CN106478091A - 添加MgO的0.45BCTZS‑0.55BNT高储能密度陶瓷材料及其制备方法 - Google Patents

添加MgO的0.45BCTZS‑0.55BNT高储能密度陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN106478091A
CN106478091A CN201610875183.0A CN201610875183A CN106478091A CN 106478091 A CN106478091 A CN 106478091A CN 201610875183 A CN201610875183 A CN 201610875183A CN 106478091 A CN106478091 A CN 106478091A
Authority
CN
China
Prior art keywords
mgo
energy storage
ceramic material
high energy
storage density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610875183.0A
Other languages
English (en)
Inventor
蒲永平
姚谋腾
高淑雅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi University of Science and Technology
Original Assignee
Shaanxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi University of Science and Technology filed Critical Shaanxi University of Science and Technology
Priority to CN201610875183.0A priority Critical patent/CN106478091A/zh
Publication of CN106478091A publication Critical patent/CN106478091A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/475Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on bismuth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Chemistry (AREA)

Abstract

本发明涉及一种添加MgO的0.45BCTZS‑0.55BNT高储能密度陶瓷材料及其制备方法,首先将BCTZS陶瓷粉体,BNT陶瓷粉体和氧化镁粉体按照化学式0.45BCTZS‑0.55BNT‑xwt%MgO的化学计量比进行配料,混合均匀后经造粒和成型后,在1150~1200℃下保温2~6h烧结成瓷,得到高储能密度陶瓷材料;其中,x取值范围为3~7。本发明采用固相法,向0.45BCTZS‑0.55BNT添加MgO来提高其击穿强度,从而获得具有高储能密度的陶瓷材料;添加MgO有效降低陶瓷材料的介电损耗,增大其晶界电阻。同时由于MgO在陶瓷中的扩散速率较慢,使得过量的MgO在晶界处积累,可以有效抑制晶粒生长。

