CN105753469A - 添加MgO的0.475NBT-0.525BCTZ高储能密度陶瓷材料及其制备方法 - Google Patents

添加MgO的0.475NBT-0.525BCTZ高储能密度陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN105753469A
CN105753469A CN201610060238.2A CN201610060238A CN105753469A CN 105753469 A CN105753469 A CN 105753469A CN 201610060238 A CN201610060238 A CN 201610060238A CN 105753469 A CN105753469 A CN 105753469A
Authority
CN
China
Prior art keywords
mgo
storage density
high energy
energy storage
ceramic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610060238.2A
Other languages
English (en)
Inventor
蒲永平
姚谋腾
高淑雅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi University of Science and Technology
Original Assignee
Shaanxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi University of Science and Technology filed Critical Shaanxi University of Science and Technology
Priority to CN201610060238.2A priority Critical patent/CN105753469A/zh
Publication of CN105753469A publication Critical patent/CN105753469A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/475Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on bismuth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

一种添加MgO的0.475NBT?0.525BCTZ高储能密度陶瓷材料的制备方法,将BCTZ陶瓷粉体、NBT陶瓷粉体和氧化镁粉体按照化学式0.475NBT?0.525BCTZ?x wt%MgO配料,混合均匀后经造粒、成型后,在1150?1180℃下保温2?6h烧结成瓷,得到高储能密度陶瓷材料;其中,x取值范围为3?7。本发明的制备工艺简单,操作简单、成本低,为大规模、低成本制备新型高储能密度陶瓷材料提供了基础。

