CN110229003B - 一种LiNiLaZrO固体电解质的制备方法和应用 - Google Patents

一种LiNiLaZrO固体电解质的制备方法和应用 Download PDF

Info

Publication number
CN110229003B
CN110229003B CN201910481047.7A CN201910481047A CN110229003B CN 110229003 B CN110229003 B CN 110229003B CN 201910481047 A CN201910481047 A CN 201910481047A CN 110229003 B CN110229003 B CN 110229003B
Authority
CN
China
Prior art keywords
linilazro
powder
solid electrolyte
lithium
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910481047.7A
Other languages
English (en)
Other versions
CN110229003A (zh
Inventor
刘小珍
吴婉盈
杜露阳
陈捷
刘雨泽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Technology
Original Assignee
Shanghai Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Technology filed Critical Shanghai Institute of Technology
Priority to CN201910481047.7A priority Critical patent/CN110229003B/zh
Publication of CN110229003A publication Critical patent/CN110229003A/zh
Application granted granted Critical
Publication of CN110229003B publication Critical patent/CN110229003B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本发明涉及一种LiNiLaZrO固体电解质的制备方法和应用,包括以下步骤:将La2O3、ZrO2、镍化合物和锂盐混合,加入分散剂,经过研磨、干燥得到前驱体;将前驱体在300~809℃焙烧处理,冷至室温,磨碎,得到LiNiLaZrO粉体;用压片机将LiNiLaZrO粉体压片得到LiNiLaZrO片,在焙烧容器中加入LiNiLaZrO粉体,将所述LiNiLaZrO片插入LiNiLaZrO粉体中,在1000~1159℃下烧结,冷至室温,得到所述LiNiLaZrO固体电解质。与现有技术相比,本发明具有制备方法简单、合成温度低、节约能源等优点。