Description

添加MgO的0.45BCTZS-0.55BNT高储能密度陶瓷材料及其制备 方法
【技术领域】
本发明属于电子陶瓷领域,具体涉及一种添加MgO的0.45BCTZS-0.55BNT高储能密度陶瓷材料及其制备方法。
【背景技术】
陶瓷储能电容器具有功率密度高、充放电速度快、抗循环老化、适用于高温高压等极端环境和性能稳定的优点,符合新时期能源利用的要求,在电力、电子系统中扮演着越来越重要的角色。储能电容器是太阳能、风能等新能源发电系统以及混合动力汽车的逆变设备中不可或缺的组成部分,但由于介电材料储能密度较低,使得储能电容器占整个逆变设备体积的40%;在军事应用方面,坦克、电磁炮、定向能武器、电气化发射平台以及综合全电力推进舰艇等负载都需要高达100kA的工作电流,如此高的电流只能由高储能密度电容器提供。应用于脉冲功率源的储能电容器需耐受1MV以上的高压,并且形成高能脉冲的持续时间不低于10-1s。为了实现设备的轻量化、微型化和满足特殊用途对介电材料的储能特性提出了更高的要求,改善其储能特性的关键是研发高储能密度介电材料。
铁电陶瓷材料的储能密度取决于击穿强度的大小(Eb),剩余极化强度(Pr)和最大极化强度(Pm)之间的差值以及电滞回线的闭合面积。
0.45BCTZS-0.55BNT陶瓷的最大极化强度高达30.58μC/cm2,然而其击穿强度只有13.02kV/mm,储能密度仅为1.21J/cm3,难以满足实际应用的要求。
【发明内容】
本发明的目的在于克服现有技术中存在的缺陷,提供一种添加MgO的0.45BCTZS-0.55BNT高储能密度陶瓷材料及其制备方法,通过该方法制得的陶瓷材料储能密度高。
为实现上述目的,本发明方法采用如下的技术方案:
包括以下步骤:首先将BCTZS陶瓷粉体,BNT陶瓷粉体和氧化镁粉体按照化学式0.45BCTZS-0.55BNT-xwt%MgO的化学计量比进行配料,混合均匀后经造粒和成型后,在1150~1200℃下保温2~6h烧结成瓷,得到高储能密度陶瓷材料;其中,x取值范围为3~7。
进一步地,所述的混合均匀是通过球磨实现的。
进一步地,所述球磨是以去离子水作为球磨介质。
进一步地,所述球磨的时间为6~8h。
进一步地,混合均匀后在70℃~90℃下烘干,然后进行造粒。
进一步地,BCTZS的化学式为Ba0.85Ca0.15Ti0.85Zr0.1Sn0.05O3,BCTZ陶瓷粉体通过以下步骤制得:按照BCTZS的化学计量比将碳酸钡、碳酸钙、二氧化钛和氧化锆混合均匀后在1250~1300℃下保温2~4h合成BCTZS陶瓷粉体。
进一步地,NBT的化学式为Na0.5Bi0.5TiO3,NBT陶瓷粉体通过以下步骤制得:按照NBT的化学计量比将碳酸钠、氧化铋和二氧化钛混合均匀后在800~850℃下保温4~6h合成NBT陶瓷粉体。
本发明材料的技术方案是:其化学式为0.45BCTZS-0.55BNT-xwt%MgO,其中,x取值范围为3~7。
与现有技术相比,本发明具有以下有益的技术效果:
本发明研究发现,MgO在本申请0.45BCTZS-0.55BNT基体中的扩散速率较慢,使得过量的MgO在晶界处积累,可以有效抑制晶粒生长,细化陶瓷材料的晶粒,使得陶瓷材料具有均匀的微观形貌。其次MgO的击穿强度高达1000kV/cm,添加MgO可以有效降低陶瓷材料的介电损耗,增大其晶界电阻。因此,本发明采用固相法,向0.45BCTZS-0.55BNT添加适量的MgO来提高其击穿强度,从而获得具有高储能密度的陶瓷材料。本发明的制备方法设备简单、操作简单、成本低、可大规模生产,为大规模、低成本制备高储能密度陶瓷材料提供了基础。
本发明以MgO作为添加剂,加入到0.45BCTZS-0.55BNT陶瓷中制备0.45BCTZS-0.55BNT-xwt%MgO(x=3-7)陶瓷材料,以提高其击穿强度,制得高储能密度陶瓷材料,制备的0.45BCTZS-0.55BNT-xwt%MgO陶瓷材料的储能密度高达1.62J/cm3
【附图说明】
图1是添加3wt%MgO的陶瓷材料的电滞回线图。
图2是添加5wt%MgO的陶瓷材料的电滞回线图。
图3是添加7wt%MgO的陶瓷材料的电滞回线图。
