WO2024066843A1 - 一种聚己内酯微球预分散组合物及由其制备的聚己内酯注射用凝胶 - Google Patents

一种聚己内酯微球预分散组合物及由其制备的聚己内酯注射用凝胶 Download PDF

Info

Publication number
WO2024066843A1
WO2024066843A1 PCT/CN2023/114949 CN2023114949W WO2024066843A1 WO 2024066843 A1 WO2024066843 A1 WO 2024066843A1 CN 2023114949 W CN2023114949 W CN 2023114949W WO 2024066843 A1 WO2024066843 A1 WO 2024066843A1
Authority
WO
WIPO (PCT)
Prior art keywords
polycaprolactone
microspheres
dispersion
gel
dihydrogen phosphate
Prior art date
Application number
PCT/CN2023/114949
Other languages
English (en)
French (fr)
Inventor
董西健
张辉
Original Assignee
辛克莱制药有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 辛克莱制药有限公司 filed Critical 辛克莱制药有限公司
Publication of WO2024066843A1 publication Critical patent/WO2024066843A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/18Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/12Phosphorus-containing materials, e.g. apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/20Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/52Hydrogels or hydrocolloids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/06Flowable or injectable implant compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/34Materials or treatment for tissue regeneration for soft tissue reconstruction

Definitions

  • the present invention relates to the technical field of medical cosmetology or medical preparations, and in particular to a polycaprolactone microsphere pre-dispersed composition and a polycaprolactone injection gel prepared therefrom.
  • PCL Polycaprolactone
  • PCL-based collagen stimulators are composed of PCL microspheres suspended in a carboxymethyl cellulose gel carrier, which can provide immediate and sustained plumping effects when injected; the morphology and biocompatibility of PCL microspheres embedded in the generated collagen fibers help create unique 3D scaffolds to achieve sustained effects.
  • PCL has a broader market prospect. It is mainly prepared by preparing PCL into microspheres, which are applied in the form of gel to the forehead, nasolabial folds, mid-face, nose, mandible and hands. The effective time can be up to 24 months, and its safety and effectiveness have been confirmed in multiple clinical trials.
  • PCL microspheres for injection usually have a diameter of 25-50 ⁇ m. Microspheres of this size can just avoid phagocytosis by macrophages and remain in human tissues. Not only size but also shape has been shown to have a great influence on tissue response. Shape, roundness or irregularity determines the degree of response. PCL microspheres are regular, spherical with smooth surfaces.
  • the formed spheres are smoother, they are more conducive to subcutaneous injection. Microspheres with high smoothness can reduce the occurrence of granulomas and foreign body reactions while stimulating the fibroblasts under the wrinkles to wrap one by one. Injectable microspheres are usually prepared by evenly suspending 30% volume ratio PCL microspheres with smooth surfaces in 70% CMC gel.
  • CN104001209B discloses filtering, washing and drying the obtained microspheres, and then dispersing them into CMC gel.
  • the conditions used in the preparation process include adding PCL DCM solution for a long time and a long DCM evaporation time to harden the dispersed PCL particles.
  • CN109998997B discloses that the average diameter of microspheres prepared by membrane emulsification method after filtering, washing and drying is 50 ⁇ m, and the appearance is smooth and good. However, in order to disperse the prepared dry microspheres into the gel and maintain the surface smoothness in the gel, it is necessary to continue to study the dispersion process of the microspheres and the gel.
  • the surface will absorb some air, and there is a problem that the liquid and gas begin to compete for the surface of the microspheres during the mixing process, making it difficult to remove the bubbles on the surface of the microspheres; in addition, due to the high viscosity of the CMC gel, the PCL microspheres are not easy to disperse and are easy to form bubbles during the mixing process, so a new method is needed to solve the above problems during the mixing process.
  • the hydrolysis of PCL microspheres is related to the penetration of water into the microspheres. When water penetrates into the microspheres, an overall degradation process will occur, causing the ester bonds in the entire polymer matrix to gradually hydrolyze from the inside. Therefore, it is necessary to further study the dispersion process of the microspheres and the gel basis to promote the prepared PCL microspheres to still have a smooth surface in the gel and further reduce the hydrolysis of PCL.
  • the present invention provides a polycaprolactone (PCL) microsphere pre-dispersed composition and an injectable gel containing high concentration of polycaprolactone prepared by using the composition.
  • PCL polycaprolactone
  • the inventor unexpectedly discovered through research that the mixing or redispersion of PCL microspheres after drying is the key to affecting the dispersion, bubble formation, and smoothness of PCL microspheres for injection.
  • the inventor also unexpectedly discovered that compared with the commonly used PCL microsphere dispersion medium in the prior art - purified water, distilled water, physiological saline, etc., the dispersion medium and gel matrix selected by the present invention can effectively reduce the degradation of PCL, and the maintenance of the smooth spherical shape of the microspheres helps to reduce the degradation rate of the microspheres.
  • a polycaprolactone microsphere pre-dispersed composition comprising polycaprolactone microspheres and a phosphate buffer.
  • the phosphate buffer comprises dihydrogen phosphate and/or dihydrogen phosphate; more specifically, the phosphate buffer comprises dihydrogen phosphate and dihydrogen phosphate.
  • the dihydrogen phosphate is selected from one or more of disodium hydrogen phosphate, dipotassium hydrogen phosphate, and diammonium hydrogen phosphate.
  • the dihydrogen phosphate is selected from one or more of sodium dihydrogen phosphate, potassium dihydrogen phosphate or ammonium dihydrogen phosphate.
  • the dihydrogen phosphate is disodium hydrogen phosphate
  • the dihydrogen phosphate is sodium dihydrogen phosphate
  • the dihydrogen phosphate is disodium hydrogen phosphate
  • the dihydrogen phosphate is potassium dihydrogen phosphate
  • the dihydrogen phosphate is dipotassium hydrogen phosphate
  • the dihydrogen phosphate is potassium dihydrogen phosphate
  • the dihydrogen phosphate is dipotassium hydrogen phosphate
  • the dihydrogen phosphate is sodium dihydrogen phosphate
  • the phosphate buffer may further include a pH adjuster, such as one or more of hydrochloric acid, sodium hydroxide, potassium hydroxide, and the like.
  • a pH adjuster such as one or more of hydrochloric acid, sodium hydroxide, potassium hydroxide, and the like.
  • the pH of the phosphate buffer is 6.0-8.0 (e.g., 6.0, 6.2, 6.4, 6.5, 6.6, 6.8, 7.0, 7.2, 7.4, 7.5, 7.6, 7.8, 8.0), in particular 6.5-8.0, preferably 7.0-7.5.
  • the phosphate buffer may further include an osmotic pressure regulator, such as one or more of potassium chloride, sodium chloride, glycerol, and the like.
  • an osmotic pressure regulator such as one or more of potassium chloride, sodium chloride, glycerol, and the like.
  • the osmotic pressure of the phosphate buffer is 300-700 mOsm/kg (e.g., 300, 350, 400, 450, 500, 550, 600 mOsm/kg), in particular 500-650 mOsm/kg, preferably 550-650 mOsm/kg.
  • the phosphate buffer comprises disodium hydrogen phosphate and sodium dihydrogen phosphate, has a pH of 6.0-8.0 (particularly 6.5-7.5, such as 7.2), and an osmotic pressure of 500-650 mOsm/kg; more specifically, the phosphate buffer consists of disodium hydrogen phosphate, sodium dihydrogen phosphate, sodium chloride and water.
  • the phosphate buffer contains disodium hydrogen phosphate and potassium dihydrogen phosphate, has a pH of 6.0-8.0 (particularly 6.5-7.5, for example 7.2), and an osmotic pressure of 300-700 mOsm/kg (particularly 600 mOsm/kg); specifically, the phosphate buffer consists of disodium hydrogen phosphate, potassium dihydrogen phosphate, potassium chloride and water; more specifically, the phosphate buffer can be compounded by disodium hydrogen phosphate (Na 2 HPO 4 ), potassium dihydrogen phosphate (KH 2 PO 4 ) and potassium chloride aqueous solution.
  • the phosphate buffer comprises dipotassium hydrogen phosphate and potassium dihydrogen phosphate, has a pH of 6.0-8.0 (particularly 6.5-7.5, such as 7.2), and an osmotic pressure of 500-650 mOsm/kg; more specifically, the phosphate buffer consists of dipotassium hydrogen phosphate, potassium dihydrogen phosphate, potassium chloride and water.
  • the average particle size of the PCL microspheres is in the range of 25-60 ⁇ m (e.g., 25, 30, 35, 40, 45, 50, 55, 60 ⁇ m).
  • the PCL microspheres have a particle size of 25-50 ⁇ m and account for ⁇ 65%.
  • the weight average molecular weight of the PCL microspheres is 8k-80,000 Da (e.g., 10,000 Da, 20,000 Da, 30,000 Da, 40,000 Da, 45,000 Da, 60,000 Da, 80,000 Da), especially 10,000-60,000 Da.
  • the content of the PCL microspheres can be 10-50wt% (e.g., 10wt%, 15wt%, 20wt%, 25wt%, 30wt%, 35wt%, 40wt%, 45wt%, 50wt%).
  • the PCL microspheres can be prepared by the following method:
  • Preparation of aqueous phase using a solution containing one or more of a film-forming agent, a surfactant, and a thickener as the aqueous phase;
  • the film-forming agent includes, but is not limited to, polyvinyl alcohol, polypropylene alcohol, gelatin, gum arabic, dextran sulfate, hyaluronic acid, pectin, carrageenan, and the like.
  • the surfactant includes but is not limited to Tween, Span, sodium dodecyl sulfate, sodium dodecylbenzene sulfonate and the like.
  • the thickener includes, but is not limited to, gelatin, starch, carrageenan, sodium alginate, chitosan, fructose, sodium carboxymethyl cellulose, high-substituted hydroxypropyl cellulose, low-substituted hydroxypropyl cellulose, microcrystalline cellulose, hydroxypropyl methyl cellulose, hydroxyethyl cellulose, and the like.
  • the organic solvent is selected from: benzyl alcohol, dichloromethane, chloroform, ethyl chloride, dichloroethane, trichloroethane, ethyl acetate, ethyl formate, ether, cyclohexane or a mixed solvent thereof.
  • the preparation of microspheres in step (3) can be carried out by a method known in the prior art such as membrane emulsification method and spray drying method.