Description

一种LiNiLaZrO固体电解质的制备方法和应用
技术领域
本发明属于电化学技术领域,尤其是涉及一种LiNiLaZrO固体电解质、制备方法及应用。
背景技术
全固态锂离子电池由于具有安全性高、循环寿命长、能量密度高、使用温度范围宽等特点,成为当今研究的热点,固体电解质是全固态锂离子电池的核心部分之一。固体电解质的制备常用高温固相合成法,合成温度较高,温度大概在1600℃以上;较高的合成温度造成制备条件苛刻,不利于扩大化生产以及生产过程中的设备选型。
中国专利CN106684440A公布了一种LiBaLaZrWREAlO固体电解质的制备方法;以La2O3、ZrO2、WO3、稀土氧化物、Al2O3和含锂化合物为原料,第一次焙烧温度为810~990℃,第二次焙烧温度为1160~1200℃;中国专利CN106025349A公布了一种LiBaLaZrREAlO固体电解质的制备方法,以La2O3、ZrO2、稀土氧化物、Al2O3和含锂化合物为原料,第一次焙烧温度为810~990℃,第二次焙烧温度为1160~1200℃;中国专利CN106159319A公布了一种LiBaLaZrAlREWO锂离子固体电解质的制备方法,该方法第一次焙烧温度为810~990℃,第二次焙烧温度为1160~1200℃;以及中国专利CN105977531A公布了一种LiBaLaZrAlREO锂离子固体电解质的制备方法以,该方法第一次焙烧温度为810~990℃,第二次焙烧温度为1160~1200℃。这些专利的焙烧温度还有进一步的降低空间;有的制备方法的制备路线,制备方法复杂;并且这些专利中得到的固体电解质的锂离子电导率还有进一步的提高空间。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种LiNiLaZrO固体电解质的制备方法。
本发明的目的可以通过以下技术方案来实现:
一种LiNiLaZrO固体电解质的制备方法,包括以下步骤:
(1)将La2O3、ZrO2、镍化合物和锂盐混合,加入分散剂,经过研磨、干燥得到前驱体;
(2)将步骤(1)中的前驱体在300~809℃焙烧处理,冷至室温,磨碎,得到LiNiLaZrO粉体;
(3)用压片机将步骤(2)中的LiNiLaZrO粉体压片得到LiNiLaZrO片,在焙烧容器中加入LiNiLaZrO粉体,将所述LiNiLaZrO片插入LiNiLaZrO粉体中,在1000~1159℃下烧结,冷至室温,得到所述LiNiLaZrO固体电解质。
现有技术中需要1600℃高温的焙烧温度以及较高的前驱体处理温度,是为了获得更好的、符合要求的致密结构。本发明添加了能使陶瓷致密的Ni元素掺杂剂,锂盐采用能形成低的最低共熔点的锂盐,利用Ni元素的特性,使得LiNiLaZrO中各个元素形成致密结构,使得前驱体焙烧处理得温度降低至300~809℃,而现有技术中,前驱体焙烧处理则需要810~990℃,才能形成初步符合要求的致密结构;并且本发明的后续焙烧温度也大大降低。
本发明中优选了Ni元素的添加量,Ni元素的添加量过多时,会导致杂质的生成,降低LiNiLaZrMO的致密度,Ni元素的添加领过少时,提高LiNiLaZrMO的致密度的效果不显著。
步骤(1)中,La2O3、ZrO2、镍化合物和锂盐的摩尔比为1.25~1.50:1.60~2.00:0.10~3.00:7.15~9.80。
优选地,步骤(1)中,La2O3、ZrO2、镍化合物和锂盐的摩尔比为1.25~1.50:1.60~2.00:0.1~1.5:7.15~9.80。
本发明可以通过进一步优选Ni元素的含量进而进一步降低样品的处理温度。
步骤(1)中,所述镍化合物选择氧化镍、硫酸镍、氢氧化镍、硝酸镍、氯化镍或碳酸镍中的一种或几种。
步骤(1)中,所述锂盐选自氢氧化锂、硝酸锂、氯化锂、草酸锂、氧化锂或碳酸锂中的一种或几种。
步骤(1)中,所述分散剂选自乙二醇、丙醇或异丙醇中的一种或几种。
步骤(2)中,前驱体的焙烧时间为5~7h。
步骤(3)中,所述LiNiLaZrO片插入LiNiLaZrO粉体的方法为:在焙烧容器中,从上之下依次铺设一层LiNiLaZrO粉体、一层LiNiLaZrO片、以及一层并且LiNiLaZrO粉体;所述LiNiLaZrO粉体总重量与所述LiNiLaZrO片总重量的比为0.2~1。
步骤(3)中,所述LiNiLaZrO片和LiNiLaZrO粉体的烧结时间为5~12h。
利用本发明的制备方法合成的LiNiLaZrO固体电解质的应用,采用该制备方法得到的LiNiLaZrO固体电解质制作锂电池。
与现有技术相比,本发明具有以下优点:
(1)本发明制备LiNiLaZrO固体电解质的合成温度较低,前驱体焙烧处理的焙烧温度仅为300~809℃,烧结温度仅为1000~1159℃,降低了对焙烧设备的要求;