【具体实施方式】
下面结合附图和实施例对本发明做进一步说明。
一种添加MgO的0.45BCTZS-0.55BNT高储能密度陶瓷材料,其特征在于,化学式为0.45BCTZS-0.55BNT-xwt%MgO,其中,x取值范围为3~7,是指MgO的添加量是0.45BCTZS-0.55BNT总质量的3~7%。
实施例1
添加MgO的0.45BCTZS-0.55BNT高储能密度陶瓷材料的制备方法,按照化学式Ba0.85Ca0.15Ti0.85Zr0.1Sn0.05O3(BCTZS),将碳酸钡、碳酸钙、二氧化钛,二氧化锡和氧化锆混合均匀后在1260℃下保温2h合成BCTZS陶瓷粉体,按照化学式Bi0.5Na0.5TiO3(BNT),将碳酸钠、氧化铋和二氧化钛混合均匀后在840℃下保温4h合成BNT陶瓷粉体。将BCTZS陶瓷粉体,BNT陶瓷粉体和MgO按照化学式0.45BCTZS-0.55BNT-3wt%MgO配料,用去离子水作为球磨介质球磨6h混合均匀,然后在80℃下烘干,经造粒、成型后,在1180℃下保温2h烧结成瓷。
实施例2
添加MgO的0.45BCTZS-0.55BNT高储能密度陶瓷材料的制备方法,按照化学式Ba0.85Ca0.15Ti0.85Zr0.1Sn0.05O3(BCTZS),将碳酸钡、碳酸钙、二氧化钛,二氧化锡和氧化锆混合均匀后在1250℃下保温3h合成BCTZS陶瓷粉体,按照化学式Bi0.5Na0.5TiO3(BNT),将碳酸钠、氧化铋和二氧化钛混合均匀后在850℃下保温5h合成BNT陶瓷粉体。将BCTZS陶瓷粉体,BNT陶瓷粉体和MgO按照化学式0.45BCTZS-0.55BNT-3.5wt%MgO配料,用去离子水作为球磨介质球磨7h混合均匀,然后在85℃下烘干,经造粒、成型后,在1150℃下保温4h烧结成瓷。
实施例3
添加MgO的0.45BCTZS-0.55BNT高储能密度陶瓷材料的制备方法,按照化学式Ba0.85Ca0.15Ti0.85Zr0.1Sn0.05O3(BCTZS),将碳酸钡、碳酸钙、二氧化钛,二氧化锡和氧化锆混合均匀后在1270℃下保温4h合成BCTZS陶瓷粉体,按照化学式Bi0.5Na0.5TiO3(BNT),将碳酸钠、氧化铋和二氧化钛混合均匀后在830℃下保温5.5h合成BNT陶瓷粉体。将BCTZS陶瓷粉体,BNT陶瓷粉体和MgO按照化学式0.45BCTZS-0.55BNT-4wt%MgO配料,用去离子水作为球磨介质球磨8h混合均匀,然后在90℃下烘干,经造粒、成型后,在1160℃下保温6h烧结成瓷。
实施例4
添加MgO的0.45BCTZS-0.55BNT高储能密度陶瓷材料的制备方法,按照化学式Ba0.85Ca0.15Ti0.85Zr0.1Sn0.05O3(BCTZS),将碳酸钡、碳酸钙、二氧化钛,二氧化锡和氧化锆混合均匀后在1280℃下保温3.6h合成BCTZS陶瓷粉体,按照化学式Bi0.5Na0.5TiO3(BNT),将碳酸钠、氧化铋和二氧化钛混合均匀后在820℃下保温4.5h合成BNT陶瓷粉体。将BCTZS陶瓷粉体,BNT陶瓷粉体和MgO按照化学式0.45BCTZS-0.55BNT-5wt%MgO配料,用去离子水作为球磨介质球磨7.5h混合均匀,然后在75℃下烘干,经造粒、成型后,在1170℃下保温2h烧结成瓷。
实施例5
添加MgO的0.45BCTZS-0.55BNT高储能密度陶瓷材料的制备方法,按照化学式Ba0.85Ca0.15Ti0.85Zr0.1Sn0.05O3(BCTZS),将碳酸钡、碳酸钙、二氧化钛,二氧化锡和氧化锆混合均匀后在1290℃下保温2.8h合成BCTZS陶瓷粉体,按照化学式Bi0.5Na0.5TiO3(BNT),将碳酸钠、氧化铋和二氧化钛混合均匀后在810℃下保温6h合成BNT陶瓷粉体。将BCTZS陶瓷粉体,BNT陶瓷粉体和MgO按照化学式0.45BCTZS-0.55BNT-5.5wt%MgO配料,用去离子水作为球磨介质球磨6.5h混合均匀,然后在70℃下烘干,经造粒、成型后,在1200℃下保温5.5h烧结成瓷。
实施例6