  • the microspheres can be prepared by membrane emulsification method: a pressure of 800-10000 MPa, preferably 800-3500 MPa; more preferably 1000-2000 MPa is used to squeeze the oil phase through a membrane tube with a membrane pore of 5-100 ⁇ m, and squeezed into a continuous aqueous phase with an aqueous phase flow rate of 50-10000 ml/min; the D50 of the prepared microspheres can range from 1 to 100 ⁇ m; the span span ⁇ 2.0; the density, composition, and morphology are uniform; the appearance is spherical and the surface is smooth.
  • the PCL microspheres are prepared by the following method: preparing an aqueous phase, preparing polycaprolactone into an oil phase with dichloromethane, emulsifying the aqueous phase and the oil continuous phase, and vacuum drying to obtain polycaprolactone microspheres;
  • the aqueous phase includes one or more of polyvinyl alcohol, carboxymethyl cellulose, sodium carboxymethyl cellulose, Tween 80, gelatin, hydroxypropyl cellulose starch, and sodium dodecyl sulfate.
  • the PCL microspheres can be sterile.
  • a method for preparing a pre-dispersed composition of polycaprolactone microspheres comprising the step of (uniformly) dispersing dried polycaprolactone microspheres into a dispersion, wherein the dispersion is a phosphate buffer.
  • the dispersion of polycaprolactone microspheres is usually purified water, distilled water, physiological saline, etc. The inventors have found through research that using phosphate buffer as a dispersion helps maintain the optimal dispersibility of polycaprolactone microspheres and reduce the generation of bubbles.
  • polycaprolactone microspheres and phosphate buffer have the definitions described in the first aspect of the present invention.
  • a polycaprolactone gel for injection which is prepared by a method comprising the steps of mixing the pre-dispersed composition described in the first aspect with a gel matrix, wherein the gel matrix comprises carboxymethyl cellulose (sodium) (i.e., carboxymethyl cellulose or sodium carboxymethyl cellulose) and a dispersion.
  • carboxymethyl cellulose sodium
  • dispersion i.e., carboxymethyl cellulose or sodium carboxymethyl cellulose
  • the polycaprolactone gel for injection is prepared by a method comprising adding the pre-dispersed composition described in the first aspect into a gel matrix and mixing them.
  • the dispersion liquid of the gel matrix is selected from: water (such as distilled water, purified water, water for injection), physiological saline, and phosphate buffer.
  • the dispersion of the gel matrix is a phosphate buffer, in particular the phosphate buffer described in the first aspect of the present invention.
  • the high content of polycaprolactone microspheres in the polycaprolactone injection gel means that the content of polycaprolactone microspheres is higher than 20%, preferably higher than 25%, and more preferably higher than 30%.
  • the content of polycaprolactone microspheres is 28-38wt% (e.g., 28%, 30%, 32%, 33%, 34%, 36%, 38%), especially 30-36%.
  • the content of carboxymethyl cellulose (sodium) is 1-5wt% (e.g., 2wt%, 2.3wt%, 2.6wt%, 2.9wt%, 3wt%, 4wt%).
  • the polycaprolactone injection gel may further include a pH adjuster, such as one or more of hydrochloric acid, sodium hydroxide, potassium hydroxide, and the like.
  • a pH adjuster such as one or more of hydrochloric acid, sodium hydroxide, potassium hydroxide, and the like.
  • the pH of the polycaprolactone injection gel is 6.0-8.0 (e.g., 6.0, 6.2, 6.4, 6.5, 6.6, 6.8, 7.0, 7.2, 7.4, 7.5, 7.6, 7.8, 8.0), especially 6.5-8.0, preferably 7.0-7.5.
  • the polycaprolactone injection gel may further contain an osmotic pressure regulator, such as one or more of potassium chloride, sodium chloride, glycerol, and the like.
  • an osmotic pressure regulator such as one or more of potassium chloride, sodium chloride, glycerol, and the like.
  • the osmotic pressure of the polycaprolactone injection gel is 300-600 mOsm/kg (e.g., 300, 350, 400, 450, 500, 550, 600 mOsm/kg), particularly 500-650 mOsm/kg, preferably 550-650 mOsm/kg.
  • the polycaprolactone injection gel may further contain an anesthetic, for example, lidocaine, tetracaine, and the like.
  • anesthetic for example, lidocaine, tetracaine, and the like.
  • the polycaprolactone injection gel may further include a lubricant, for example, glycerol.
  • a lubricant for example, glycerol.
  • the polycaprolactone injection gel may further contain an antibacterial agent to improve the antibacterial effect, so that the polycaprolactone injection gel has a better antibacterial effect during use, storage and transportation.
  • the polycaprolactone injection gel may also contain an anti-inflammatory agent to reduce the body's inflammatory response.
  • the polycaprolactone injection gel may further contain an antioxidant to improve the anti-oxidative property.
  • a method for preparing a polycaprolactone injection gel comprising the following steps:
  • the dispersion liquid I is a phosphate buffer, as described in the first aspect of the present invention.
  • the dispersion II is selected from: water (such as distilled water, purified water, water for injection), physiological saline, phosphate buffer, especially the phosphate buffer described in the first aspect of the present invention.
  • the dispersion I and the dispersion II can be the same phosphate buffer.
  • the phosphate buffer comprises disodium hydrogen phosphate and sodium dihydrogen phosphate, and its pH is 6.0-8.0 (especially 6.5-7.5, such as 7.2), and its osmotic pressure is 500-650mOsm/kg; more specifically, the phosphate buffer consists of disodium hydrogen phosphate, sodium dihydrogen phosphate, sodium chloride and water; in other preferred embodiments of the present invention, the phosphate buffer comprises disodium hydrogen phosphate and potassium dihydrogen phosphate, and its pH is 6.0-8.0 (especially 6.5-7.5, for example 7.2), and an osmotic pressure of 300-700mOsm/kg (especially 600mOsm/kg); specifically, the phosphate buffer consists of disodium hydrogen phosphate, potassium dihydrogen phosphate, potassium chloride and water; in other preferred embodiments of the present invention, the phosphate buffer consists of disodium hydrogen phosphate,
  • step (1) may further include a step of adjusting pH.
  • step (1) may further include a step of adjusting the osmotic pressure.
  • step (1) may also include a sterilization step.
  • step (2) may further include a step of adjusting pH.
  • step (2) may further include a step of adjusting the osmotic pressure.
  • step (2) may also include a sterilization step.
  • the mixing method in step (3) is stirring
  • the stirring speed can be 800-1200 r/min (for example, 1000 r/min)
  • the stirring time can be 1-10 minutes (for example, 5 minutes).
  • step (3) also includes a degassing step, for example, by performing a degassing treatment by stirring using a vacuum stirring degassing machine.
  • polycaprolactone pre-dispersed composition of the first aspect in the preparation of polycaprolactone injection gel, implant, and drug carrier.
  • the implant is a cosmetic implant, such as a subcutaneous implant (e.g., implanted in the forehead, nasolabial folds, mid-face, nose, jaw, hand, etc. to reduce wrinkles, folds, scars, aging, etc.); in some embodiments of the present invention, the implant is a dermal filler.
  • a subcutaneous implant e.g., implanted in the forehead, nasolabial folds, mid-face, nose, jaw, hand, etc. to reduce wrinkles, folds, scars, aging, etc.
  • the implant is a dermal filler.
  • the implant is an implant for treating a disease, such as a stent.
  • PCL microspheres can continue to maintain a complete spherical shape, smooth surface, good dispersibility, slow degradation rate, reduce bubbles during mixing, and help ensure the stability of product quality and reduce the incidence of nodules and granulomas caused by uneven dispersion of microspheres after injection in the body.
  • the polycaprolactone injection gel prepared using it has better application value.
  • Figure 1 shows a micrograph of undispersed dry polycaprolactone microspheres.
  • FIG2 shows a micrograph of polycaprolactone microspheres after dispersion in distilled water.
  • FIG3 shows an electron microscope photograph of polycaprolactone microspheres dispersed in distilled water.
  • FIG. 4 shows a micrograph of polycaprolactone microspheres dispersed in 0.9% saline.
  • FIG. 5 shows an electron microscope photograph of polycaprolactone microspheres dispersed in 0.9% saline.
  • FIG. 6 shows a microscopic photograph of polycaprolactone microspheres dispersed in sodium-based isotonic phosphate buffer 3-2.
  • FIG. 7 shows an electron microscopic photograph of polycaprolactone microspheres dispersed in sodium-based isotonic phosphate buffer 3-2.
  • FIG. 8 shows a micrograph of polycaprolactone microspheres dispersed in isotonic phosphate buffer 3-5 containing potassium 1.
  • FIG. 9 shows an electron microscopic photograph of polycaprolactone microspheres dispersed in isotonic phosphate buffer 3-5 containing potassium series 1.
  • FIG. 10 shows a micrograph of polycaprolactone microspheres dispersed in isotonic phosphate buffer 3-8 containing potassium 2.
  • FIG. 11 shows an electron microscopic photograph of polycaprolactone microspheres dispersed in isotonic phosphate buffer 3-8 containing potassium series 2.
  • FIG. 12 shows a microscopic photograph of polycaprolactone microspheres dispersed in a sodium-based buffer solution (4-1-6) having an osmotic pressure of 600 mOsm/kg.
  • FIG. 13 shows a micrograph of polycaprolactone microspheres dispersed in a potassium-based buffer (4-2-6) having an osmotic pressure of 600 mOsm/kg.
  • FIG. 14 shows polycaprolactone dispersed in a buffer solution (4-3-6) with an osmotic pressure of 600 mOsm/kg of potassium series 2. Micrograph of microspheres.
  • FIG. 15 shows an electron microscope photograph of polycaprolactone microspheres dispersed in a potassium-based buffer solution (4-2-6) having an osmotic pressure of 600 mOsm/kg.
  • FIG. 16 is a photograph showing the appearance of the injectable gel containing polycaprolactone microspheres of Example 11.
  • FIG. 17 is a micrograph of the injectable gel containing polycaprolactone microspheres of Example 11.
  • FIG. 18 is a photograph showing the appearance of the injection gel containing polycaprolactone microspheres of Example 12 after stirring at 1000 r/min.
  • FIG. 19 is a photograph showing the appearance of the injectable gel containing polycaprolactone microspheres of Example 12 after stirring at 2200 r/min.
  • FIG. 20 is a micrograph of the injectable gel containing polycaprolactone microspheres of Example 12 after stirring at 2200 r/min.
