质酸-壳聚糖基天然水凝胶复合成具有药物缓释作用的纳米复合水凝胶;介孔硅纳米粒子粒径均一,孔道明显,能够很好地将小分子药物储存在孔道内,保持药物活性并降低药物的扩散速率;并且纳米复合水凝胶具有很好的生物相容性和生物可降解性,能够作为一个安全的药物释放载体运用在生物体内。此外,这种纳米复合水凝胶制备简单且条件温和、制作成本低,可以大规模生产。
与现有技术相比,本发明的有益效果在于:
(1)本发明制备的水凝胶采用天然高分子聚合物为基底,使制备的水凝胶具有较好的生物相容性;
(2)在水凝胶制备中引入介孔硅纳米粒子,一方面有效地将小分子药物包封在水凝胶内减缓小分子药物的扩散速率,另一方面有效增强水凝胶的力学性能弥补了天然水凝胶力学上的不足,使复合水凝胶更有利于应用于组织工程;
(3)这种水凝胶的制备过程简单,成胶时间快而且反应温和,制作成本低。
附图说明
图1为实施例1-3中纯水凝胶和纳米复合水凝胶的扫描电镜(SEM)形貌照片;其中:A和B为纯天然聚合物基水凝胶的SEM图,C和D为介孔硅含量占聚合物质量的5wt%的纳米复合水凝胶的SEM图;E和F为介孔硅含量占聚合物质量10wt%的纳米复合水凝胶的SEM图;
图2为实施例2、3制备的介孔硅纳米颗粒的透射电镜图片(A)和纳米复合水凝胶的场发射扫描电镜图片(B);
图3为实施例1中氧化透明质酸和透明质酸的红外光谱(FTIR)图;其中:A为透明质酸,B为氧化透明质酸;
图4为实施例1-3中纯水凝胶和纳米复合水凝胶的药物释放曲线;
图5为实施例1-3中纯水凝胶和纳米复合水凝胶的压缩力学曲线。
具体实施方式
为使本发明更明显易懂,兹以优选实施例,并配合附图作详细说明如下。
实施例1
一种具有控释功能的纳米介孔硅复合水凝胶的制备方法:
(1)采用高碘酸钠将透明质酸氧化成醛基化透明质酸,经纯化、冷冻干燥后得到氧化后固体,其中高碘酸钠与透明质酸分子链中一个结构单元的摩尔质量比为5∶4;
(2)将步骤(1)中的氧化透明质酸和羧甲基壳聚糖分别溶解在磷酸缓冲盐溶液中,两种溶液的浓度均为6wt%。;
(3)步骤(2)中的两种溶液完全溶解后,分别吸取0.5mL两种聚合物溶液加入到24孔细胞培养板中快速将两种溶液搅拌均匀,静置两分钟后即可发现水凝胶已经由液态向固态转化形成纯水凝胶。
实施例2
一种具有控释功能的纳米介孔硅复合水凝胶的制备方法:
(1)采用高碘酸钠将透明质酸氧化成醛基化透明质酸,经纯化、冷冻干燥后得到氧化后固体,其中高碘酸钠与透明质酸一个单元的摩尔质量比为5∶4;
(2)将步骤(1)中的氧化透明质酸和羧甲基壳聚糖分别溶解在磷酸缓冲盐溶液中,两种溶液的浓度均为6wt%;
(3)制备介孔硅纳米粒子,将其以0.1%的浓度分散在去离子水中,待介孔硅纳米粒子分散均匀后将模型药物FITC(占纳米粒子质量的十分之一)加入到溶液中超声分散,并在黑暗条件下搅拌24小时,使FITC负载到介孔硅纳米粒子的孔道中,离心分离后获得载药微粒;
(4)将步骤(3)中得到的负载药物的介孔硅纳米粒子按照聚合物总质量的5%加入到完全溶解的氧化透明质酸溶液继续搅拌,期间辅以超声分散。待介孔硅纳米粒子在氧化透明质酸溶液中分散均匀后,分别吸取0.5mL两种聚合物溶液加入到24孔细胞培养板中快速将两种溶液搅拌均匀,静置两分钟后即可发现水凝胶已经由液态向固态转化形成负载药物的纳米复合水凝胶。
实施例3
一种具有控释功能的纳米介孔硅复合水凝胶的制备方法:
(1)采用高碘酸钠将透明质酸氧化成醛基化透明质酸,经纯化、冷冻干燥后得到氧化后固体,其中高碘酸钠与透明质酸一个单元的摩尔质量比为5∶4;
(2)将步骤(1)中的氧化透明质酸和羧甲基壳聚糖分别溶解在磷酸缓冲盐溶液中,两种溶液的浓度均为6wt%;
(3)制备介孔硅纳米粒子,将其以0.1%的浓度分散在去离子水中,待介孔硅纳米粒子分散均匀后将模型药物FITC(占纳米粒子质量的十分之一)加入到溶液中超声分散,并在黑暗条件下搅拌24小时,使FITC负载到介孔硅纳米粒子的孔道中,离心分离后获得介孔硅纳米粒子载药微粒;
(4)将步骤(3)中得到的负载药物的介孔硅纳米粒子按照聚合物总质量的10%加入到完全溶解的氧化透明质酸溶液继续搅拌,期间辅以超声分散。待介孔硅纳米粒子在氧化透明质酸溶液中分散均匀后,分别吸取0.5mL两种聚合物溶液加入到24孔细胞培养板中快速将两种溶液搅拌均匀,静置两分钟后即可发现水凝胶已经由液态向固态转化形成负载药物的纳米复合水凝胶。
实施例4
水凝胶的三维结构观察:将实施例1-3制备的复合水凝胶冷冻后置于冷冻干燥机中,待水凝胶冷冻干燥后截取冻干样品的淬断面用扫面电子显微镜进行微观形貌的观察。由图1中可以看出纯水凝胶和水凝胶均有多孔结构,对比图1的A、C、E三个图发现纳米粒子的加入使水凝胶的孔径明显变小,说明纳米粒子的引入增强了水凝胶的交联度从而减小孔径。图2为纳米粒子的微观形貌和在冻干水凝胶样品中的分布。图2(A)为纳米粒子的透射电镜图片,由图中看出介孔硅纳米粒子具有曲折的孔道结构,表面有高聚物封堵纳米粒的孔道避免药物的释放;图2(B)显示了纳米粒子在水凝胶表面能够均匀分布。
利用FTIR仪检测氧化透明质酸中的醛基的特征峰,以确定透明质酸开环后羟基被氧化成醛基。将冻干后的未氧化的透明质酸和氧化透明质酸分别与KBr混合研磨并压片,在扫描范围4000-400cm-1以分辨率为4cm-1的条件下进行FTIR测试。如图3所示两种透明质酸的红外光谱,对比两条相似的谱图发现,氧化透明质酸在1728cm-1处出现吸收峰,此峰为醛基中的C=O的伸缩振动峰。因此,通过红外图谱的分析可证明透明质酸分子链中的羟基部分被高碘酸钠氧化为醛基。
水凝胶的药物缓释测定:将实施例1-3制备的载药复合水凝胶装在透析袋中,然后放置在pH=7.4的10mL磷酸缓冲液中,在37℃下,将缓释装置放置在转速为100rpm的恒温振荡器中进行体外药物释放。在设定的时间点时取出5mL的缓释液,加入相同体积的新鲜磷酸缓冲液,计算药物累积释放率。由图4可以看出,直接装载在介孔硅纳米粒子内部的小分子药物在缓释前期有明显的突释现象,而将微载体包裹在水凝胶内部后,能够明显减缓小分子药物的释放速率。其中,纯水凝胶的缓释速率比纳米复合水凝胶快,加入的微载体的量越多药物缓释速率越慢。
水凝胶的压缩力学性能测试:将实施例1-3中复合水凝胶做成高5mm,直径15mm的圆柱形,放在万能测试仪上测试其压缩性能,得到的应力-应变曲线。在测试过程中,水凝胶在被压至最低点时并没有被压碎,当挤压面板移去后,水凝胶在短时间内基本恢复原有形貌,显示出水凝胶的好的压缩弹性。压缩应力-应变曲线如图5所示,实施例制备的3种水凝胶均具有好的压缩力学性能。其中,由纯水凝胶压缩曲线可以看出其具有较大的伸长模量,说明纯水凝胶具有一定的柔软性。由三条曲线的压缩应变在0-30%范围内的斜率可以看出纳米粒复合水凝胶具有更高的弹性模量,而且加入的介孔硅的量越多复合水凝胶的弹性模量越大,说明纳米粒子的引入增加了水凝胶的压缩力学性能提升了水凝胶的力学强度。