添加MgO的0.45BCTZS-0.55BNT高储能密度陶瓷材料的制备方法,按照化学式Ba0.85Ca0.15Ti0.85Zr0.1Sn0.05O3(BCTZS),将碳酸钡、碳酸钙、二氧化钛,二氧化锡和氧化锆混合均匀后在1300℃下保温2.5h合成BCTZS陶瓷粉体,按照化学式Bi0.5Na0.5TiO3(BNT),将碳酸钠、氧化铋和二氧化钛混合均匀后在800℃下保温4.8h合成BNT陶瓷粉体。将BCTZS陶瓷粉体,BNT陶瓷粉体和MgO按照化学式0.45BCTZS-0.55BNT-6wt%MgO配料,用去离子水作为球磨介质球磨6.2h混合均匀,然后在72℃下烘干,经造粒、成型后,在1190℃下保温5h烧结成瓷。
实施例7
添加MgO的0.45BCTZS-0.55BNT高储能密度陶瓷材料的制备方法,按照化学式Ba0.85Ca0.15Ti0.85Zr0.1Sn0.05O3(BCTZS),将碳酸钡、碳酸钙、二氧化钛,二氧化锡和氧化锆混合均匀后在1295℃下保温3.5h合成BCTZS陶瓷粉体,按照化学式Bi0.5Na0.5TiO3(BNT),将碳酸钠、氧化铋和二氧化钛混合均匀后在805℃下保温5.4h合成BNT陶瓷粉体。将BCTZS陶瓷粉体,BNT陶瓷粉体和MgO按照化学式0.45BCTZS-0.55BNT-7wt%MgO配料,用去离子水作为球磨介质球磨7.4h混合均匀,然后在78℃下烘干,经造粒、成型后,在1185℃下保温2.5h烧结成瓷。
实施例8
添加MgO的0.45BCTZS-0.55BNT高储能密度陶瓷材料的制备方法,按照化学式Ba0.85Ca0.15Ti0.85Zr0.1Sn0.05O3(BCTZS),将碳酸钡、碳酸钙、二氧化钛,二氧化锡和氧化锆混合均匀后在1285℃下保温2.1h合成BCTZS陶瓷粉体,按照化学式Bi0.5Na0.5TiO3(BNT),将碳酸钠、氧化铋和二氧化钛混合均匀后在815℃下保温4.4h合成BNT陶瓷粉体。将BCTZS陶瓷粉体,BNT陶瓷粉体和MgO按照化学式0.45BCTZS-0.55BNT-6.5wt%MgO配料,用去离子水作为球磨介质球磨6.8h混合均匀,然后在84℃下烘干,经造粒、成型后,在1165℃下保温4.5h烧结成瓷。
实施例9
添加MgO的0.45BCTZS-0.55BNT高储能密度陶瓷材料的制备方法,按照化学式Ba0.85Ca0.15Ti0.85Zr0.1Sn0.05O3(BCTZS),将碳酸钡、碳酸钙、二氧化钛,二氧化锡和氧化锆混合均匀后在1275℃下保温2.4h合成BCTZS陶瓷粉体,按照化学式Bi0.5Na0.5TiO3(BNT),将碳酸钠、氧化铋和二氧化钛混合均匀后在835℃下保温5.8h合成BNT陶瓷粉体。将BCTZS陶瓷粉体,BNT陶瓷粉体和MgO按照化学式0.45BCTZS-0.55BNT-4.5wt%MgO配料,用去离子水作为球磨介质球磨7.6h混合均匀,然后在86℃下烘干,经造粒、成型后,在1175℃下保温3.5h烧结成瓷。
参见图1,为实施例1中制备的陶瓷样品的电滞回线图,从图中可以看到该样品的储能密度可达1.31J/cm3,储能效率可达77.75%。图2为实施例4中制备的陶瓷样品的电滞回线图,从图中可以看到该样品的储能密度可达1.62J/cm3,储能效率可达79.51%。图3为实施例7中制备的陶瓷样品的电滞回线图,从图中可以看到该样品的储能密度可达1.54J/cm3,储能效率可达73.79%。
本发明添加MgO制备的0.45Ba0.85Ca0.15Ti0.85Zr0.1Sn0.05O3-0.55Bi0.5Na0.5TiO3(0.45BCTZS-0.55BNT))高储能密度陶瓷材料,配方为0.45BCTZS-0.55BNT-xwt%MgO(x=3-7),其制备过程包括以碳酸钡,碳酸钙,碳酸钠,氧化铋,二氧化钛,氧化锆,氧化锡和氧化镁为原料,分别合成BCTZS和BNT陶瓷粉体,采用固相法,按照化学式0.45BCTZS-0.55BNT-xwt%MgO(x=3-7)经配料、球磨,干燥,造粒、成型、烧结等工艺制备0.45BCTZS-0.55BNT-xwt%MgO陶瓷材料。采用固相法制备陶瓷材料具有成本低、产量大以及制备工艺简单等优点。本发明的制备工艺简单,操作简单、成本低,为大规模、低成本制备新型高储能密度陶瓷材料提供了基础。