  • FIG. 21 is a photograph showing the appearance of the injectable gel containing polycaprolactone microspheres of Example 13 after stirring at 1000 r/min.
  • FIG. 22 is a photograph showing the appearance of the injectable gel containing polycaprolactone microspheres of Example 13 after stirring at 2200 r/min.
  • the measurement of the degradation rate in the carboxymethyl cellulose (or sodium carboxymethyl cellulose) gel prepared with 0.9% saline or PBS as the dispersion liquid is the same as the preparation and measurement process of the distilled water as the dispersion liquid.
  • PCL microspheres prepared by the method of Example 2 were used to investigate the effects of different dispersions on the dispersion, bubble content, and smoothness of the prepared PCL microspheres.
  • a microscopic photograph of the undispersed microspheres (XP-550C polarizing microscope 10x) is shown in Figure 1, and the microspheres are agglomerated.
  • Example 6 Dispersion 1 (distilled water)
  • the prepared microspheres were dispersed in distilled water, and the surface smoothness, spherical integrity, and dispersion of PCL were observed under a microscope and an electron microscope.
  • the microscopic photograph (XP-550C polarizing microscope 10x) and the electron microscope photograph of PCL microspheres are shown in Figure 2 and Figure 3, respectively.
  • the microspheres were not well dispersed in distilled water.
  • Example 7 Dispersion 2 (0.9% saline)
  • the prepared microspheres were dispersed in 0.9% physiological saline, and the surface smoothness, spherical integrity, and dispersion of PCL were observed under a microscope and an electron microscope. Microscopic photo of PCL microspheres (XP-550C polarizing microscope 20x) and electron microscope photo As shown in Figure 4 and Figure 5 respectively.
  • the dispersion of the microspheres in physiological saline is improved, and from the electron microscopy in FIG5 , it can be seen that the surface smoothness of the microspheres is less damaged and the spherical integrity is improved.
  • Example 8 Dispersion 3: (isotonic phosphate buffer with different pH values)
  • Sodium hydrogen phosphate 0.1 M sodium hydrogen phosphate (Na 2 HPO 4 ), stored at 4°C;
  • Sodium dihydrogen phosphate 0.1 M sodium dihydrogen phosphate (NaH 2 PO 4 ⁇ H 2 O).
  • the prepared microspheres were dispersed in the above dispersions 3-1 to 3-3, and the surface smoothness of PCL (smooth +++++; basically smooth +++; a little bump +++; more bumps +; a lot of bumps +), spherical integrity (spherical +++++; basically spherical +++; 1 to 2 ellipsoid vertices +++; 2 to 4 ellipsoid vertices +; more than 5 ellipsoid vertices +), and dispersion (no aggregation +++++; basically no aggregation +++; a little aggregation +++; more than 3 microspheres aggregated +; a lot of more than 3 microspheres aggregated +) were observed under a microscope and an electron microscope. The observation results are shown in the following table, and the microscopic photograph (XP-550C polarizing microscope 10x) and electron microscope photograph of PCL microspheres in dispersion 3-2 are shown in Figures
  • Sodium hydrogen phosphate 0.1 M sodium hydrogen phosphate (Na 2 HPO 4 ), stored at 4°C;
  • Potassium dihydrogen phosphate 0.1 M potassium dihydrogen phosphate (KH 2 PO 4 ), stored at 4°C.
  • the prepared microspheres were dispersed in the above dispersions 3-4 to 3-6, and the surface smoothness, spherical integrity, and dispersion of PCL were observed under a microscope and an electron microscope. The observation results are shown in the following table, and the microscopic photograph (XP-550C polarizing microscope 10x) and electron microscope photograph of PCL microspheres in dispersion 3-5 are shown in Figures 8 and 9, respectively.
  • Potassium hydrogen phosphate (divalent): 0.1 M potassium hydrogen phosphate (K 2 HPO 4 ), stored at 4°C;
  • Potassium dihydrogen phosphate 0.1 M potassium dihydrogen phosphate (KH 2 PO 4 ), stored at 4°C.
  • the prepared microspheres were dispersed in the above dispersions 3-7 to 3-9, and the surface smoothness, spherical integrity, and dispersion of PCL were observed under a microscope and an electron microscope. The observation results are shown in the following table, and the microscopic photograph (XP-550C polarizing microscope 10x) and electron microscope photograph of PCL microspheres in dispersion 3-8 are shown in Figures 10 and 11, respectively.
  • the microspheres have good dispersion in the isotonic phosphate buffer of potassium series 2, similar to the sodium series dispersion. It can be seen from the electron microscope photos that the surface smoothness of the microspheres is slightly damaged and the spherical integrity is high.
  • Example 9 Dispersion 4 (phosphate buffers of different osmolarities)
  • dispersions 4-1-1 to 4-1-8 With reference to dispersion 3-2 in Table 2 of Example 8, the osmotic pressure was adjusted by adjusting the amount of NaCl added to obtain dispersions 4-1-1 to 4-1-8.
  • the prepared microspheres were dispersed in the above dispersions 4-1-1 to 4-1-8, and the surface smoothness, spherical integrity, and dispersion of PCL were observed under a microscope and an electron microscope. The observation results are shown in the following table.
  • dispersions 4-2-1 to 4-2-8 Referring to dispersion 3-5 in Table 3 of Example 8, the osmotic pressure was adjusted by adjusting the amount of KCl added to obtain dispersions 4-2-1 to 4-2-8.
  • the prepared microspheres were dispersed in the above dispersions 4-2-1 to 4-2-8, and the surface smoothness, spherical integrity, and dispersion of PCL were observed under a microscope and an electron microscope. The observation results are shown in the following table.
  • dispersions 4-3-1 to 4-3-8 Referring to dispersion 3-8 in Table 5 of Example 8, the osmotic pressure was adjusted by adjusting the amount of KCl added to obtain dispersions 4-3-1 to 4-3-8.
  • the prepared microspheres were dispersed in the above dispersions 4-3-1 to 4-3-8, and the surface smoothness, spherical integrity, and dispersion of PCL were observed under a microscope (XP-550C polarizing microscope 10x) and an electron microscope. The observation results are shown in the following table.
  • the degradation rate of PCL pre-dispersed with PBS (dispersion liquid 4-2-6 described in Example 9) as a dispersion liquid is lower than that of saline, and significantly lower than that of distilled water. It can be seen that PBS as a dispersion liquid can effectively reduce the degradation of PCL, and the maintenance of the smooth spherical shape of the microspheres helps to reduce the degradation rate of the microspheres.
  • Embodiment 11 is a diagrammatic representation of Embodiment 11:
  • polycaprolactone microsphere injection gel is as follows:
  • CMC and deionized water are stirred and mixed uniformly to obtain a CMC suspension; sodium hydroxide solution is added to the CMC suspension and mixed uniformly; then hydrochloric acid is added to adjust the pH value to neutral to obtain CMC-Na gel, and 33 g of CMC-Na gel is measured;
  • Example 12 (Comparative product 1): PCL microspheres were directly added to CMC-Na gel without preparing a pre-dispersed composition
  • polycaprolactone microsphere injection gel is as follows:
  • Example 13 (Comparative product 2): PCL microspheres, CMC-Na powder, phosphate buffer and glycerol were directly mixed without preparing a pre-dispersed composition.
  • polycaprolactone microsphere injection gel is as follows:
  • Example 14 Comparison of a gel product without microspheres and a product in which PCL microspheres are directly added to CMC-Na gel
  • Example 11 adopts the method of adding a PCL microsphere pre-dispersed composition to the CMC gel to reduce the viscosity of the microspheres when mixed with the CMC-Na gel, reduce bubbles and improve mixing efficiency.
  • Example 15 Comparison of Bubble and Microsphere Dispersibility of Gel Products in Examples 11-13
  • the bubbles (no bubbles -; sporadic bubbles +; a small amount of bubbles ++; relatively many bubbles +++; a large amount of bubbles ++++; all bubbles +++++) and microsphere dispersion in the product prepared in Example 11 were compared with those in the comparative products 1-2 prepared in Examples 12-13, and the results are shown in the following table.
  • Comparative Product 1 XP-550C polarizing microscope 10x
  • the gel contains a large number of bubbles and some microspheres are aggregated. Its dispersion effect is similar to that using deionized water as the dispersion liquid, and both have a certain degree of aggregation and cannot be dispersed.
  • PCL microspheres PCL weight average molecular weight of 40,000 Da
  • W 0 PCL weight average molecular weight of 40,000 Da
  • the degradation period was 8 weeks and the measurement was performed for 48 weeks.
  • one sample was taken out, the microspheres were collected by centrifugation and thoroughly rinsed with distilled water, and vacuum freeze-dried to constant weight (Wt), thereby obtaining the degradation rate of PCL microspheres in the gel prepared with distilled water as the dispersion liquid.
  • the degradation rate in the sodium carboxymethyl cellulose gel prepared using 0.9% saline and PBS (dispersion 4-2-6 described in Example 9) as dispersions was the same as the preparation and measurement process of distilled water as the dispersion.
  • the PCL degradation rate in the gel prepared by using PBS (dispersion 4-2-6 in Example 9) as a dispersion is lower than that of saline, and is significantly lower than that of distilled water. It can be seen that PBS as a dispersion can effectively reduce the degradation of PCL, and the maintenance of the smooth spherical shape of the microspheres helps to reduce the degradation rate of the microspheres.
  • phosphate buffer as the dispersion liquid, especially the buffer made of disodium hydrogen phosphate and potassium dihydrogen phosphate as the dispersion liquid, with a pH of 6.0-8.0 and an osmotic pressure of 300-650mOsm/kg, can well maintain the smooth spherical morphology of the surface of PCL microspheres and reduce or avoid the generation of bubbles.
  • CMC-Na as the gel matrix
  • KCl as the osmotic pressure regulator
  • an osmotic pressure of 300-650mOsm/kg can well maintain the smooth spherical morphology of the surface of PCL microspheres and can effectively reduce the degradation of PCL microspheres.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Dermatology (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Medicinal Preparation (AREA)