Claims (7)

1.一种具有控释功能的纳米介孔硅复合水凝胶的制备方法,其特征在于,包括以下步骤:
步骤1):将介孔硅纳米粒子分散在去离子水中,待纳米颗粒均匀分散后,将药物加入纳米粒子悬浮液中并搅拌过夜;经离心洗涤并冷冻干燥得到载药的介孔硅纳米粒子;
步骤2):将透明质酸粉末溶解在去离子水中,待透明质酸完全溶解后逐滴加入高碘酸钠溶液中,反应24小时后加入乙二醇终止反应,将最终反应液透析在去离子水中,经冷冻干燥后得到氧化透明质酸固体;
步骤3):将氧化透明质酸、羧甲基壳聚糖分别溶解在磷酸盐缓冲液中,然后在氧化透明质酸溶液中加入载药的介孔硅纳米粒子,取等体积的两种溶液混合均匀后即得载药纳米粒子复合水凝胶。
2.如权利要求1所述的具有控释功能的纳米介孔硅复合水凝胶的制备方法,其特征在于,所述步骤1)中药物为盐酸阿霉素、姜黄素、1-磷酸鞘氨醇、地塞米松、紫杉醇和维生素中的任意一种。
3.如权利要求2所述的具有控释功能的纳米介孔硅复合水凝胶的制备方法,其特征在于,所述维生素为维生素A或维生素D。
4.如权利要求1-3任意一项所述的具有控释功能的纳米介孔硅复合水凝胶的制备方法,其特征在于,所述步骤1)中介孔硅纳米粒子溶解后的溶液浓度为0.1-0.5wt%;药物负载过程中纳米粒子与药物的质量比为10∶1。
5.如权利要求1所述的具有控释功能的纳米介孔硅复合水凝胶的制备方法,其特征在于,所述步骤2)中透明质酸溶解后的溶液浓度为1-5wt%;高碘酸钠加入量与透明质酸的摩尔比为4∶5,其中高碘酸钠的浓度为0.2g/mL,反应条件为常温避光。
6.如权利要求1所述的具有控释功能的纳米介孔硅复合水凝胶的制备方法,其特征在于,所述步骤3)中氧化透明质酸与羧甲基壳聚糖溶液的浓度均为2-8wt%;载药的介孔硅纳米粒子相对于氧化透明质酸和羧甲基壳聚糖的总质量的质量百分比为1%-10%。
7.一种权利要求1-6任意一项所述的具有控释功能的纳米介孔硅复合水凝胶在水凝胶支架中的应用。
CN201610940440.4A 2016-11-01 2016-11-01 具有控释功能的纳米介孔硅复合水凝胶的制备方法 Pending CN106492220A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610940440.4A CN106492220A (zh) 2016-11-01 2016-11-01 具有控释功能的纳米介孔硅复合水凝胶的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610940440.4A CN106492220A (zh) 2016-11-01 2016-11-01 具有控释功能的纳米介孔硅复合水凝胶的制备方法

Publications (1)

Publication Number Publication Date
CN106492220A true CN106492220A (zh) 2017-03-15

Family

ID=58321927

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610940440.4A Pending CN106492220A (zh) 2016-11-01 2016-11-01 具有控释功能的纳米介孔硅复合水凝胶的制备方法

Country Status (1)