Claims (8)

1.一种添加MgO的0.45BCTZS-0.55BNT高储能密度陶瓷材料的制备方法,其特征在于:包括以下步骤:首先将BCTZS陶瓷粉体,BNT陶瓷粉体和氧化镁粉体按照化学式0.45BCTZS-0.55BNT-xwt%MgO的化学计量比进行配料,混合均匀后经造粒和成型后,在1150~1200℃下保温2~6h烧结成瓷,得到高储能密度陶瓷材料;其中,x取值范围为3~7。
2.根据权利要求1所述的一种添加MgO的0.45BCTZS-0.55BNT高储能密度陶瓷材料的制备方法,其特征在于:所述的混合均匀是通过球磨实现的。
3.根据权利要求2所述的一种添加MgO的0.45BCTZS-0.55BNT高储能密度陶瓷材料的制备方法,其特征在于:所述球磨是以去离子水作为球磨介质。
4.根据权利要求2或3所述的一种添加MgO的0.45BCTZS-0.55BNT高储能密度陶瓷材料的制备方法,其特征在于:所述球磨的时间为6~8h。
5.根据权利要求2所述的一种添加MgO的0.45BCTZS-0.55BNT高储能密度陶瓷材料的制备方法,其特征在于:混合均匀后在70℃~90℃下烘干,然后进行造粒。
6.根据权利要求1所述的一种添加MgO的0.45BCTZS-0.55BNT高储能密度陶瓷材料的制备方法,其特征在于:BCTZS的化学式为Ba0.85Ca0.15Ti0.85Zr0.1Sn0.05O3,BCTZ陶瓷粉体通过以下步骤制得:按照BCTZS的化学计量比将碳酸钡、碳酸钙、二氧化钛和氧化锆混合均匀后在1250~1300℃下保温2~4h合成BCTZS陶瓷粉体。
7.根据权利要求1所述的一种添加MgO的0.45BCTZS-0.55BNT高储能密度陶瓷材料的制备方法,其特征在于:NBT的化学式为Na0.5Bi0.5TiO3,NBT陶瓷粉体通过以下步骤制得:按照NBT的化学计量比将碳酸钠、氧化铋和二氧化钛混合均匀后在800~850℃下保温4~6h合成NBT陶瓷粉体。
8.一种添加MgO的0.45BCTZS-0.55BNT高储能密度陶瓷材料,其特征在于:其化学式为0.45BCTZS-0.55BNT-xwt%MgO,其中,x取值范围为3~7。
CN201610875183.0A 2016-09-30 2016-09-30 添加MgO的0.45BCTZS‑0.55BNT高储能密度陶瓷材料及其制备方法 Pending CN106478091A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610875183.0A CN106478091A (zh) 2016-09-30 2016-09-30 添加MgO的0.45BCTZS‑0.55BNT高储能密度陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610875183.0A CN106478091A (zh) 2016-09-30 2016-09-30 添加MgO的0.45BCTZS‑0.55BNT高储能密度陶瓷材料及其制备方法

Publications (1)

Publication Number Publication Date
CN106478091A true CN106478091A (zh) 2017-03-08