Abstract

本发明公开了一种聚己内酯微球预分散组合物及由其制备的聚己内酯注射用凝胶。所述聚己内酯微球预分散组合物中,聚己内酯微球能够继续保持完整的球形、表面光滑、分散性好,降解速度降低,混合过程中可减少气泡,有利于保证产品质量的稳定,减少因微球在体内注射后分散不均匀导致的结节和肉芽肿的发生几率。利用其制备的聚己内酯注射用凝胶应用价值更佳。

Description

一种聚己内酯微球预分散组合物及由其制备的聚己内酯注射用凝胶 技术领域
本发明涉及医疗美容或医用制剂技术领域,具体涉及一种聚己内酯微球预分散组合物及由其制备的聚己内酯注射用凝胶。
背景技术
聚己内酯(Polycaprolactone,PCL)最早于上个世纪30年代被合成,是由ε-己内酯(ε-CL)开环聚合所得的线性脂肪族聚酯。它是一种疏水性的半结晶型高分子,在室温下是橡胶态,其热稳定性较好,分解温度比其它聚酯要高得多。PCL降解后的产物为CO2和H2O,对人体无毒,由于其特定的物理化学和机械性能、粘弹性和易于成型导致生产出具有各种形状和持续时间的基于PCL的产品,具体取决于其生物降解动力学,PCL在生物医学领域已经被安全使用70多年,最新的应用多将其制备为微球用作体内植入材料的医美填充剂,刺激胶原蛋白的生成。基于PCL的胶原蛋白刺激剂由悬浮在羧甲基纤维素凝胶载体中的PCL微球组成,注射时可提供即时和持续的丰盈效果;嵌入产生的胶原纤维的PCL微球的形态、生物相容性都有助于创建独特的3D支架,以实现持续的效果。
随着医美市场需求的不断增长,PCL有了更加广阔的市场前景。其主要是通过将其PCL制备成微球,以凝胶的形式应用范围为额部、鼻唇沟、面中部、鼻部、下颌以及手部,有效时间最长可达24个月,其安全性和有效性已经在多个临床试验中得到印证。PCL注射用微球通常直径可以在25-50μm之间,这样大小的微球正好可以避免巨噬细胞的吞噬而留在人体组织中,不仅大小而且形状已被证明对组织反应有很大影响,形状、圆形或不规则决定反应的程度,PCL微球是规则的、具有光滑表面的球形,这些特征是已知可以最大限度地减少炎症反应的最佳特征,如果形成的球体更光滑,越有利于皮下注射,光滑度高的微球在刺激皱纹下面的成纤维细胞逐一包裹的同时,能够减少肉芽瘤发生、减少异物反应的发生,注射微球通常是将制备得到的具有光滑表面的30%体积比的PCL微球均匀悬浮至70%的CMC凝胶中。
在制备具有光滑表面的PCL微球上,现有技术已经公开了多种制备光滑PCL微球 的方法,例如CN104001209B公开了将得到的微球过滤、洗涤并干燥,然后分散到CMC凝胶中,制备过程为了避免PCL溶液在搅拌的水性介质中的凝固,所采用的条件包括在较长的时间内加入PCL的DCM溶液和较长的DCM蒸发时间使得分散的PCL粒子硬化,该文献还考察了Hunter法(US2003/0157187A中的实施例14)、Erneta和Wu法(EP1872803A1中实施例)等,并总结了DCM以及水中表面活性剂、表面活性剂的粘度、搅拌速率等对粒子形状及粒子表面光滑度的影响。CN109998997B公开了采用膜乳化法制备的微球经过滤、洗涤、干燥后的微球平均直径为50μm,且外观形态呈表面光滑、形态良好。然而,要想将制备得到的干燥微球分散至凝胶中并保持在凝胶中的表面光滑性,需要对微球的分散工艺及凝胶继续研究,PCL微球在混入CMC凝胶前,由于表面会吸附部分空气,混匀过程中存在液体与气体开始争夺微球表面的问题,致使微球表面气泡难去除;此外,由于CMC凝胶具有高粘性,致使混匀过程中PCL微球不易分散且易于形成气泡,因而需要一种新的手段解决混匀过程中的上述问题。而且,研究发现PCL微球的水解与水对微球的渗透有关,当水渗入微球时会发生整体降解过程,导致整个聚合物基质中的酯键从内部逐渐水解,因此,需要对微球的分散工艺及凝胶基础进一步研究,在促进制备得到的PCL微球在凝胶中仍具有光滑的表面,且能够进一步降低PCL的水解。
发明内容
为克服现有技术的不足,本发明提供了一种聚己内酯(PCL)微球预分散组合物以及采用这一组合物制备的含有高浓度聚己内酯的注射用凝胶。发明人通过研究意外发现PCL微球干燥后混匀或再分散环节是影响注射用PCL微球分散度、气泡形成、光滑度的关键,此外,发明人还意外地发现,相对于现有技术中常用的PCL微球分散介质-纯化水、蒸馏水、生理盐水等,本发明所选择的分散介质和凝胶基质能够有效降低PCL的降解,微球的光滑球形的维持有助于降低微球的降解速度。
在本发明第一方面,提供一种聚己内酯微球预分散组合物,其包含聚己内酯微球和磷酸盐缓冲液。
具体地,所述磷酸盐缓冲液包含磷酸氢二盐和/或磷酸二氢盐;更具体地,所述磷酸盐缓冲液包含磷酸氢二盐和磷酸二氢盐。
具体地,所述磷酸氢二盐选自:磷酸氢二钠、磷酸氢二钾、磷酸氢二铵中的一种或多种。
具体地,所述磷酸二氢盐选自:磷酸二氢钠、磷酸二氢钾或磷酸二氢铵中的一种或多种。
在本发明的一些实施例中,所述磷酸氢二盐为磷酸氢二钠,所述磷酸二氢盐为磷酸二氢钠。
在本发明另一些实施例中,所述磷酸氢二盐为磷酸氢二钠,所述磷酸二氢盐为磷酸二氢钾。
在本发明另一些实施例中,所述磷酸氢二盐为磷酸氢二钾,所述磷酸二氢盐为磷酸二氢钾。
在本发明另一些实施例中,所述磷酸氢二盐为磷酸氢二钾,所述磷酸二氢盐为磷酸二氢钠。
具体地,所述磷酸盐缓冲液还可以包括pH调节剂,例如盐酸、氢氧化钠、氢氧化钾等中的一种或多种。
具体地,所述磷酸盐缓冲液的pH为6.0-8.0(例如6.0、6.2、6.4、6.5、6.6、6.8、7.0、7.2、7.4、7.5、7.6、7.8、8.0),特别是6.5-8.0,优选7.0-7.5。
具体地,所述磷酸盐缓冲液还可以包括渗透压调节剂,例如氯化钾、氯化钠、甘油等中的一种或多种。
具体地,所述磷酸盐缓冲液的渗透压为300-700mOsm/kg(例如300、350、400、450、500、550、600mOsm/kg),特别是500-650mOsm/kg,优选550-650mOsm/kg。
在本发明的一些优选实施例中,所述磷酸盐缓冲液包含磷酸氢二钠和磷酸二氢钠,其pH为6.0-8.0(特别是6.5-7.5,例如7.2),渗透压为500-650mOsm/kg;更具体地,所述磷酸盐缓冲液由磷酸氢二钠、磷酸二氢钠、氯化钠和水组成。
在本发明的一些优选实施例中,所述磷酸盐缓冲液包含磷酸氢二钠和磷酸二氢钾,其pH为6.0-8.0(特别是6.5-7.5,例如7.2),渗透压为300-700mOsm/kg(特别是600mOsm/kg);具体地,所述磷酸盐缓冲液由磷酸氢二钠、磷酸二氢钾、氯化钾和水组成;更具体地,该磷酸盐缓冲液可以由磷酸氢二钠(Na2HPO4)、磷酸二氢钾(KH2PO4)和氯化钾水溶液复配而成。
在本发明的一些优选实施例中,所述磷酸盐缓冲液包含磷酸氢二钾和磷酸二氢钾,其pH为6.0-8.0(特别是6.5-7.5,例如7.2),渗透压为500-650mOsm/kg;更具体地,所述磷酸盐缓冲液由磷酸氢二钾、磷酸二氢钾、氯化钾和水组成。
具体地,所述PCL微球的平均粒径范围为25-60μm(例如25、30、35、40、45、 50、55、60μm)。
具体地,所述PCL微球中粒径为25-50μm的微球占比≥65%。
具体地,所述PCL微球的重均分子量为8k-8万Da(例如1万Da、2万Da、3万Da、4万Da、4.5万Da、6万Da、8万Da),特别是1-6万Da。
具体地,所述聚己内酯微球预分散组合物中,所述PCL微球的含量可以为10-50wt%(例如10wt%、15wt%、20wt%、25wt%、30wt%、35wt%、40wt%、45wt%、50wt%)。
具体地,所述PCL微球可以通过如下方法制备:
(1)水相配制:利用含有成膜剂、表面活性剂、增稠剂的一种或者多种的溶液混合作为水相;
(2)油相配制:将干燥的PCL溶解在有机溶剂中;
(3)制备微球;
(4)乳液中有机溶剂挥发,微球固化过滤、清洗、收集、干燥。
具体地,所述成膜剂包括但不限于:聚乙烯醇、聚丙烯醇、明胶、阿拉伯胶、右旋糖酐硫酸脂、透明质酸、果胶、卡拉胶等。
具体地,所述表面活性剂包括但不限于吐温、司盘、十二烷基硫酸钠、十二烷基苯磺酸钠等。
具体地,所述增稠剂包括但不限于:明胶、淀粉、卡拉胶、海藻酸钠、壳聚糖、果糖、羧甲基纤维素钠、高取代羟丙基纤维素、低取代羟丙基纤维素、微晶纤维素、羟丙基甲基纤维素、羟乙基纤维素等。
具体地,所述的有机溶剂选自:苯甲醇、二氯甲烷、氯仿、氯乙烷、二氯乙烷、三氯乙烷、乙酸乙酯、甲酸乙酯、乙醚、环己烷或其混合溶剂。
具体地,步骤(3)中所述制备微球可以采用膜乳化法、喷雾干燥法等现有技术中已知的方法,例如,膜乳化法制备微球:采用800-10000mpa压力,优选800-3500mpa;更优选1000-2000mpa将油相挤压过膜管,膜孔5-100μm,挤入连续的水相中,水相流速50-10000ml/min;制备得到的微球的D50可以从1至100μm不等;跨度span≤2.0;密度、组成、形态均匀;外观为球形,表面光滑。