Description

添加MgO的0.475NBT-0.525BCTZ高储能密度陶瓷材料及其制备方法
技术领域
本发明属于电子陶瓷领域,涉及一种MgO添加0.475NBT-0.525BCTZ高储能密度陶瓷材料及其制备方法。
背景技术
电容器作为一种重要的储能器件,是电子设备中大量使用的电子元器件之一。而陶瓷电容器具有使用温度范围宽、寿命长、性能可靠等优点而被广泛使用。电容储能容易保持,不需要超导体。电容储能还有很重要的一点就是能够提供瞬间大功率,非常适合于激光器,闪光灯等应用场合。电容器储存的能量大小由其尺寸和介质材料的储能密度决定。为了减小其尺寸,提高其能量的存储量,开发具有高储能密度的陶瓷介质材料可以有效解决这一问题。陶瓷电容器具有使用温度范围宽、寿命长、性能可靠等优点而被广泛使用。其中铁电陶瓷材料具有介电常数大,非线性效应强等优点,单位体积铁电陶瓷材料的储能密度J可由下式计算:
J=∫EdP
其中P为极化强度,E为其击穿强度。
铁电陶瓷材料的储能密度由其最小极化强度(Pr)、最大极化强度(Pm)和击穿强度(Eb)共同决定。被广泛研究的Ba0.4Sr0.6TiO3陶瓷的储能密度仅仅为~0.37J/cm3,储能密度较低。
发明内容
本发明的目的是提供一种添加MgO的0.475NBT-0.525BCTZ高储能密度陶瓷材料及其制备方法,该方法制得的陶瓷材料储能密度高达1.04J/cm3,并且制备方法简单,易于实现。
为实现上述目的,本发明采用如下的技术方案:
一种添加MgO的0.475NBT-0.525BCTZ高储能密度陶瓷材料的制备方法,将BCTZ陶瓷粉体、NBT陶瓷粉体和氧化镁粉体按照化学式0.475NBT-0.525BCTZ-xwt%MgO配料,混合均匀后经造粒、成型后,在1150-1180℃下保温2-6h烧结成瓷,得到高储能密度陶瓷材料;其中,x取值范围为3-7。
所述混合均匀是通过球磨实现的。
所述球磨是以去离子水作为球磨介质。
所述球磨的时间为6-8h。
混合均匀后在70℃-90℃下烘干。
所述BCTZ陶瓷粉体通过以下方法制得:按照化学式Ba0.85Ca0.15Zr0.1Ti0.9O3,将碳酸钡、碳酸钙、二氧化钛和氧化锆混合均匀后在1270℃下保温2h,制得BCTZ陶瓷粉体。
所述NBT陶瓷粉体通过以下方法制得:按照化学式Na0.5Bi0.5TiO3,将碳酸钠、氧化铋和二氧化钛混合均匀后在840℃下保温4h,制得NBT陶瓷粉体。
一种添加MgO的0.475NBT-0.525BCTZ高储能密度陶瓷材料,化学式为0.475NBT-0.525BCTZ-xwt%MgO,其中,x取值范围为3-7,该材料的密度为1.04J/cm3
与现有技术相比,本发明具有的有益效果:0.475NBT-0.525BCTZ具有较高的最大极化强度(Pm~25.22μC/cm3),但是其击穿强度较低(Eb~94.73kV/cm),使其具有较低的储能密度(0.86J/cm3),因此本发明通过添加MgO来提高其击穿强度,从而制得高储能密度陶瓷材料。由于MgO在陶瓷中的扩散速率较慢,使得过量的MgO在晶界处积累,可以有效抑制晶粒生长,细化陶瓷材料的晶粒,使得陶瓷材料具有均匀的微观形貌。其次MgO的击穿强度高达1000kV/cm,添加MgO还可以有效降低陶瓷材料的介电损耗。因此,本发明向0.475NBT-0.525BCTZ添加适量的MgO来提高其击穿强度,从而获得具有高储能密度的陶瓷材料。本发明采用传统固相法制备的0.475NBT-0.525BCTZ-xwt%MgO陶瓷材料的储能密度高达1.04J/cm3。本发明的制备方法设备简单、操作简单、成本低、可大规模生产,为大规模、低成本制备高储能密度陶瓷材料提供了基础。
进一步的,本发明以碳酸钡,碳酸钙,碳酸钠,氧化铋,二氧化钛,氧化锆和氧化镁为原料,采用固相法,制备0.475NBT-0.525BCTZ-xwt%MgO(x=3-7)陶瓷材料。本发明的制备方法设备简单、操作简单、成本低、可大规模生产,为大规模、低成本制备高储能密度陶瓷材料提供了基础。
附图说明
图1是添加3wt%MgO的陶瓷材料的电滞回线图。
图2是添加5wt%MgO的陶瓷材料的电滞回线图。
图3是添加7wt%MgO的陶瓷材料的电滞回线图。
具体实施方式
下面结合附图和实施例对本发明做进一步说明。
一种MgO添加0.475NBT-0.525BCTZ高储能密度陶瓷材料,其化学式为0.475NBT-0.525BCTZ-xwt%MgO,其中,x取值范围为3-7。wt%表示重量百分比。
实施例1
一种添加MgO的0.475NBT-0.525BCTZ高储能密度陶瓷材料的制备方法:
按照化学式Ba0.85Ca0.15Zr0.1Ti0.9O3(BCTZ),将碳酸钡、碳酸钙、二氧化钛和氧化锆混合均匀后在1270℃下保温2h,合成BCTZ陶瓷粉体;
按照化学式Na0.5Bi0.5TiO3(NBT),将碳酸钠、氧化铋和二氧化钛混合均匀后在840℃下保温4h,合成NBT陶瓷粉体。
将BCTZ陶瓷粉体、NBT陶瓷粉体和MgO按照化学式0.475NBT-0.525BCTZ-3wt%MgO配料,用去离子水作为球磨介质球磨6h混合均匀,然后在80℃下烘干,经造粒、成型后,在1170℃下保温2h烧结成瓷,得到高储能密度陶瓷材料。
实施例2
一种添加MgO的0.475NBT-0.525BCTZ高储能密度陶瓷材料的制备方法:按照化学式Ba0.85Ca0.15Zr0.1Ti0.9O3(BCTZ),将碳酸钡、碳酸钙、二氧化钛和氧化锆混合均匀后在1270℃下保温2h合成BCTZ陶瓷粉体;
按照化学式Na0.5Bi0.5TiO3(NBT),将碳酸钠、氧化铋和二氧化钛混合均匀后在840℃下保温4h,合成NBT陶瓷粉体。