Family

ID=58268499

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610875183.0A Pending CN106478091A (zh) 2016-09-30 2016-09-30 添加MgO的0.45BCTZS‑0.55BNT高储能密度陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN106478091A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107814569A (zh) * 2017-12-12 2018-03-20 陕西科技大学 一种无铅反铁电体陶瓷及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016007255A1 (en) * 2014-07-09 2016-01-14 Ferro Corporation Mid-k ltcc compositions and devices
CN105712715A (zh) * 2016-01-28 2016-06-29 陕西科技大学 一种SnO2掺杂0.55NBT-0.45BCTZ高储能密度陶瓷材料及其制备方法
CN105753469A (zh) * 2016-01-28 2016-07-13 陕西科技大学 添加MgO的0.475NBT-0.525BCTZ高储能密度陶瓷材料及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016007255A1 (en) * 2014-07-09 2016-01-14 Ferro Corporation Mid-k ltcc compositions and devices
CN105712715A (zh) * 2016-01-28 2016-06-29 陕西科技大学 一种SnO2掺杂0.55NBT-0.45BCTZ高储能密度陶瓷材料及其制备方法
CN105753469A (zh) * 2016-01-28 2016-07-13 陕西科技大学 添加MgO的0.475NBT-0.525BCTZ高储能密度陶瓷材料及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107814569A (zh) * 2017-12-12 2018-03-20 陕西科技大学 一种无铅反铁电体陶瓷及其制备方法

Similar Documents

Publication Publication Date Title
CN112174664A (zh) 一种新型高储能、高效率的铌酸钠基陶瓷材料及其制备方法
CN102820458A (zh) 一种引入离子液体作为碳源制备含氮碳包覆钛酸锂复合材料的合成方法
CN107459350B (zh) 一种介电储能反铁电陶瓷材料及其制备方法
CN104852052A (zh) 一种富锂正极材料、其制备方法及包含该正极材料的锂离子电池正极和锂离子电池
CN111574220A (zh) 一种脉冲储能陶瓷材料及其制备方法
CN103682292B (zh) 高振实密度的钛酸锂材料制备方法
CN103618080A (zh) 制备高电压钴酸锂用四氧化三钴的预处理方法、高电压钴酸锂正极材料及其制备方法
CN106587997A (zh) 一种SrTiO3基无铅高储能密度陶瓷材料及其制备方法
CN106396677A (zh) 微波烧结制备0.5NBT‑0.5BCTZ‑xwt%MgO高储能密度陶瓷材料及方法
CN115557483A (zh) Latp电解质粉末制备方法、电解质片及全固态电池
CN106699173B (zh) 一种反铁电高储能陶瓷材料及其制备方法
CN112745118B (zh) 脉冲储能陶瓷材料及其制备方法
CN106478091A (zh) 添加MgO的0.45BCTZS‑0.55BNT高储能密度陶瓷材料及其制备方法
CN103964844B (zh) 介电储能陶瓷材料的制备方法
CN105712715A (zh) 一种SnO2掺杂0.55NBT-0.45BCTZ高储能密度陶瓷材料及其制备方法
CN115196960B (zh) 一种兼具高储能密度,高功率密度和高效率的钛酸铋钠基弛豫铁电陶瓷材料及其制备方法
CN109320236B (zh) 一种高储能密度和充放电性能的复合材料及其制备方法
CN104058750B (zh) 高储能密度bst基铁电陶瓷的制备技术
CN114292104B (zh) 一种脉冲电容器用储能陶瓷材料及其制备方法
CN115368132A (zh) 一种钛酸钡基陶瓷材料及制备方法
CN111293306B (zh) 一种钡-镓双元掺杂的钴酸锂正极材料及其制备方法
CN104538206A (zh) 一类钙钛矿氧化物在超级电容器中的应用
CN115332619A (zh) 一种用于固态电池的高熵氧化物固态电解质材料及其制备方法与应用
CN110229003B (zh) 一种LiNiLaZrO固体电解质的制备方法和应用
CN109678468A (zh) 一种三元正极LiNi0.5Co0.2Mn0.3O2材料的制备及烧结方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170308

WD01 Invention patent application deemed withdrawn after publication