(2)由于降低了前驱体焙烧处理的焙烧温度和烧结温度,节省能源;
(3)本发明制备的LiNiLaZrO固体电解质的锂离子电导率在2.32×10-4S·cm-1~8.62×10-4S·cm-1,导电性能好。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。
各实施例中所得的LiNiLaZrO固体电解质的锂离子电导率用英国Solartron1260+1287电化学工作站进行测定,测定方法见Solartron1260+1287电化学工作站的使用说明书。
实施例1
称取1.25摩尔La2O3、1.60摩尔ZrO2、0.10摩尔氧化镍、2.75摩尔氢氧化锂和4.43摩尔硝酸锂分别为于5L球磨罐中,加入一定量的乙二醇,球磨2h,干燥,得到前驱体。将上述前驱体放入3L坩埚中,在300℃下灼烧5h,冷至室温,磨碎,得到LiNiLaZrO粉体。用压片机将上述LiNiLaZrO粉体压成片得到LiNiLaZrO片,在坩埚中加入LiNiLaZrO粉体,将LiNiLaZrO片插入LiNiLaZrO粉体中,在1000℃下烧结5h,冷至室温,得到LiNiLaZrO固体电解质。得到的LiNiLaZrO固体电解质的锂离子电导率为2.32×10-4S·cm-1
实施例2
称取1.50摩尔La2O3、2.00摩尔ZrO2、1.00摩尔氯化镍、0.50摩尔碳酸镍和9.80摩尔碳酸锂分别为于5L球磨罐中,加入一定量的异丙醇,球磨9h,干燥,得到前驱体。将上述前驱体放入3L坩埚中,在809℃下灼烧7h,冷至室温,磨碎,得到LiNiLaZrO粉体。用压片机将上述LiNiLaZrO粉体压成片得到LiNiLaZrO片,在坩埚中加入LiNiLaZrO粉体,将LiNiLaZrO片插入LiNiLaZrO粉体中,在1159℃下烧结12h,冷至室温,得到LiNiLaZrO固体电解质。得到的LiNiLaZrO固体电解质的锂离子电导率为6.92×10-4S·cm-1
实施例3
称取1.38摩尔La2O3、1.80摩尔ZrO2、0.30摩尔硫酸镍、0.20摩尔氢氧化镍、0.30摩尔硝酸镍、6.28摩尔碳酸锂和2.20摩尔氢氧化锂分别为于5L球磨罐中,加入一定量的丙醇,球磨5.5h,干燥,得到前驱体。将上述前驱体放入3L坩埚中,在554℃下灼烧6h,冷至室温,磨碎,得到LiNiLaZrO粉体。用压片机将上述LiNiLaZrO粉体压成片得到LiNiLaZrO片,在坩埚中加入LiNiLaZrO粉体,将LiNiLaZrO片插入LiNiLaZrO粉体中,在1079℃下烧结8.5h,冷至室温,得到LiNiLaZrO固体电解质。得到的LiNiLaZrO固体电解质的锂离子电导率为8.62×10-4S·cm-1
实施例4
称取1.50摩尔La2O3、2.00摩尔ZrO2、1.00摩尔氯化镍、0.15摩尔碳酸镍、3.80摩尔氯化锂、3.00摩尔草酸锂和3.00摩尔氧化锂和分别为于5L球磨罐中,加入一定量的异丙醇,球磨9h,干燥,得到前驱体。将上述前驱体放入3L坩埚中,在682℃下灼烧7h,冷至室温,磨碎,得到LiNiLaZrO粉体。用压片机将上述LiNiLaZrO粉体压成片得到LiNiLaZrO片,在坩埚中加入LiNiLaZrO粉体,将LiNiLaZrO片插入LiNiLaZrO粉体中,在1119℃下烧结12h,冷至室温,得到LiNiLaZrO固体电解质。得到的LiNiLaZrO固体电解质的锂离子电导率为8.82×10- 4S·cm-1
实施例5
称取1.50摩尔La2O3、2.00摩尔ZrO2、1.50摩尔氯化镍、1.50摩尔碳酸镍和9.80摩尔碳酸锂分别为于5L球磨罐中,加入一定量的异丙醇,球磨9h,干燥,得到前驱体。将上述前驱体放入3L坩埚中,在800℃下灼烧7h,冷至室温,磨碎,得到LiNiLaZrO粉体。用压片机将上述LiNiLaZrO粉体压成片得到LiNiLaZrO片,在坩埚中加入LiNiLaZrO粉体,将LiNiLaZrO片插入LiNiLaZrO粉体中,在1100℃下烧结12h,冷至室温,得到LiNiLaZrO固体电解质。得到的LiNiLaZrO固体电解质的锂离子电导率为3.52×10-4S·cm-1
通过比较实施例1~5与对比文件的固体电解质,可以看出,本实施例中的电解质的预处理温度以及焙烧温度均较低,并且获得的固体电解质的锂离子电导率与对比文件中的锂离子电导率相当,因此,从对制备设备的耐温程度,以及制备过程中节能要求的角度来说,本实施例中的固体电解质具有明显的优势。
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变形或修改,这并不影响本发明的实质内容。