Country Link
CN (1) CN106492220A (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107375936A (zh) * 2017-06-21 2017-11-24 南京师范大学 一种姜黄素多孔硅及其制备方法
CN109106986A (zh) * 2018-09-14 2019-01-01 广州润虹医药科技股份有限公司 一种药物控释磷酸钙骨水泥复合微球、其制备方法及应用
CN109330991A (zh) * 2018-11-09 2019-02-15 上海交通大学医学院附属第九人民医院 一种中药纳米药物及其制备方法与应用
CN109464421A (zh) * 2018-10-25 2019-03-15 湖北大学 功能化介孔硅基肿瘤靶向运输控释系统及其制备方法
CN110358114A (zh) * 2019-06-12 2019-10-22 南京信息职业技术学院 多孔硅/金纳米颗粒复合水凝胶制备方法及制得的水凝胶
CN112494421A (zh) * 2020-12-23 2021-03-16 华中科技大学 一种缓释可溶微针、制备方法及应用
CN113181438A (zh) * 2021-04-26 2021-07-30 东南大学 一种能自愈合和促骨生长的热敏响应性可吸收骨科器械材料及其制备方法
CN113440611A (zh) * 2020-03-25 2021-09-28 武汉理工大学 一种用于肿瘤化疗与光动力联合治疗的药物传递系统及其制备方法
CN113577376A (zh) * 2021-08-10 2021-11-02 四川大学 一种双重载药多糖基自愈合水凝胶及其制备方法
CN114209851A (zh) * 2021-12-17 2022-03-22 同济大学 一种姜黄素-氧化硅纳米载药体系及其制备方法和应用
CN114681626A (zh) * 2022-04-26 2022-07-01 华北理工大学 pH/酶双响应型介孔硅基药物载体MSN@HA及其制备方法与载药条件和靶向应用
CN114796102A (zh) * 2022-04-02 2022-07-29 广州创赛生物医用材料有限公司 具有抗菌及免疫调节活性的可注射水凝胶及其制备方法和应用
CN115154408A (zh) * 2022-05-12 2022-10-11 中国人民解放军空军特色医学中心 一种丹参酮提取物微乳水凝胶新型纳米载药体系及其制备方法和应用
CN117106213A (zh) * 2023-10-23 2023-11-24 中国农业科学院农产品加工研究所 pH响应型控释保鲜水凝胶膜及其制备方法和用途

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103897206A (zh) * 2013-03-01 2014-07-02 四川大学 N,o-羧甲基化壳聚糖-多醛基透明质酸凝胶及其用途

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103897206A (zh) * 2013-03-01 2014-07-02 四川大学 N,o-羧甲基化壳聚糖-多醛基透明质酸凝胶及其用途

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LING LI等: "Biodegradable and injectable in situ cross-linking chitosan-hyaluronic acid based hydrogels for postoperative adhesion prevention", 《BIOMATERIALS》 *
尹郅祺: "基于聚乙烯醇水凝胶的复合载体构建及性能研究", 《中国优秀硕士学位论文全文数据库.医药卫生科技辑》 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107375936A (zh) * 2017-06-21 2017-11-24 南京师范大学 一种姜黄素多孔硅及其制备方法
CN109106986A (zh) * 2018-09-14 2019-01-01 广州润虹医药科技股份有限公司 一种药物控释磷酸钙骨水泥复合微球、其制备方法及应用
CN109106986B (zh) * 2018-09-14 2020-12-25 广州润虹医药科技股份有限公司 一种药物控释磷酸钙骨水泥复合微球、其制备方法及应用
CN109464421A (zh) * 2018-10-25 2019-03-15 湖北大学 功能化介孔硅基肿瘤靶向运输控释系统及其制备方法
CN109464421B (zh) * 2018-10-25 2021-08-10 湖北大学 功能化介孔硅基肿瘤靶向运输控释系统及其制备方法
CN109330991A (zh) * 2018-11-09 2019-02-15 上海交通大学医学院附属第九人民医院 一种中药纳米药物及其制备方法与应用
CN110358114A (zh) * 2019-06-12 2019-10-22 南京信息职业技术学院 多孔硅/金纳米颗粒复合水凝胶制备方法及制得的水凝胶
CN113440611A (zh) * 2020-03-25 2021-09-28 武汉理工大学 一种用于肿瘤化疗与光动力联合治疗的药物传递系统及其制备方法
CN112494421B (zh) * 2020-12-23 2022-09-20 华中科技大学 一种缓释可溶微针、制备方法及应用
CN112494421A (zh) * 2020-12-23 2021-03-16 华中科技大学 一种缓释可溶微针、制备方法及应用
CN113181438A (zh) * 2021-04-26 2021-07-30 东南大学 一种能自愈合和促骨生长的热敏响应性可吸收骨科器械材料及其制备方法
CN113577376A (zh) * 2021-08-10 2021-11-02 四川大学 一种双重载药多糖基自愈合水凝胶及其制备方法
CN114209851A (zh) * 2021-12-17 2022-03-22 同济大学 一种姜黄素-氧化硅纳米载药体系及其制备方法和应用
CN114209851B (zh) * 2021-12-17 2023-08-29 同济大学 一种姜黄素-氧化硅纳米载药体系及其制备方法和应用
CN114796102A (zh) * 2022-04-02 2022-07-29 广州创赛生物医用材料有限公司 具有抗菌及免疫调节活性的可注射水凝胶及其制备方法和应用
CN114681626A (zh) * 2022-04-26 2022-07-01 华北理工大学 pH/酶双响应型介孔硅基药物载体MSN@HA及其制备方法与载药条件和靶向应用
CN114681626B (zh) * 2022-04-26 2023-05-16 华北理工大学 pH/酶双响应型介孔硅基药物载体MSN@HA及其制备方法与载药条件和靶向应用
CN115154408A (zh) * 2022-05-12 2022-10-11 中国人民解放军空军特色医学中心 一种丹参酮提取物微乳水凝胶新型纳米载药体系及其制备方法和应用
CN117106213A (zh) * 2023-10-23 2023-11-24 中国农业科学院农产品加工研究所 pH响应型控释保鲜水凝胶膜及其制备方法和用途
CN117106213B (zh) * 2023-10-23 2024-04-02 中国农业科学院农产品加工研究所 pH响应型控释保鲜水凝胶膜及其制备方法和用途

Similar Documents

Publication Publication Date Title
CN106492220A (zh) 具有控释功能的纳米介孔硅复合水凝胶的制备方法
Chen et al. Magnetic and self-healing chitosan-alginate hydrogel encapsulated gelatin microspheres via covalent cross-linking for drug delivery
Xu et al. Injectable, NIR/pH-responsive nanocomposite hydrogel as long-acting implant for chemophotothermal synergistic cancer therapy
Fu et al. Responsive biomaterials for 3D bioprinting: A review
Racine et al. Chitosan‐based hydrogels: recent design concepts to tailor properties and functions
Nematollahi et al. Synthesis and characterization of chitosan/polyvinylpyrrolidone coated nanoporous γ-Alumina as a pH-sensitive carrier for controlled release of quercetin
Kemp et al. Heparin‐based nanoparticles
Fakhruddin et al. Halloysite nanotubes and halloysite-based composites for biomedical applications
Wang et al. Preparation and characterization of chitosan based injectable hydrogels enhanced by chitin nano-whiskers
Cimen et al. Injectable and self-healable pH-responsive gelatin–PEG/laponite hybrid hydrogels as long-acting implants for local cancer treatment
CN111440253B (zh) 立方形环糊精骨架-rgd组合物及其制备方法
WO2016095811A1 (zh) 一种用聚乙二醇制备丝素纳微米球的方法及其在药物控释中的应用
Patel et al. Hydrogels differentiated by length scales: A review of biopolymer-based hydrogel preparation methods, characterization techniques, and targeted applications
Yang et al. Fabricated technology of biomedical micro-nano hydrogel
Baniani et al. Preparation and characterization of a composite biomaterial including starch micro/nano particles loaded chitosan gel
CN113712902B (zh) 一种负载活性氧响应降解聚合物胶束的可注射水凝胶及制备方法和应用
CN102219938A (zh) 一种疏水改性海藻酸钠的制备方法
Pourjavadi et al. Magnetic and light-responsive nanogels based on chitosan functionalized with Au nanoparticles and poly (N-isopropylacrylamide) as a remotely triggered drug carrier
CN107698795B (zh) 一种结构可控的多孔聚合物微球制备方法及其应用
WO2024066843A1 (zh) 一种聚己内酯微球预分散组合物及由其制备的聚己内酯注射用凝胶
CN110859823A (zh) 光热敏感型羧甲基壳聚糖纳米载药微球及其制备方法
Fang et al. Injectable and biodegradable double-network nanocomposite hydrogel with regulable sol-gel transition process and mechanical properties
Chen et al. Composite glycidyl methacrylated dextran (Dex-GMA)/gelatin nanoparticles for localized protein delivery
Qamar et al. Alginate‐based bio‐nanohybrids with unique properties for biomedical applications
Hossain et al. Fundamentals of chitosan for biomedical applications

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170315

RJ01 Rejection of invention patent application after publication