在本发明的一些实施例中,所述PCL微球通过如下方法制备:配制水相,将聚己内酯用二氯甲烷配制成油相,将水相与油连续相进行乳化后,真空干燥,获得聚己内酯微球;所述水相中包括聚乙烯醇、羧甲基纤维素、羧甲基纤维素钠、吐温80、明胶、羟丙基纤维素淀粉、十二烷基硫酸钠中的一种或多种。
具体地,所述PCL微球可以是无菌的。
在本发明第二方面,提供一种聚己内酯微球预分散组合物的制备方法,其包括将干燥的聚己内酯微球(均匀)分散至分散液中的步骤,其中所述分散液为磷酸盐缓冲液。聚己内酯微球的分散液通常为纯化水、蒸馏水、生理盐水等,发明人经研究发现采用磷酸盐缓冲液作为分散液有助于维持聚己内酯微球的最佳分散性、减少气泡的产生。
具体地,所述聚己内酯微球和磷酸盐缓冲液具有本发明第一方面所述定义。
在本发明第三方面,提供一种聚己内酯注射用凝胶,其由包含将第一方面所述的预分散组合物和凝胶基质混合步骤的方法制备得到,所述凝胶基质包含羧甲基纤维素(钠)(即羧甲基纤维素或羧甲基纤维素钠)和分散液。
具体地,所述聚己内酯注射用凝胶由包含将第一方面所述的预分散组合物加入凝胶基质中并混合的方法制备得到。
具体地,所述凝胶基质的分散液选自:水(例如蒸馏水、纯化水、注射用水)、生理盐水、磷酸盐缓冲液。
在本发明的一个优选实施例中,所述凝胶基质的分散液为磷酸盐缓冲液,特别是本发明第一方面所述磷酸盐缓冲液。
具体地,聚己内酯注射用凝胶中高含量的聚己内酯微球是指聚己内酯微球的含量高于20%,优选地,高于25%,更优选地,高于30%。
具体地,所述聚己内酯注射用凝胶中,聚己内酯微球的含量为28-38wt%(例如28%、30%、32%、33%、34%、36%、38%),特别是30-36%。
具体地,所述聚己内酯注射用凝胶中,羧甲基纤维素(钠)含量为1-5wt%(例如2wt%、2.3wt%、2.6wt%、2.9wt%、3wt%、4wt%)。
具体地,所述聚己内酯注射用凝胶还可以包含pH调节剂,例如盐酸、氢氧化钠、氢氧化钾等中的一种或多种。
具体地,所述聚己内酯注射用凝胶的pH为6.0-8.0(例如6.0、6.2、6.4、6.5、6.6、6.8、7.0、7.2、7.4、7.5、7.6、7.8、8.0),特别是6.5-8.0,优选7.0-7.5。
具体地,所述聚己内酯注射用凝胶还可以包含渗透压调节剂,例如氯化钾、氯化钠、甘油等中的一种或多种。
具体地,所述聚己内酯注射用凝胶的渗透压为300-600mOsm/kg(例如300、350、400、450、500、550、600mOsm/kg),特别是500-650mOsm/kg,优选550-650mOsm/kg。
具体地,所述聚己内酯注射用凝胶还可以包含麻醉剂,例如,利多卡因、丁卡因等。
具体地,所述聚己内酯注射用凝胶还可以包含润滑剂,例如,甘油。
具体地,所述聚己内酯注射用凝胶还可以包含抗菌剂,用于提高抗菌效果,使所述聚己内酯注射用凝胶在使用、存储和运输过程中抗菌效果更好。
具体地,所述聚己内酯注射用凝胶还可以包含抗炎剂,用于减少机体的炎症反应。
具体地,所述聚己内酯注射用凝胶还可以包含抗氧化剂,用于提高的抗氧化性。
在本发明四方面,提供一种聚己内酯注射用凝胶的制备方法,其包括如下步骤:
(1)将聚己内酯微球(均匀)分散至分散液Ⅰ,得到聚己内酯预分散组合物;
(2)将羧甲基纤维素(钠)分散于分散液Ⅱ中,得到凝胶基质;
(3)将所述聚己内酯预分散组合物加入凝胶基质中,混合(均匀)。
具体地,所述分散液Ⅰ为磷酸盐缓冲液,如本发明第一方面所述。
具体地,所述分散液Ⅱ选自:水(例如蒸馏水、纯化水、注射用水)、生理盐水、磷酸盐缓冲液,特别是本发明第一方面所述磷酸盐缓冲液。
具体地,所述分散液Ⅰ与分散液Ⅱ可以是相同的磷酸盐缓冲液,例如,在本发明的一些优选实施例中,所述磷酸盐缓冲液包含磷酸氢二钠和磷酸二氢钠,其pH为6.0-8.0(特别是6.5-7.5,例如7.2),渗透压为500-650mOsm/kg;更具体地,所述磷酸盐缓冲液由磷酸氢二钠、磷酸二氢钠、氯化钠和水组成;在本发明另一些优选实施例中,所述磷酸盐缓冲液包含磷酸氢二钠和磷酸二氢钾,其pH为6.0-8.0(特别是6.5-7.5,例如7.2),渗透压为300-700mOsm/kg(特别是600mOsm/kg);具体地,所述磷酸盐缓冲液由磷酸氢二钠、磷酸二氢钾、氯化钾和水组成;在本发明另一些优选实施例中,所述磷酸盐缓冲液包含磷酸氢二钾和磷酸二氢钾,其pH为6.0-8.0(特别是6.5-7.5,例如7.2),渗透压为500-650mOsm/kg;更具体地,所述磷酸盐缓冲液由磷酸氢二钾、磷酸二氢钾、氯化钾和水组成。
具体地,步骤(1)还可以包括调节pH的步骤。
具体地,步骤(1)还可以包括调节渗透压的步骤。
具体地,步骤(1)还可以包括灭菌步骤。
具体地,步骤(2)还可以包括调节pH的步骤。
具体地,步骤(2)还可以包括调节渗透压的步骤。
具体地,步骤(2)还可以包括灭菌步骤。
具体地,步骤(3)中所述混合方式为搅拌,搅拌速度可以为800-1200r/min(例如1000r/min),搅拌时间可以为1-10分钟(例如5分钟)。
具体地,步骤(3)还包括除气泡步骤,例如通过真空搅拌脱泡机进行搅拌除气泡处理。
在本发明第五方面,提供第一方面所述的聚己内酯预分散组合物在制备聚己内酯注射用凝胶、植入物、药物载体中的应用。
在本发明的一个实施方式中,所述植入物为美容用植入物,例如皮下植入物(例如植入额部、鼻唇沟、面中部、鼻部、下颌、手部等以减少皱纹、褶皱、疤痕、老化等);在本发明的一些实施例中,所述植入物为皮肤填充剂。
在本发明另一个实施方式中,所述植入物为疾病治疗用植入物,例如支架。
本发明所述的聚己内酯微球预分散组合物具有如下有益效果:
PCL微球能够继续保持完整的球形、表面光滑、分散性好,降解速度降低,混合过程中可减少气泡,有利于保证产品质量的稳定,减少因微球在体内注射后分散不均匀导致的结节和肉芽肿的发生几率。利用其制备的聚己内酯注射用凝胶应用价值更佳。
附图说明
图1所示为未分散的干燥聚己内酯微球的显微照片。
图2所示为经蒸馏水分散后聚己内酯微球的显微照片。
图3所示为经蒸馏水分散后聚己内酯微球的电镜照片。
图4所示为经0.9%生理盐水分散后聚己内酯微球的显微照片。
图5所示为经0.9%生理盐水分散后聚己内酯微球的电镜照片。
图6所示为经钠系的等渗磷酸盐缓冲液3-2分散后聚己内酯微球的显微照片。
图7所示为经钠系的等渗磷酸盐缓冲液3-2分散后聚己内酯微球的电镜照片。
图8所示为经钾系1的等渗磷酸盐缓冲液3-5分散后聚己内酯微球的显微照片。
图9所示为经钾系1的等渗磷酸盐缓冲液3-5分散后聚己内酯微球的电镜照片。
图10所示为经钾系2的等渗磷酸盐缓冲液3-8分散后聚己内酯微球的显微照片。
图11所示为经钾系2的等渗磷酸盐缓冲液3-8分散后聚己内酯微球的电镜照片。
图12所示为经钠系的渗透压为600mOsm/kg的缓冲液(4-1-6)分散后聚己内酯微球的显微照片。
图13所示为经钾系1的渗透压为600mOsm/kg的缓冲液(4-2-6)分散后聚己内酯微球的显微照片。
图14所示为经钾系2的渗透压为600mOsm/kg的缓冲液(4-3-6)分散后聚己内酯 微球的显微照片。
图15所示为经钾系1的渗透压为600mOsm/kg的缓冲液(4-2-6)分散后聚己内酯微球的的电镜照片。
图16所示为实施例11的含有聚己内酯微球的注射用凝胶的外观照片。
图17所示为实施例11的含有聚己内酯微球的注射用凝胶的显微照片。
图18所示为实施例12的含有聚己内酯微球的注射用凝胶的1000r/min搅拌后的外观照片。
图19所示为实施例12的含有聚己内酯微球的注射用凝胶的2200r/min搅拌后的外观照片。
图20所示为实施例12的含有聚己内酯微球的注射用凝胶的2200r/min搅拌后的显微照片。
图21所示为实施例13的含有聚己内酯微球的注射用凝胶的1000r/min搅拌后的外观照片。
图22所示为实施例13的含有聚己内酯微球的注射用凝胶的2200r/min搅拌后的外观照片。
具体实施方式
除非另有定义,本发明中所使用的所有科学和技术术语具有与本发明涉及技术领域的技术人员通常理解的相同的含义。
本文所引用的各种出版物、专利和公开的专利说明书,其公开内容通过引用整体并入本文。
下面将结合本发明实施例,对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
以下实施例中所采用的一些检测方法具体操作如下:
干燥微球的形貌和粒径的检测
取适量干燥后的微球,剪取0.5cm左右导电胶带,粘贴到样品盘上,刮取少量粉末粘到导电胶带上,用洗耳球吹去导电胶带上多余的浮粉,喷金,把样品台放入仪器中进行观察,使用热场发射扫描电子镜显微镜(如:日本电子JEOL-JSM-7001F)拍摄电镜照片。
取少量干燥后的微球用分散液分散,高速搅拌或超声10min,待微球分散完全,滴加至石英皿,Zeta粒径仪测定微球粒径分布。
分散后的微球形貌和粒径的检测
取少量干燥后的微球用分散液分散,高速搅拌或超声10min,通过显微镜(XP-550C偏光显微镜)观察微球分散及气泡形成情况。
取少量干燥后的微球用分散液分散,高速搅拌或超声10min,待微球分散完全,滴加至石英皿,Zeta粒径仪测定微球粒径分布。
分散液中微球降解的检测
分别称重(W0)6份相同质量的PCL微球后,分别将其浸泡在蒸馏水分散液中,放入37℃摇床中,摇速60r/min。每周更换分散液,以8周为一个降解期,测定48周。在每一个降解期结束,取出样品,用蒸馏水彻底冲洗,真空冷冻干燥至恒重(Wt)。计算降解率=(W0-Wt)/W0×100%。
凝胶中微球降解的检测
分别称重(W0)6份相同质量的PCL微球后,分别将其混合到蒸馏水作为分散液并制备相应的羧甲基纤维素(或羧甲基纤维素钠)凝胶;放入37℃摇床中,摇速60r/min。以8周为一个降解期,测定48周。在每一个降解期结束,取出1个样品,通过离心收集微球并用蒸馏水彻底冲洗,真空冷冻干燥至恒重(Wt),从而获得PCL微球由该分散液制备的凝胶中的降解率(W0-Wt)/W0×100%。
对于0.9%生理盐水、PBS作为分散液制备的羧甲基纤维素(或羧甲基纤维素钠)凝胶中的降解率的测量同上述蒸馏水作为分散液的制备及测量过程。
一、干燥聚己内酯微球的制备:
实施例1
将10至20克的Mw为8k Da的PCL溶解在二氯甲烷(DCM,10-20w/w%)中,将该溶液分散在含有0.1%至5%MC的1000ml水中,通过溶剂萃取方法,搅拌(1000rpm),将所得到的微球过滤、洗涤并干燥。获得平均直径为40μm的微粒,PCL微球中粒径为25-50μm的微球占比68.6%,Span1.18,收率约为67%。
实施例2
称取53.9g Mw为1万Da的PCL溶解在二氯甲烷中(DCM,粘度700cp),通过膜乳化法,压力800mpa,将油相溶液分散到高速剪切含(1%)聚乙烯醇、(0.1%)吐温80水溶液 和(2.2%)羧甲基纤维素钠水溶液中,将所得微球过滤、洗涤、干燥。微球平均直径约50μm,PCL微球中粒径为25-50μm的微球占比70.4%,Span 1.19,收率约为70%。
实施例3
称取54.9g Mw为4万Da的PCL溶解在二氯甲烷中(DCM,粘度800cp),通过高速均质乳化法,将油相溶液分散到高速剪切含(1%)聚乙烯醇、(0.5%)明胶水溶液和(3.7%)羧甲基纤维素钠水溶液中,将所得微球过滤、洗涤、干燥。微球平均直径约55μm,PCL微球中粒径为25-50μm的微球占比65.6%,Span 1.19,收率约为65%。
实施例4
称取54.9g Mw为6万Da的PCL溶解在二氯甲烷中(DCM,粘度800cp),通过膜乳化法,压力800mpa,将油相溶液分散到高速剪切含(1%)聚乙烯醇、(2.2%)羟丙基纤维素水溶液中,将所得微球过滤、洗涤、干燥。微球平均直径约60μm,PCL微球中粒径为25-50μm的微球占比66.2%,Span 1.19,收率约为55%。
实施例5
称取53.9g Mw为8万Da的PCL溶解在二氯甲烷中(DCM,粘度700cp),通过膜乳化法,压力800mpa,将油相溶液分散到高速剪切含(1%)聚乙烯醇、(0.1%)十二烷基硫酸钠溶液和(2.2%)羧甲基纤维素钠水溶液中,将所得微球过滤、洗涤、干燥。微球平均直径约50μm,PCL微球中粒径为25-50μm的微球占比73.3%,Span 1.19,收率约为70%。
二、干燥聚己内酯微球的分散:
以下各实施例中均使用实施例2中方法制得的PCL微球考察了不同分散液对制得的PCL微球分散度、气泡含量、光滑度的影响。未经分散的微球显微照片(XP-550C偏光显微镜10x)如图1所示,微球有团聚现象。
实施例6:分散液1(蒸馏水)
将制得的微球分散至蒸馏水中,显微镜及电镜下观察PCL的表面光滑度、球形完整性、分散情况。PCL微球的显微照片(XP-550C偏光显微镜10x)及电镜照片分别如图2和图3所示。
如图2所示,微球在蒸馏水中并没有得到很好地分散。
如图3所示,微球表面光滑度降低、球形完整性受损。
实施例7:分散液2(0.9%生理盐水)
将制得的微球分散至0.9%生理盐水中,显微镜及电镜下观察PCL的表面光滑度、球形完整体、分散情况。PCL微球的显微照片(XP-550C偏光显微镜20x)及电镜照片 分别如图4和图5所示。
如图4所示,相比蒸馏水,微球在生理盐水中的分散度提升,且由图5的电镜可见,微球表面光滑度受损度减小,球形完整性提升。
实施例8:分散液3:(不同pH值的等渗磷酸盐缓冲液)
1、制备钠系的等渗磷酸盐缓冲液:
磷酸氢二钠:0.1M磷酸氢二钠(Na2HPO4),4℃储存;
磷酸二氢钠:0.1M磷酸二氢钠(NaH2PO4 H2O)。
根据下表配制所需pH的溶液:
表1分散液配方
将制得的微球分散至上述分散液3-1至3-3中,显微镜及电镜下观察PCL的表面光滑度(光滑+++++;基本光滑++++;少许凹凸+++;较多凹凸++;大量凹凸+)、球形完整体(球形+++++;基本球形++++;1~2个椭球顶点+++;2-4个椭球顶点++;5个以上椭球顶点+)、分散情况(无聚集+++++;基本无聚集++++;少许聚集+++;较多3个微球以上聚集++;大量3个微球以上聚集+)。观察结果如下表所示,分散液3-2中PCL微球的显微照片(XP-550C偏光显微镜10x)及电镜照片分别如图6和7所示。
表2分散液的考察结果
由图6-7(对应分散液3-2)及上表可知,微球在钠系的等渗磷酸盐缓冲液中的分散度进一步提升,且由电镜照片可见,微球表面光滑度受损度减小,球形完整性提升。
2、制备钾系1的等渗磷酸盐缓冲液:
磷酸氢二钠:0.1M磷酸氢二钠(Na2HPO4),4℃储存;
磷酸二氢钾:0.1M磷酸二氢钾(KH2PO4),4℃储存。
根据下表配制所需pH的溶液:
表3分散液配方
将制得的微球分散至上述分散液3-4至3-6中,显微镜及电镜下观察PCL的表面光滑度、球形完整体、分散情况。观察结果如下表所示,分散液3-5中PCL微球的显微照片(XP-550C偏光显微镜10x)及电镜照片分别如图8和9所示。
表4分散液的考察结果
由图8-9(对应分散液3-5)及上表可知,微球在钾系1的等渗磷酸盐缓冲液中的分散度进一步提升,且由电镜照片可见,微球表面光滑度受损度很小,球形完整性较高。
3、制备钾系2的等渗磷酸盐缓冲液:
磷酸氢二钾(二价):0.1M磷酸氢二钾(K2HPO4),4℃储存;
磷酸二氢钾:0.1M磷酸二氢钾(KH2PO4),4℃储存。
根据下表配制所需pH的溶液:
表5分散液配方
将制得的微球分散至上述分散液3-7至3-9中,显微镜及电镜下观察PCL的表面光滑度、球形完整体、分散情况。观察结果如下表所示,分散液3-8中PCL微球的显微照片(XP-550C偏光显微镜10x)及电镜照片分别如图10和11所示。
表6分散液的考察结果
由图10-11(对应分散液3-8)及上表可知,微球在钾系2的等渗磷酸盐缓冲液与钠系分散液相类似,均具有较好的分散度,且由电镜照片可见,微球表面光滑度受损度很小,球形完整性较高。
实施例9:分散液4(不同渗透性的磷酸盐缓冲液)
1、根据钠系的等渗磷酸盐缓冲液制备不同渗透性的缓冲液(pH7.2,100ml)
参照实施例8表2分散液3-2,通过调节NaCl的添加量调节渗透压,得到分散液4-1-1至4-1-8。
将制得的微球分散至上述分散液4-1-1至4-1-8中,显微镜及电镜下观察PCL的表面光滑度、球形完整体、分散情况。观察结果如下表所示。
表7分散液的考察结果
2、根据钾系1的等渗磷酸盐缓冲液制备不同渗透性的缓冲液(pH7.2,100ml)
参照实施例8表3分散液3-5,通过调节KCl的添加量调节渗透压,得到分散液4-2-1至4-2-8。
将制得的微球分散至上述分散液4-2-1至4-2-8中,显微镜及电镜下观察PCL的表面光滑度、球形完整体、分散情况。观察结果如下表所示。
表8分散液的考察结果
3、根据钾系2的等渗磷酸盐缓冲液制备不同渗透性的缓冲液(pH7.2,100ml)
参照实施例8表5分散液3-8,通过调节KCl的添加量调节渗透压,得到分散液4-3-1至4-3-8。
将制得的微球分散至上述分散液4-3-1至4-3-8中,显微镜(XP-550C偏光显微镜10x)及电镜下观察PCL的表面光滑度、球形完整体、分散情况。观察结果如下表所示。
表9分散液的考察结果

由图12-14(分别对应分散液4-1-6、4-2-6、4-3-6)及上表可知,相比钠系、钾系2及钾系1其他渗透压的分散液,微球在钾系1渗透压为600的缓冲液分散后,分散度良好,微球表面光滑度受损度极小,球形完整性未见有效改变。
实施例10:分散液对微球降解的影响
称重18份750mg(W0)的PCL微球(PCL重均分子量4万)后,分别将6份浸泡在10mL蒸馏水、10mL 0.9%生理盐水、10mL PBS(实施例9中所述分散液4-2-6)溶液中,放入37℃摇床中,摇速60r/min。每周更换溶液,以8周为一个降解期,测定48周。在每一个降解期结束,取出样品,用蒸馏水彻底冲洗,真空冷冻干燥至恒重(Wt)。降解率=(W0-Wt)/W0×100%。
表10降解率考察结果
由上表可知,以PBS(实施例9中所述分散液4-2-6)作为分散液预分散的PCL的降解速率低于生理盐水,且明显低于蒸馏水。由此可见,PBS作为分散液能够有效降低PCL的降解,而且微球的光滑球形的维持有助于降低微球的降解速度。
三、聚己内酯微球凝胶的制备
实施例11:
制备聚己内酯微球注射用凝胶,具体步骤如下:
(1)将CMC与去离子水搅拌,混合均匀,得CMC混悬液;将氢氧化钠溶液加入CMC混悬液中,均匀混合;然后加入盐酸调节pH值至中性,得CMC-Na凝胶,量取33g CMC-Na凝胶;
(2)配制磷酸缓冲液实施例9中所述分散液4-2-6;
(3)将33g灭菌后的PCL微球分散至33g分散液中,分散液为pH值约为7的磷酸盐缓冲液,搅拌转速为500r/min,形成均匀的预分散组合物;
(4)将预分散组合物加入到CMC-Na凝胶中(CMC-Na在终产品中的含量为2.6wt.%),加入占产品1wt.%的甘油,使用玻璃棒或细刮刀进行初步搅拌5min;
(5)准备好初步混合好的样品,使用真空搅拌脱泡机进行搅拌除气泡处理,时长6min,转速为1000r/min。使得终产物中PCL的用量为33wt.%。
实施例12:(对比产品1):不制备预分散组合物,将PCL微球直接加入CMC-Na凝胶中
制备聚己内酯微球注射用凝胶,具体步骤如下:
(1)将2.6g CMC-Na粉末溶解于63.4g实施例11制备的磷酸盐缓冲液中,形成凝胶;
(2)将33g灭菌后的PCL微球加入CMC-Na凝胶中(CMC-Na在最终产品中的含量为2.6wt.%),加入产品1wt.%的甘油,使用玻璃棒或细刮刀进行初步搅拌5min;
(3)准备好初步混合好的样品,使用真空搅拌脱泡机进行搅拌除气泡处理,时长6min,转速为1000r/min。使得终产物中PCL的用量33wt.%。后续将转速提高到2200r/min处理10min。
实施例13:(对比产品2):不制备预分散组合物,将PCL微球、CMC-Na粉末、磷酸盐缓冲液和甘油直接混合
制备聚己内酯微球注射用凝胶,具体步骤如下:
(1)将33g PCL微球,以及63.4g实施例11方法制备的磷酸盐缓冲液,1g甘油,搅拌转速500r/min,形成均匀的悬浮液;
(2)将2.6g CMC-Na粉末置于容器中,向容器中加入PCL微球、磷酸盐缓冲液、1g甘油构成的悬浮液,CMC-Na在产品中的含量为2.6wt.%,使用玻璃棒或细刮刀进行初步搅拌5min;
(3)准备好初步混合好的样品,使用真空搅拌脱泡机进行搅拌除气泡处理,时长5min,转速为1000r/min。使得终产物中PCL的用量33wt.%,后续将转速提高到2200r/min处理10min。
实施例14:无微球凝胶产品和直接将PCL微球直接加入CMC-Na凝胶中的产品的比较
将2.6g CMC-Na粉末溶解于96.4g实施例11制备的磷酸盐缓冲液中,加入1wt%的甘油,形成凝胶(CMC-Na在凝胶中的含量为2.6wt.%)。
对上述无微球凝胶和实施例12中制备的含微球的CMC-Na凝胶的理化性质进行比较,结果如下表所示。
表11剪切粘度对比结果
通过上表可以看出,将PCL微球加入CMC-Na凝胶后,形成的聚己内酯注射用凝胶的剪切粘度明显升高,此时凝胶更加粘稠,混合均匀较为困难。现有技术中针对高粘度流体的混合方法一般采用如上描述的高速剪切搅拌器混合,或者采用高粘度均质机等其他混合方法,但在此过程中CMC凝胶会夹裹气泡,并对体系带来额外的热量,造成注射用凝胶中微球的萎缩变形影响注射效果。因此,实施例11中采用了向CMC凝胶中加入PCL微球预分散组合物的方式以降低微球与CMC-Na凝胶混合时的粘度,减少气泡提升混合效率。
实施例15:实施例11-13中凝胶产品的气泡和微球分散性比较
将实施例11制备得到的产品与实施例12-13制备的对比产品1-2中气泡(无气泡-;零星气泡+;少量气泡++;较多气泡+++;大量气泡++++;全是气泡+++++)和微球分散性比较,结果如下表所示。
表12实施例11-13中凝胶产品的气泡和微球分散性结果
通过显微镜照片(显微镜BM2000 10x)图16可以看到,相较于对比产品,采用预分散组合物后,凝胶产品中的气泡大幅减少,通过显微照片(XP-550C偏光显微镜10x)图17可以看出采用1000r/min的混合转速5min可以得到PCL微球均匀分布的凝胶产品;而对比产品还需要增加转速和时间继续搅拌。
未采用预分散步骤时,对比产品1和2中均在搅拌时产生了大量明显的气泡(图18、21中黑色较大的中间发白的球体即为气泡),尤其是对比产品2中将PCL微球、CMC-Na粉末、磷酸盐缓冲液和甘油直接混合时,气泡数量众多。而且CMC-Na因为混合不充分产生大量白色斑块,采用1000r/min转速5min搅拌是不充分的,将CMC团聚的块进一步混合得到均一的凝胶状注射液比较困难。
从对比产品1的图20(XP-550C偏光显微镜10x)可以看到,凝胶中含有大量气泡且部分微球团聚,其分散效果与采用去离子水作为分散液的相近,均有一定的聚集分散不开的情况。
尝试采用更高转速、更长搅拌时间继续处理凝胶。对比产品1中将转速提高到2200r/min处理10min后,即如图19所示,凝胶较之前均匀度有所提升,透明度提高,大气泡分散为小气泡,但是数量仍然较多。对比产品2中提高转速同样处理后,大量气泡仍然存在,虽然团聚、结块略有所减少,但是凝胶整体分散仍然不均匀,且劣于实施例12中再处理后的样品。
实施例16:凝胶基质对微球降解的影响
称重6份750mg(W0)的PCL微球(PCL重均分子量为4万Da)后,分别将其混合到由蒸馏水中,进而混合至羧甲基纤维素钠凝胶中;放入37℃摇床中,摇速60r/min。以8周为一个降解期,测定48周。在每一个降解期结束,取出1个样品,通过离心收集微球并用蒸馏水彻底冲洗,真空冷冻干燥至恒重(Wt),从而获得PCL微球在蒸馏水作为分散液制备的凝胶中的降解率。
对于0.9%生理盐水、钾系1的经KCl调节渗透压后的PBS(实施例9中所述分散液4-2-6)作为分散液制备的羧甲基纤维素钠凝胶中的降解率同上述蒸馏水作为分散液的制备及测量过程。
表14降解率考察结果

由上表可知,PBS(实施例9中所述分散液4-2-6)作为分散液及其制备的凝胶中的PCL的降解速率低于生理盐水,且明显低于蒸馏水。由此可见,PBS作为分散液能够有效降低PCL的降解,微球的光滑球形的维持有助于降低微球的降解速度。
以上研究表明,以磷酸盐缓冲液作为分散液,尤其磷酸氢二钠、磷酸二氢钾制得的缓冲液作为分散液,pH为6.0-8.0,渗透压为300-650mOsm/kg能够很好地维持PCL微球表面光滑球形的形态,减少或避免气泡的产生,进一步地以CMC-Na为凝胶基质,用KCl作为渗透压调节剂,渗透压为300-650mOsm/kg,能够很好地维持PCL微球表面光滑球形的形态,而且能够有效降低PCL微球的降解。
以上所述仅是本专利的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本专利技术原理的前提下,还可以做出若干改进和替换,这些改进和替换也应视为本专利的保护范围。

Claims (12)

  1. 一种聚己内酯微球预分散组合物,其包含聚己内酯微球和分散液Ⅰ;其中,所述分散液Ⅰ包括磷酸盐缓冲液,所述磷酸盐缓冲液包含磷酸氢二盐和/或磷酸二氢盐,所述分散液Ⅰ的pH为7.0-7.5,渗透压为550-650mOsm/kg;
    所述聚己内酯微球预分散组合物由干燥的聚己内酯微球均匀分散至分散液Ⅰ中制得。
  2. 如权利要求1所述的聚己内酯微球预分散组合物,其特征在于,所述磷酸氢二盐选自磷酸氢二钠、磷酸氢二钾或磷酸氢二铵中的一种或任意几种,所述磷酸二氢盐选自磷酸二氢钠、磷酸二氢钾或磷酸二氢铵中的一种或任意几种。
  3. 如权利要求2所述的聚己内酯微球预分散组合物,其特征在于,所述分散液Ⅰ还包含pH调节剂。
  4. 如权利要求3所述的聚己内酯微球预分散组合物,其特征在于,所述pH调节剂选自盐酸、氢氧化钠、氢氧化钾中的一种或任意几种。
  5. 如权利要求4所述的聚己内酯微球预分散组合物,其特征在于,所述分散液Ⅰ还包含渗透压调节剂。
  6. 如权利要求5所述的聚己内酯微球预分散组合物,其特征在于,所述渗透压调节剂选自氯化钾、氯化钠、甘油中的一种或多种。
  7. 如权利要求6所述的聚己内酯微球预分散组合物,所述磷酸氢二盐为磷酸氢二钠;所述磷酸二氢盐为磷酸二氢钾;所述渗透压替换为300-650mOsm/kg;所述渗透压调节剂为氯化钾。
  8. 如权利要求1-7中任一项所述的聚己内酯微球预分散组合物,其特征在于,所述聚己内酯微球的平均粒径范围为25-60μm,所述聚己内酯微球中粒径为25-50μm的微球占比≥65%;所述聚己内酯微球的重均分子量为8k-8万Da。
  9. 一种聚己内酯注射用凝胶,其包含权利要求1-8中任一项所述的聚己内酯微球预分散组合物和凝胶基质,所述凝胶基质包含分散液Ⅱ,以及羧甲基纤维素或羧甲基纤维素钠;
    所述凝胶基质的分散液Ⅱ选自:水、生理盐水或磷酸盐缓冲液;
    所述聚己内酯注射用凝胶的pH为7.0-7.5,渗透压为550-650mOsm/kg。
  10. 如权利要求9所述的聚己内酯注射用凝胶,其特征在于,所述聚己内酯注射用凝胶中,聚己内酯微球的含量为28-38wt%;羧甲基纤维素或羧甲基纤维素钠含量为 1-5wt%。
  11. 一种如权利要求9或10中所述的聚己内酯注射用凝胶的制备方法,其包括如下步骤:
    (1)将聚己内酯微球分散至分散液Ⅰ,得到聚己内酯预分散组合物;
    (2)将羧甲基纤维素或羧甲基纤维素钠分散于分散液Ⅱ中,得到凝胶基质;
    (3)将步骤(1)所述聚己内酯预分散组合物加入步骤(2)所述凝胶基质中,混合。
  12. 权利要求1-8中任一项所述的聚己内酯微球预分散组合物在制备聚己内酯注射用凝胶、植入物、药物载体中的应用。
PCT/CN2023/114949 2022-09-30 2023-08-25 一种聚己内酯微球预分散组合物及由其制备的聚己内酯注射用凝胶 WO2024066843A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211205858.2A CN115282337B (zh) 2022-09-30 2022-09-30 一种聚己内酯微球预分散组合物及由其制备的聚己内酯注射用凝胶
CN202211205858.2 2022-09-30

Publications (1)

Publication Number Publication Date
WO2024066843A1 true WO2024066843A1 (zh) 2024-04-04

Family

ID=83833303

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/114949 WO2024066843A1 (zh) 2022-09-30 2023-08-25 一种聚己内酯微球预分散组合物及由其制备的聚己内酯注射用凝胶

Country Status (2)

Country Link
CN (2) CN115282337B (zh)
WO (1) WO2024066843A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115282337B (zh) * 2022-09-30 2023-01-17 中国远大集团有限责任公司 一种聚己内酯微球预分散组合物及由其制备的聚己内酯注射用凝胶
CN115926259B (zh) * 2022-12-13 2024-05-28 江苏西宏生物医药有限公司 一种聚己内酯微球凝胶
CN116617466A (zh) * 2023-07-21 2023-08-22 北京万洁天元医疗器械股份有限公司 一种可注射凝胶及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100215702A1 (en) * 2007-07-26 2010-08-26 Aqtis Ip Bv Microparticles comprising pcl and uses thereof
CN112999426A (zh) * 2021-03-03 2021-06-22 江苏西宏生物医药有限公司 一种壳聚糖/聚己内酯复合物微球凝胶
WO2021179072A1 (en) * 2020-03-10 2021-09-16 Skinlife Technologies Inc. Methods and apparatuses to reduce settling rate of a micro-particle suspension
CN114099784A (zh) * 2021-10-26 2022-03-01 四川兴科蓉药业有限责任公司 一种注射型皮肤填充组合物及其制备方法与应用
CN114146020A (zh) * 2022-02-10 2022-03-08 中国远大集团有限责任公司 一种注射美容产品及其制备方法和应用
CN114209887A (zh) * 2021-08-24 2022-03-22 杭州协合医疗用品有限公司 一种含可控降解聚酯微球的注射用凝胶
CN115068409A (zh) * 2022-06-20 2022-09-20 苏州恒瑞迦俐生生物医药科技有限公司 一种混合物的制备方法
CN115282337A (zh) * 2022-09-30 2022-11-04 中国远大集团有限责任公司 一种聚己内酯微球预分散组合物及由其制备的聚己内酯注射用凝胶

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100215702A1 (en) * 2007-07-26 2010-08-26 Aqtis Ip Bv Microparticles comprising pcl and uses thereof
WO2021179072A1 (en) * 2020-03-10 2021-09-16 Skinlife Technologies Inc. Methods and apparatuses to reduce settling rate of a micro-particle suspension
CN112999426A (zh) * 2021-03-03 2021-06-22 江苏西宏生物医药有限公司 一种壳聚糖/聚己内酯复合物微球凝胶
CN114209887A (zh) * 2021-08-24 2022-03-22 杭州协合医疗用品有限公司 一种含可控降解聚酯微球的注射用凝胶
CN114099784A (zh) * 2021-10-26 2022-03-01 四川兴科蓉药业有限责任公司 一种注射型皮肤填充组合物及其制备方法与应用
CN114146020A (zh) * 2022-02-10 2022-03-08 中国远大集团有限责任公司 一种注射美容产品及其制备方法和应用
CN115068409A (zh) * 2022-06-20 2022-09-20 苏州恒瑞迦俐生生物医药科技有限公司 一种混合物的制备方法
CN115282337A (zh) * 2022-09-30 2022-11-04 中国远大集团有限责任公司 一种聚己内酯微球预分散组合物及由其制备的聚己内酯注射用凝胶

Also Published As

Publication number Publication date
CN115282337A (zh) 2022-11-04
CN117838921A (zh) 2024-04-09
CN115282337B (zh) 2023-01-17

Similar Documents

Publication Publication Date Title
WO2024066843A1 (zh) 一种聚己内酯微球预分散组合物及由其制备的聚己内酯注射用凝胶
Nezhad-Mokhtari et al. An injectable chitosan-based hydrogel scaffold containing gold nanoparticles for tissue engineering applications
Chen et al. Magnetic and self-healing chitosan-alginate hydrogel encapsulated gelatin microspheres via covalent cross-linking for drug delivery
US6544503B1 (en) Process for the preparation of aqueous dispersions of particles of water-soluble polymers and the particles obtained
TWI605834B (zh) 透明質酸組成物的製造方法
US9561961B2 (en) Injectable fillers for aesthetic medical enhancement and for therapeutic applications
EP0830416B1 (en) Process for the preparation of crosslinked particles of water soluble polymers, the particles obtained and their use
US20040185021A1 (en) Tissue augmentation material and method
CN110964215B (zh) 一种注射用左旋聚乳酸和交联透明质酸复合凝胶的制备方法及所得产品
WO2008100044A1 (en) Chemically cross-linked hyaluronic acid hydrogel nanoparticles and the method for preparing thereof
EP1204434A1 (en) Tissue augmentation material and methods
Nanda et al. Hydroxyapatite-alginate composites in drug delivery
Amnieh et al. Evaluation of the effects of chitosan nanoparticles on polyhydroxy butyrate electrospun scaffolds for cartilage tissue engineering applications
TW201247179A (en) Polyelectrolyte complex gels and soft tissue augmentation implants comprising the same
EP4188468A1 (en) Biocompatible, injectable and in situ gelling hydrogels and preparation and applications of biocompatible, injectable and in situ gelling hydrogels based on cellulose nanofibrils for tissue and organ repair
US20240124658A1 (en) Crosslinked polysaccharides and related methods
JP6688386B2 (ja) ヒアルロン酸マイクロスポンジ及びその製造方法
JP2022527503A (ja) 複数の形態のヒアルロン酸を含む注射可能で均質なゲルおよびその製造方法
JP7408217B2 (ja) 高分子マイクロ粒子の製造方法、高分子マイクロ粒子、それを含む医療用組成物、美容組成物、医療用品および美容用品
CN116672498A (zh) 一种注射用复合材料及其用途
WO2008066382A1 (en) Carboxymethyl cellulose-stabilised tissue filler and its preparation and use
WO2023093532A1 (zh) 一种复合凝胶、制备方法及应用
TWI840478B (zh) 交聯性多醣及相關方法
CN113209370B (zh) 可生物降解的注射填充物及其制备方法和其应用
Louvier‐Hernández et al. Chitin and chitosan as biomaterial building blocks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23870086

Country of ref document: EP

Kind code of ref document: A1