Claims (7)

1.一种LiNiLaZrO固体电解质的制备方法,其特征在于,包括以下步骤:
(1)将La2O3、ZrO2、镍化合物和锂化合物混合,加入分散剂,经过研磨、干燥得到前驱体;
其中,所述的La2O3、ZrO2、镍化合物和锂化合物的摩尔比为1.25~1.50:1.60~2.00:0.10~3.00:7.15~9.80;所述的锂化合物选自氢氧化锂、硝酸锂、氯化锂、草酸锂、氧化锂或碳酸锂中的一种或几种;
(2)将步骤(1)中的前驱体在300~809℃焙烧处理,冷至室温,磨碎,得到LiNiLaZrO粉体;
(3)用压片机将步骤(2)中的LiNiLaZrO粉体压片得到LiNiLaZrO片,在焙烧容器中加入LiNiLaZrO粉体,将所述LiNiLaZrO片插入LiNiLaZrO粉体中,在1000~1159℃下烧结,冷至室温,得到所述LiNiLaZrO固体电解质。
2.根据权利要求1所述的一种LiNiLaZrO固体电解质的制备方法,其特征在于,步骤(1)中,La2O3、ZrO2、镍化合物和锂化合物的摩尔比为1.25~1.50:1.60~2.00:0.10~1.50:7.15~9.80。
3.根据权利要求1所述的一种LiNiLaZrO固体电解质的制备方法,其特征在于,步骤(1)中,所述镍化合物选择氧化镍、硫酸镍、氢氧化镍、硝酸镍、氯化镍或碳酸镍中的一种或几种。
4.根据权利要求1所述的一种LiNiLaZrO固体电解质的制备方法,其特征在于,步骤(1)中,所述分散剂选自乙二醇、丙醇或异丙醇中的一种或几种。
5.根据权利要求1所述的一种LiNiLaZrO固体电解质的制备方法,其特征在于,步骤(2)中,前驱体的焙烧时间为5~7h。
6.根据权利要求1所述的一种LiNiLaZrO固体电解质的制备方法,其特征在于,步骤(3)中,所述LiNiLaZrO片插入LiNiLaZrO粉体的方法为:在焙烧容器中,从上至下依次铺设一层LiNiLaZrO粉体、一层LiNiLaZrO片、以及一层LiNiLaZrO粉体;所述LiNiLaZrO粉体总重量与所述LiNiLaZrO片总重量的比为0.2~1;所述LiNiLaZrO片和LiNiLaZrO粉体的烧结时间为5~12h。
7.一种如权利要求1所述的制备方法的应用,其特征在于,采用该制备方法得到的LiNiLaZrO固体电解质制作锂电池。
CN201910481047.7A 2019-06-04 2019-06-04 一种LiNiLaZrO固体电解质的制备方法和应用 Active CN110229003B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910481047.7A CN110229003B (zh) 2019-06-04 2019-06-04 一种LiNiLaZrO固体电解质的制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910481047.7A CN110229003B (zh) 2019-06-04 2019-06-04 一种LiNiLaZrO固体电解质的制备方法和应用

Publications (2)

Publication Number Publication Date
CN110229003A CN110229003A (zh) 2019-09-13
CN110229003B true CN110229003B (zh) 2021-12-07

Family

ID=67859132

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910481047.7A Active CN110229003B (zh) 2019-06-04 2019-06-04 一种LiNiLaZrO固体电解质的制备方法和应用

Country Status (1)

Country Link
CN (1) CN110229003B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021169387A (ja) * 2020-04-15 2021-10-28 セイコーエプソン株式会社 固体組成物の製造方法および機能性セラミックス成形体の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103594725A (zh) * 2012-08-17 2014-02-19 万向电动汽车有限公司 一种锂离子电池固态电解质材料Li7La3Zr2O12的制备方法
CN105428705A (zh) * 2015-10-30 2016-03-23 中南大学 基于低温快速烧结制备Li7La3Zr2O12固体电解质的方法
CN105977528A (zh) * 2015-03-10 2016-09-28 Tdk株式会社 石榴石型锂离子传导性氧化物及全固态型锂离子二次电池
CN108963222A (zh) * 2018-07-13 2018-12-07 国联汽车动力电池研究院有限责任公司 固态复合电解质电极活性材料及其制备方法与应用
WO2019032514A1 (en) * 2017-08-07 2019-02-14 The Regents Of The University Of Michigan IONIC AND ELECTRONIC MIXED DRIVER FOR SOLID BATTERY