将BCTZ陶瓷粉体、NBT陶瓷粉体和MgO按照化学式0.475NBT-0.525BCTZ-3wt%MgO配料,用去离子水作为球磨介质球磨6h混合均匀,然后在80℃下烘干,经造粒、成型后,在1170℃下保温4h烧结成瓷,得到高储能密度陶瓷材料。
实施例3
一种添加MgO的0.475NBT-0.525BCTZ高储能密度陶瓷材料的制备方法,按照化学式Ba0.85Ca0.15Zr0.1Ti0.9O3(BCTZ),将碳酸钡、碳酸钙、二氧化钛和氧化锆混合均匀后在1270℃下保温2h,合成BCTZ陶瓷粉体;
按照化学式Na0.5Bi0.5TiO3(NBT),将碳酸钠、氧化铋和二氧化钛混合均匀后在840℃下保温4h,合成NBT陶瓷粉体。
将BCTZ陶瓷粉体、NBT陶瓷粉体和MgO按照化学式0.475NBT-0.525BCTZ-3wt%MgO配料,用去离子水作为球磨介质球磨6h混合均匀,然后在80℃下烘干,经造粒、成型后,在1170℃下保温6h烧结成瓷,得到高储能密度陶瓷材料。
实施例4
一种添加MgO的0.475NBT-0.525BCTZ高储能密度陶瓷材料的制备方法:
按照化学式Ba0.85Ca0.15Zr0.1Ti0.9O3(BCTZ),将碳酸钡、碳酸钙、二氧化钛和氧化锆混合均匀后在1270℃下保温2h,合成BCTZ陶瓷粉体;
按照化学式Na0.5Bi0.5TiO3(NBT),将碳酸钠、氧化铋和二氧化钛混合均匀后在840℃下保温4h,合成NBT陶瓷粉体。
将BCTZ陶瓷粉体,NBT陶瓷粉体和MgO按照化学式0.475NBT-0.525BCTZ-5wt%MgO配料,用去离子水作为球磨介质球磨6h混合均匀,然后在80℃下烘干,经造粒、成型后,在1170℃下保温2h烧结成瓷,得到高储能密度陶瓷材料。
实施例5
一种添加MgO的0.475NBT-0.525BCTZ高储能密度陶瓷材料的制备方法:
按照化学式Ba0.85Ca0.15Zr0.1Ti0.9O3(BCTZ),将碳酸钡、碳酸钙、二氧化钛和氧化锆混合均匀后在1270℃下保温2h,合成BCTZ陶瓷粉体;
按照化学式Na0.5Bi0.5TiO3(NBT),将碳酸钠、氧化铋和二氧化钛混合均匀后在840℃下保温4h,合成NBT陶瓷粉体。
将BCTZ陶瓷粉体、NBT陶瓷粉体和MgO按照化学式0.475NBT-0.525BCTZ-5wt%MgO配料,用去离子水作为球磨介质球磨6h混合均匀,然后在80℃下烘干,经造粒、成型后,在1170℃下保温4h烧结成瓷,得到高储能密度陶瓷材料。
实施例6
一种添加MgO的0.475NBT-0.525BCTZ高储能密度陶瓷材料的制备方法:
按照化学式Ba0.85Ca0.15Zr0.1Ti0.9O3(BCTZ),将碳酸钡、碳酸钙、二氧化钛和氧化锆混合均匀后在1270℃下保温2h,合成BCTZ陶瓷粉体;
按照化学式Na0.5Bi0.5TiO3(NBT),将碳酸钠、氧化铋和二氧化钛混合均匀后在840℃下保温4h,合成NBT陶瓷粉体。
将BCTZ陶瓷粉体、NBT陶瓷粉体和MgO按照化学式0.475NBT-0.525BCTZ-5wt%MgO配料,用去离子水作为球磨介质球磨6h混合均匀,然后在80℃下烘干,经造粒、成型后,在1160℃下保温6h烧结成瓷,得到高储能密度陶瓷材料。
实施例7
一种添加MgO的0.475NBT-0.525BCTZ高储能密度陶瓷材料的制备方法:
按照化学式Ba0.85Ca0.15Zr0.1Ti0.9O3(BCTZ),将碳酸钡、碳酸钙、二氧化钛和氧化锆混合均匀后在1270℃下保温2h,合成BCTZ陶瓷粉体;
按照化学式Na0.5Bi0.5TiO3(NBT),将碳酸钠、氧化铋和二氧化钛混合均匀后在840℃下保温4h,合成NBT陶瓷粉体。
将BCTZ陶瓷粉体、NBT陶瓷粉体和MgO按照化学式0.475NBT-0.525BCTZ-7wt%MgO配料,用去离子水作为球磨介质球磨6h混合均匀,然后在80℃下烘干,经造粒、成型后,在1170℃下保温2h烧结成瓷,得到高储能密度陶瓷材料。
实施例8
一种添加MgO的0.475NBT-0.525BCTZ高储能密度陶瓷材料的制备方法:
按照化学式Ba0.85Ca0.15Zr0.1Ti0.9O3(BCTZ),将碳酸钡、碳酸钙、二氧化钛和氧化锆混合均匀后在1270℃下保温2h,合成BCTZ陶瓷粉体;
按照化学式Na0.5Bi0.5TiO3(NBT),将碳酸钠、氧化铋和二氧化钛混合均匀后在840℃下保温4h,合成NBT陶瓷粉体。
将BCTZ陶瓷粉体、NBT陶瓷粉体和MgO按照化学式0.475NBT-0.525BCTZ-4wt%MgO配料,用去离子水作为球磨介质球磨8h混合均匀,然后在70℃下烘干,经造粒、成型后,在1180℃下保温4h烧结成瓷,得到高储能密度陶瓷材料。
实施例9
一种添加MgO的0.475NBT-0.525BCTZ高储能密度陶瓷材料的制备方法:
按照化学式Ba0.85Ca0.15Zr0.1Ti0.9O3(BCTZ),将碳酸钡、碳酸钙、二氧化钛和氧化锆混合均匀后在1270℃下保温2h,合成BCTZ陶瓷粉体;
按照化学式Na0.5Bi0.5TiO3(NBT),将碳酸钠、氧化铋和二氧化钛混合均匀后在840℃下保温4h合成NBT陶瓷粉体。
将BCTZ陶瓷粉体、NBT陶瓷粉体和MgO按照化学式0.475NBT-0.525BCTZ-6wt%MgO配料,用去离子水作为球磨介质球磨7h混合均匀,然后在90℃下烘干,经造粒、成型后,在1150℃下保温6h烧结成瓷,得到高储能密度陶瓷材料。
参见图1,为实施例1中制备的陶瓷样品的电滞回线图,从图中可以看到该样品的储能密度可达0.92J/cm3,储能效率可达70.22%。图2为实施例4中制备的陶瓷样品的电滞回线图,从图中可以看到该样品的储能密度可达1.04J/cm3,储能效率可达69.79%。图3为实施例7中制备的陶瓷样品的电滞回线图,从图中可以看到该样品的储能密度可达1.02J/cm3,储能效率可达69.38%。

Claims (8)

1.一种添加MgO的0.475NBT-0.525BCTZ高储能密度陶瓷材料的制备方法,其特征在于,将BCTZ陶瓷粉体、NBT陶瓷粉体和氧化镁粉体按照化学式0.475NBT-0.525BCTZ-xwt%MgO配料,混合均匀后经造粒、成型后,在1150-1180℃下保温2-6h烧结成瓷,得到高储能密度陶瓷材料;其中,x取值范围为3-7。
2.根据权利要求1所述的添加MgO的0.475NBT-0.525BCTZ高储能密度陶瓷材料的制备方法,其特征在于,所述混合均匀是通过球磨实现的。
3.根据权利要求2所述的添加MgO的0.475NBT-0.525BCTZ高储能密度陶瓷材料的制备方法,其特征在于,所述球磨是以去离子水作为球磨介质。
4.根据权利要求2或3所述的添加MgO的0.475NBT-0.525BCTZ高储能密度陶瓷材料的制备方法,其特征在于,所述球磨的时间为6-8h。
5.根据权利要求2所述的添加MgO的0.475NBT-0.525BCTZ高储能密度陶瓷材料的制备方法,其特征在于,混合均匀后在70℃-90℃下烘干。
6.根据权利要求1所述的添加MgO的0.475NBT-0.525BCTZ高储能密度陶瓷材料的制备方法,其特征在于,所述BCTZ陶瓷粉体通过以下方法制得:按照化学式Ba0.85Ca0.15Zr0.1Ti0.9O3,将碳酸钡、碳酸钙、二氧化钛和氧化锆混合均匀后在1270℃下保温2h,制得BCTZ陶瓷粉体。
7.根据权利要求1所述的添加MgO的0.475NBT-0.525BCTZ高储能密度陶瓷材料的制备方法,其特征在于,所述NBT陶瓷粉体通过以下方法制得:按照化学式Na0.5Bi0.5TiO3,将碳酸钠、氧化铋和二氧化钛混合均匀后在840℃下保温4h,制得NBT陶瓷粉体。
8.一种如权利要求1所述的方法制备的添加MgO的0.475NBT-0.525BCTZ高储能密度陶瓷材料,其特征在于,化学式为0.475NBT-0.525BCTZ-xwt%MgO,其中,x取值范围为3-7,该材料的密度为1.04J/cm3
CN201610060238.2A 2016-01-28 2016-01-28 添加MgO的0.475NBT-0.525BCTZ高储能密度陶瓷材料及其制备方法 Pending CN105753469A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610060238.2A CN105753469A (zh) 2016-01-28 2016-01-28 添加MgO的0.475NBT-0.525BCTZ高储能密度陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610060238.2A CN105753469A (zh) 2016-01-28 2016-01-28 添加MgO的0.475NBT-0.525BCTZ高储能密度陶瓷材料及其制备方法

Publications (1)

Publication Number Publication Date
CN105753469A true CN105753469A (zh) 2016-07-13

Family

ID=56342652

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610060238.2A Pending CN105753469A (zh) 2016-01-28 2016-01-28 添加MgO的0.475NBT-0.525BCTZ高储能密度陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN105753469A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106396677A (zh) * 2016-09-30 2017-02-15 陕西科技大学 微波烧结制备0.5NBT‑0.5BCTZ‑xwt%MgO高储能密度陶瓷材料及方法
CN106478091A (zh) * 2016-09-30 2017-03-08 陕西科技大学 添加MgO的0.45BCTZS‑0.55BNT高储能密度陶瓷材料及其制备方法
CN106915964A (zh) * 2017-02-21 2017-07-04 陕西科技大学 一种无铅高储能密度陶瓷材料及其制备方法
CN107814569A (zh) * 2017-12-12 2018-03-20 陕西科技大学 一种无铅反铁电体陶瓷及其制备方法
CN110981479A (zh) * 2020-01-10 2020-04-10 陕西科技大学 一种高击穿的铁电陶瓷及其制备方法
CN112661508A (zh) * 2021-01-20 2021-04-16 西北大学 一种低烧高储能锆钛酸锶钡基陶瓷材料及其制备方法
CN114874007A (zh) * 2022-05-10 2022-08-09 河南科技大学 锆酸钙-钛酸锶高效率储能电介质复合陶瓷的制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104773755A (zh) * 2015-04-21 2015-07-15 陕西科技大学 一种通过掺杂Mg2+水热法制备(Ba,Sr)TiO3纳米粉体的方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104773755A (zh) * 2015-04-21 2015-07-15 陕西科技大学 一种通过掺杂Mg2+水热法制备(Ba,Sr)TiO3纳米粉体的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
QIAN GOU ET AL.: "Enhanced d33 value of Bi0.5Na0.5TiO3–(Ba0.85Ca0.15)(Ti0.90Zr0.10)O3 lead-free ceramics", 《JOURNAL OF ALLOYS AND COMPOUNDS》 *
SHA QIAO ET AL.: "Effect of Ba0.85Ca0.15Ti0.90Zr0.10O3 content on the microstructure and electrical properties of Bi0.51(Na0.82K0.18) 0.50TiO3 ceramics", 《CERAMICS INTERNATIONAL》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106396677A (zh) * 2016-09-30 2017-02-15 陕西科技大学 微波烧结制备0.5NBT‑0.5BCTZ‑xwt%MgO高储能密度陶瓷材料及方法
CN106478091A (zh) * 2016-09-30 2017-03-08 陕西科技大学 添加MgO的0.45BCTZS‑0.55BNT高储能密度陶瓷材料及其制备方法
CN106915964A (zh) * 2017-02-21 2017-07-04 陕西科技大学 一种无铅高储能密度陶瓷材料及其制备方法
CN106915964B (zh) * 2017-02-21 2020-04-07 陕西科技大学 一种无铅高储能密度陶瓷材料及其制备方法
CN107814569A (zh) * 2017-12-12 2018-03-20 陕西科技大学 一种无铅反铁电体陶瓷及其制备方法
CN110981479A (zh) * 2020-01-10 2020-04-10 陕西科技大学 一种高击穿的铁电陶瓷及其制备方法
CN110981479B (zh) * 2020-01-10 2022-03-01 陕西科技大学 一种高击穿的铁电陶瓷及其制备方法
CN112661508A (zh) * 2021-01-20 2021-04-16 西北大学 一种低烧高储能锆钛酸锶钡基陶瓷材料及其制备方法
CN114874007A (zh) * 2022-05-10 2022-08-09 河南科技大学 锆酸钙-钛酸锶高效率储能电介质复合陶瓷的制备方法
CN114874007B (zh) * 2022-05-10 2022-12-09 河南科技大学 锆酸钙-钛酸锶高效率储能电介质复合陶瓷的制备方法

Similar Documents

Publication Publication Date Title
CN105753469A (zh) 添加MgO的0.475NBT-0.525BCTZ高储能密度陶瓷材料及其制备方法
Zhao et al. High-energy storage performance in lead-free (1-x) BaTiO3-xBi (Zn0. 5Ti0. 5) O3 relaxor ceramics for temperature stability applications
Lai et al. Modulating the energy storage performance of NaNbO3-based lead-free ceramics for pulsed power capacitors
Yang et al. Structure, microstructure and electrical properties of (1− x− y) Bi0. 5Na0. 5TiO3–xBi0. 5K0. 5TiO3–yBi0. 5Li0. 5TiO3 lead-free piezoelectric ceramics
Patel et al. Electrocaloric Behavior and Temperature‐Dependent Scaling of Dynamic Hysteresis of Ba0. 85Ca0. 15Ti0. 9Zr0. 1O3 Ceramics
Ji et al. Structural and electrical properties of BCZT ceramics synthesized by sol–gel process
CN101318817A (zh) 制备锆钛酸钡陶瓷材料的方法
Singh et al. Structural, electrical and piezoelectric properties of nanocrystalline tin-substituted barium titanate ceramics
Yao et al. Microwave dielectric properties of CaV 2 O 6 ceramics with low dielectric loss
CN109553411A (zh) 一种高击穿场强钛酸铜锶钙介电陶瓷材料及其制备方法
Zhou et al. A novel thermally stable low-firing LiMg4V3O12 ceramic: sintering characteristic, crystal structure and microwave dielectric properties
Du et al. Correlation between crystal structure and microwave dielectric properties of CaRE 4 Si 3 O 13 (RE= La, Nd, Sm, and Er)
CN106396677A (zh) 微波烧结制备0.5NBT‑0.5BCTZ‑xwt%MgO高储能密度陶瓷材料及方法
Gu et al. Low temperature sintering and microwave dielectric properties of 0.2 Ca0. 8Sr0. 2TiO3–0.8 Li0. 5Sm0. 5TiO3 ceramics with BaCu (B2O5) additive and TiO2 dopant
CN110526707A (zh) 一种高锡含量的锆钛锡酸镧铅厚膜陶瓷及其制备方法和应用
Chen et al. Simultaneously achieved high energy-storage and superior charge–discharge performance in K0. 5Bi0. 5TiO3-based lead-free ceramics by A-site defect engineering
CN106187189B (zh) 一种储能微波介质陶瓷材料及其制备方法
CN105712715A (zh) 一种SnO2掺杂0.55NBT-0.45BCTZ高储能密度陶瓷材料及其制备方法
CN105948737A (zh) 一种新型CaTiO3基线性储能介质陶瓷材料及其制备方法
CN110128128B (zh) 一种具有零温度系数及高温稳定性的铁酸铋-铝酸铋-锌钛酸铋高温压电陶瓷及其制备方法
CN105439560A (zh) 一种高储能密度陶瓷材料及制备方法
Chen et al. Effects of BiAlO3 dopant and sintering method on microstructure, dielectric relaxation characteristic and ferroelectric properties of BaTiO3-based ceramics
CN105753471A (zh) 一种高电卡效应铌酸锶钡陶瓷的制备方法
CN105174944A (zh) 一种超宽温高稳定无铅电容器陶瓷介电材料及其制备方法
Zhang et al. The preparation of MnO2-doped NaNbO3-based lead-free ceramics with enhanced energy storage performance and attractive electrocaloric effect

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20160713