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105683127B (zh) * 2013-10-07 2020-08-28 昆腾斯科普公司 用于锂二次电池的石榴石材料和制造和使用石榴石材料的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103594725A (zh) * 2012-08-17 2014-02-19 万向电动汽车有限公司 一种锂离子电池固态电解质材料Li7La3Zr2O12的制备方法
CN105977528A (zh) * 2015-03-10 2016-09-28 Tdk株式会社 石榴石型锂离子传导性氧化物及全固态型锂离子二次电池
CN105428705A (zh) * 2015-10-30 2016-03-23 中南大学 基于低温快速烧结制备Li7La3Zr2O12固体电解质的方法
WO2019032514A1 (en) * 2017-08-07 2019-02-14 The Regents Of The University Of Michigan IONIC AND ELECTRONIC MIXED DRIVER FOR SOLID BATTERY
CN108963222A (zh) * 2018-07-13 2018-12-07 国联汽车动力电池研究院有限责任公司 固态复合电解质电极活性材料及其制备方法与应用

Also Published As

Publication number Publication date
CN110229003A (zh) 2019-09-13

Similar Documents

Publication Publication Date Title
CN112467119B (zh) 一种层状高熵氧化物钠离子电池正极材料制备方法及应用
CN102916175B (zh) 锂离子电池正极材料尖晶石锰酸锂及其制备方法
CN101964416B (zh) 锂离子电池正极材料锰酸锂的制备方法及车用锂离子电池
CN107681128A (zh) 一种锂离子电池正极材料及其制备方法
CN108155413A (zh) 二价碱土金属和钽共掺杂的Li7La3Zr2O12固体电解质材料及制备方法
CN103117380A (zh) 锂离子电池用锰系镍钴锰酸锂三元材料的制备方法
KR101762275B1 (ko) 저온소결공정에 의한 고체전해질의 제조방법 및 그를 포함하는 전고체 리튬이차전지의 제조방법
CN108793987B (zh) 一种锂离子传导氧化物固体电解质及其制备方法
CN107739023A (zh) 一种多面体双金属氧化物及其制备方法和用途
CN102515728B (zh) 一种导电陶瓷和制备该陶瓷的方法及该陶瓷的应用
CN108695552A (zh) Nasicon结构钠离子固体电解质、其制备方法及固态钠离子电池
CN108695506A (zh) 一种钠基氧化剂包覆的镍钴铝酸锂材料及其制备方法
CN115986104A (zh) 高性能p2/o3混合相钠离子电池正极材料及其制备方法和应用
CN103199236B (zh) 掺杂锰酸锂前驱体、改性锰酸锂正极材料及其制备方法
CN110256068B (zh) 一种LiNiLaZrMO固体电解质的制备方法
CN110229003B (zh) 一种LiNiLaZrO固体电解质的制备方法和应用
CN114525116A (zh) 热化学导电储热材料及其制备方法
CN106558720B (zh) 钪锆氧化物复合体、电解质材料及固体氧化物燃料电池
CN108933243A (zh) 一种高比容量钠离子电池正极材料及其制备方法和钠离子电池
CN110311172B (zh) 一种LiCuLaZrO固体电解质的制备方法和应用
CN110112364A (zh) 一种多层复合负极材料及其制备方法和负极片、锂电池
CN105406114A (zh) 一种全固态锂电池电解质的制备方法
CN115472901A (zh) 一种低温制备nasicon型钠离子固态电解质的方法
CN113964390A (zh) 卤素离子掺杂llzo固体电解质及制备方法
CN114349494A (zh) 一种改性nasicon型结构钠离子固态电解质陶瓷材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant