CN111574220A - 一种脉冲储能陶瓷材料及其制备方法 - Google Patents

一种脉冲储能陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN111574220A
CN111574220A CN202010441335.2A CN202010441335A CN111574220A CN 111574220 A CN111574220 A CN 111574220A CN 202010441335 A CN202010441335 A CN 202010441335A CN 111574220 A CN111574220 A CN 111574220A
Authority
CN
China
Prior art keywords
energy storage
ceramic material
pulse energy
equal
storage ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010441335.2A
Other languages
English (en)
Inventor
唐斌
赵鹏
方梓烜
袁颖
钟朝位
张树人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN202010441335.2A priority Critical patent/CN111574220A/zh
Publication of CN111574220A publication Critical patent/CN111574220A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/47Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on strontium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • H01G4/1227Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/963Surface properties, e.g. surface roughness

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明提供一种脉冲储能介质陶瓷材料及制备方法,属于电子元器件材料领域,本发明由Sr0.7+xCayBi0.2TiO3(0.01≤x≤0.05,0.05≤y≤0.15)主晶相和改性添加剂组成,所述改性添加剂为:CeO2、Nb2O5、Nd2O3、ZnO、MnCO3、SiO2中的一种或几种,其制备方法包括配料、球磨、造粒、成型、烧结,所述脉冲储能介质陶瓷材料有较高的抗电强度(350~450kV/cm),较高的储能密度(在290kV/cm下为2.1J/cm3),较高的储能效率(97%~99%),损耗低至0.002,性能稳定,适于制作脉冲电容器介质材料。所述制备方法具有简单、易控、环保和成本低廉的特点。

Description

一种脉冲储能陶瓷材料及其制备方法
技术领域
本发明属于电子材料技术领域,涉及脉冲储能陶瓷材料及其制备方法。
背景技术
随着全球范围内能源消耗的急剧増加和生态环境日益恶化,各国均加快了对可再生能源技术如太阳能、风能、热能等进行了广泛的开发研究工作以期减轻甚至替代对化石燃料能源的使用。在此背景下,更有效地储存和提供电能的储能元器件的开发和硏制工作受到了更加广泛的关注。与电化学超级电容器、锂电池和燃料电池等储能器件相比,介质电容器有偏低的能量密度,较高的功率密度,并且能够在极短的时间内以脉冲功率的形式将能量释放至负载。具有高的储能密度、快的充放电速度、稳定的工作性能、可在大电流和高温高压下工作以及优良的循环性能。在脉冲功率设备中,作为储能元件的电容器在整个设备中占有很大的比重,是极为重要的关键部件。在新能源发电、混合动力汽车、生物医疗、石油勘探、国防军工等领域有着重要的应用价值。面对复杂环境和高度集成信息化的趋势,全固态多层陶瓷脉冲储能电容器具有小型化、片式化、可靠性高等特点,已成为高性能脉冲储能电容器的必然选择。
发展高性能脉冲储能电容器的核心在于研发具有优良储能性能的介质材料。目前,介质储能材料主要有以下几类:反铁电储能介质,弛豫铁电储能介质,线性储能介质,铁电储能介质。其中,弛豫铁电材料以其低的剩余极化强度(Pr)、高的饱和极化强度(Pmax)、适中的抗电强度(BDS),高的储能效率(η)和良好的充放电稳定性等优点引起广泛关注。(Sr0.7Bi0.2)TiO3是一种具有钙钛矿结构的驰豫铁电体,在储能方面,它具有以下几个优点:(1)介电常数较高;(2)较低的剩余极化强度和矫顽场强;(3)良好的驰豫性能。Zhang等报道了Sr(1-1.5x)BixTiO3陶瓷,在217.6kV/cm的电场下,其储能密度为1.63J/cm3,储能效率约为61.4%。Chao等报道了(Sr,Pb,Bi)TiO3,在50kV/cm的电场下,其储能密度为0.228J/cm3,储能效率约为94.2%。然而,(Sr,Bi)TiO3基储能材料的抗电强度较低,限制了其储能性能的提升。CaTiO3是一种典型的线性介质材料,具有低的介电损耗和高的本征介电强度(4.2MV/cm),Ca的掺入有望提高(Sr,Bi)TiO3基储能材料的抗电强度。Zhang等通过将Ca引入到SrTiO3中,蒋抗电强度从239kV/cm提高到313kV/cm,并且获得1.95J/cm3的储能密度。因此,本发明将Ca掺入(Sr0.7Bi0.2)TiO3的介质储能陶瓷体系,并配以适当的元素改性,以期获得较高的抗电强度,并且提高储能密度。
发明内容
本发明的目的是提供一种具有高抗电强度、高储能密度、高储能效率,生产工艺简单、成本低廉的脉冲储能陶瓷材料及其制备方法。
为实现上述发明目的,本发明技术方案如下:
一种脉冲储能陶瓷材料,包含主晶相,所述主晶相化学通式为Sr0.7+xCayBi0.2TiO3,其中0.01≤x≤0.05,0.05≤y≤0.15。
作为优选方式,还包括改性添加剂,所述改性添加剂为CeO2、Nb2O5、Nd2O3、ZnO、MnCO3、SiO2中的一种或几种,其质量占整个脉冲储能陶瓷材料总质量的0.5~4.0%。
作为优选方式,所述改性添加剂中,CeO2、Nb2O5、Nd2O3、ZnO、MnCO3、SiO2占整个脉冲储能陶瓷材料总质量的百分比含量为CeO2:0.2~1.0%、Nb2O5:0.5~2.5%、Nd2O3:0.1~2.0%、ZnO:0.2~1.2%、MnCO3:0.1~0.6%、SiO2:0.1~1.0%。
为实现上述发明目的,本发明还提供一种脉冲储能陶瓷材料的制备方法,包括以下步骤:
步骤1:Sr0.7+xCayBi0.2TiO3主晶相粉料合成;纯度分别为99%的碳酸锶、99.5%的二氧化钛,99.5%三氧化铋和99%的碳酸钙为起始原料,控制Sr、Ca、Bi与Ti之间的摩尔比为Sr:Ca:Bi:Ti=(0.7+x):y:0.2:1,其中0.01≤x≤0.05,0.05≤y≤0.15,球磨混合均匀后在900~1100℃下保温预烧2~4小时,随炉冷却得到Sr0.7+xCayBi0.2TiO3主晶相粉料;
步骤2:将步骤1所得主晶相粉料球磨混合均匀后造粒、成型,得到生坯料;
步骤3:烧结;将步骤2所得生坯料在1230~1400℃下保温烧结1.5~3小时,冷却后得到最终的脉冲储能陶瓷材料。
为实现上述发明目的,本发明还提供一种脉冲储能陶瓷材料的制备方法,包括以下步骤:
步骤1:Sr0.7+xCayBi0.2TiO3主晶相粉料合成;纯度分别为99%的碳酸锶、99.5%的二氧化钛,99.5%三氧化铋和99%的碳酸钙为起始原料,控制Sr、Ca、Bi与Ti之间的摩尔比为Sr:Ca:Bi:Ti=(0.7+x):y:0.2:1,其中0.01≤x≤0.05,0.05≤y≤0.15,球磨混合均匀后在900~1100℃下保温预烧2~4小时,随炉冷却得到Sr0.7+xCayBi0.2TiO3主晶相粉料;
步骤2:将步骤1所得主晶相粉料与CeO2、Nb2O5、Nd2O3、ZnO、MnCO3、SiO2中的一种或几种组成的改性添加剂球磨混合均匀后造粒、成型,得到生坯料;其中所述改性添加剂的加入量占整个脉冲储能陶瓷材料总质量的0.5~4.0%;
步骤3:烧结;将步骤2所得生坯料在1230~1400℃下保温烧结1.5~3小时,冷却后得到最终的脉冲储能陶瓷材料。
作为优选方式,步骤2所述改性添加剂中CeO2、Nb2O5、Nd2O3、ZnO、MnCO3或SiO2占整个脉冲储能陶瓷材料总质量的百分比含量为CeO2:0.2~1.0%、Nb2O5:0.5~2.5%、Nd2O3:0.1~2.0%、ZnO:0.2~1.2%、MnCO3:0.1~0.6%、SiO2:0.1~1.0%。
作为优选方式,步骤1中所述球磨工艺为:以二氧化锆球为球磨介质,以去离子水为溶剂,按照料、球、水的重量比为1:(3~5):(0.5~1)进行球磨3~12小时。
作为优选方式,步骤2中所述球磨工艺为:以二氧化锆球为球磨介质,以去离子水为溶剂,按照料、球、水的重量比为1:(3~5):(0.5~1)进行球磨4~24小时。
作为优选方式,步骤2中所述造粒工艺为:以球磨混合料干燥后与聚乙烯醇水溶液混合后造粒,造粒尺寸控制在80~250目。
作为优选方式,步骤2中所述成型工艺为:将造粒料放入成型模具中于25MPa压力下干压成型得到生坯料。
为实现上述发明目的,本发明还提供一种脉冲储能陶瓷材料,由上述一种制备方法得到。
本发明提供(制备)的脉冲储能陶瓷材料,经检测具有较低的损耗,较高的抗电强度,较高的储能密度和较高的储能效率。其制备工艺能够获得晶相单一,结构致密和良好储能性能的脉冲储能陶瓷材料。
用XRD衍射法对Sr0.7+xCayBi0.2TiO3主晶相粉料试样进行了物相分析如图1所示,可以证实所得到粉料的晶相为SrTiO3,不含有第二相。用扫描电镜SEM对最终的脉冲储能材陶瓷料进行观察如图2所示,可以看出本发明提供的脉冲储能陶瓷材料表面平整致密。对本发明提供的脉冲储能陶瓷材料采用针触法测试表面粗糙度,发现其表面粗糙度小于100nm,可以达到通用陶瓷元器件甚至微带制备工艺要求。
与现有技术相比,本发明具有以下特点:
1、本发明的配方中不含Pb、Cd等挥发性或重金属,是一种环保脉冲储能陶瓷材料。
2、现有技术配方中往往具有多种晶相,导致表面形貌的颗粒结构不一致,限制了储能性能的提升,不能满足工艺应用要求,本发明采用A位过量和微量掺杂获得了单一的钛酸锶晶相,同时陶瓷颗粒结构致密。
3、原材料在国内充足,价格低廉,使高性能脉冲储能陶瓷电容器的成本化成为可能。
4、性能有较大提升:抗电强度由350kV/cm提升至450kV/cm,损耗低至0.002,储能密度较高(在290kV/cm电场下为2.1J/cm3),性能稳定。
附图说明
图1是本发明制备的Sr0.7+xCayBi0.2TiO3主晶相粉料XRD衍射分析图。
图2是本发明制备的脉冲储能陶瓷材料扫描电镜SEM图。
图3是本发明实施例8-17的脉冲储能陶瓷材料的制备方法的流程示意图。
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。
实施例1-7
实施例1-7提供一种脉冲储能陶瓷材料,包含主晶相,所述主晶相化学通式为Sr0.7+xCayBi0.2TiO3,其中0.01≤x≤0.05,0.05≤y≤0.15。
一种脉冲储能陶瓷材料的制备方法,包括以下步骤:
步骤1:Sr0.7+xCayBi0.2TiO3主晶相粉料合成;纯度分别为99%的碳酸锶、99.5%的二氧化钛,99.5%三氧化铋和99%的碳酸钙为起始原料,控制Sr、Ca、Bi与Ti之间的摩尔比为Sr:Ca:Bi:Ti=(0.7+x):y:0.2:1,其中0.01≤x≤0.05,0.05≤y≤0.15,球磨混合均匀后在900~1100℃下保温预烧2~4小时,随炉冷却得到Sr0.7+xCayBi0.2TiO3主晶相粉料;所述球磨工艺为:以二氧化锆球为球磨介质,以去离子水为溶剂,按照料、球、水的重量比为1:(3~5):(0.5~1)进行球磨3~12小时。
步骤2:将步骤1所得主晶相粉料球磨混合均匀后造粒、成型,得到生坯料;
所述球磨工艺为:以二氧化锆球为球磨介质,以去离子水为溶剂,按照料、球、水的重量比为1:(3~5):(0.5~1)进行球磨4~24小时。
所述造粒工艺为:以球磨混合料干燥后与聚乙烯醇水溶液混合后造粒,造粒尺寸控制在80~250目。
所述成型工艺为:将造粒料放入成型模具中于25MPa压力下干压成型得到生坯料。
步骤3:烧结;将步骤2所得生坯料在1230~1400℃下保温烧结1.5~3小时,冷却后得到最终的脉冲储能陶瓷材料。
实施例1-7的主晶相组成及制备工艺见表1。
其烧结工艺和性能检测结果见表2。
表1脉冲储能陶瓷材料Sr0.7+xCayBi0.2TiO3的主晶相组成及制备工艺
Figure BDA0002504269950000041
表2脉冲储能陶瓷材料Sr0.7+xCayBi0.2TiO3的工艺及性能
Figure BDA0002504269950000051
实施例8-17
实施例8-17提供一种脉冲储能陶瓷材料,包含主晶相和改性添加剂,所述主晶相化学通式为Sr0.7+xCayBi0.2TiO3,其中0.01≤x≤0.05,0.05≤y≤0.15。所述改性添加剂为CeO2、Nb2O5、Nd2O3、ZnO、MnCO3、SiO2中的一种或几种,其质量占整个脉冲储能陶瓷材料总质量的0.5~4.0%。
所述改性添加剂中,CeO2、Nb2O5、Nd2O3、ZnO、MnCO3、SiO2占整个脉冲储能陶瓷材料总质量的百分比含量为CeO2:0.2~1.0%、Nb2O5:0.5~2.5%、Nd2O3:0.1~2.0%、ZnO:0.2~1.2%、MnCO3:0.1~0.6%、SiO2:0.1~1.0%。
步骤1:Sr0.7+xCayBi0.2TiO3主晶相粉料合成;纯度分别为99%的碳酸锶、99.5%的二氧化钛,99.5%三氧化铋和99%的碳酸钙为起始原料,控制Sr、Ca、Bi与Ti之间的摩尔比为Sr:Ca:Bi:Ti=(0.7+x):y:0.2:1,其中0.01≤x≤0.05,0.05≤y≤0.15,球磨混合均匀后在900~1100℃下保温预烧2~4小时,随炉冷却得到Sr0.7+xCayBi0.2TiO3主晶相粉料;所述球磨工艺为:以二氧化锆球为球磨介质,以去离子水为溶剂,按照料、球、水的重量比为1:(3~5):(0.5~1)进行球磨3~12小时。
步骤2:将步骤1所得主晶相粉料与CeO2、Nb2O5、Nd2O3、ZnO、MnCO3、SiO2中的一种或几种组成的改性添加剂球磨混合均匀后造粒、成型,得到生坯料;其中所述改性添加剂的加入量占整个脉冲储能陶瓷材料总质量的0.5~4.0%;所述改性添加剂中CeO2、Nb2O5、Nd2O3、ZnO、MnCO3或SiO2占整个脉冲储能陶瓷材料总质量的百分比含量为CeO2:0.2~1.0%、Nb2O5:0.5~2.5%、Nd2O3:0.1~2.0%、ZnO:0.2~1.2%、MnCO3:0.1~0.6%、SiO2:0.1~1.0%。
所述球磨工艺为:以二氧化锆球为球磨介质,以去离子水为溶剂,按照料、球、水的重量比为1:(3~5):(0.5~1)进行球磨4~24小时。
所述造粒工艺为:以球磨混合料干燥后与聚乙烯醇水溶液混合后造粒,造粒尺寸控制在80~250目。
所述成型工艺为:将造粒料放入成型模具中于25MPa压力下干压成型得到生坯料。
步骤3:烧结;将步骤2所得生坯料在1230~1400℃下保温烧结1.5~3小时,冷却后得到最终的脉冲储能陶瓷材料。
实施例8-17的添加剂组成及制备工艺见表3。
其烧结工艺和性能检测结果见表4。
表3脉冲储能陶瓷材料Sr0.7+xCayBi0.2TiO3的添加剂组成及制备工艺
Figure BDA0002504269950000061
表4脉冲储能陶瓷材料
Figure BDA0002504269950000071
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (11)

1.一种脉冲储能陶瓷材料,其特征在于:包含主晶相,所述主晶相化学通式为Sr0.7+ xCayBi0.2TiO3,其中0.01≤x≤0.05,0.05≤y≤0.15。
2.根据权利要求1所述的脉冲储能陶瓷材料,其特征在于:还包括改性添加剂,所述改性添加剂为CeO2、Nb2O5、Nd2O3、ZnO、MnCO3、SiO2中的一种或几种,其质量占整个脉冲储能陶瓷材料总质量的0.5~4.0%。
3.根据权利要求2所述的脉冲储能陶瓷材料,其特征在于:所述改性添加剂中,CeO2、Nb2O5、Nd2O3、ZnO、MnCO3、SiO2占整个脉冲储能陶瓷材料总质量的百分比含量为CeO2:0.2~1.0%、Nb2O5:0.5~2.5%、Nd2O3:0.1~2.0%、ZnO:0.2~1.2%、MnCO3:0.1~0.6%、SiO2:0.1~1.0%。
4.一种脉冲储能陶瓷材料的制备方法,其特征在于,包括以下步骤:
步骤1:Sr0.7+xCayBi0.2TiO3主晶相粉料合成;纯度分别为99%的碳酸锶、99.5%的二氧化钛,99.5%三氧化铋和99%的碳酸钙为起始原料,控制Sr、Ca、Bi与Ti之间的摩尔比为Sr:Ca:Bi:Ti=(0.7+x):y:0.2:1,其中0.01≤x≤0.05,0.05≤y≤0.15,球磨混合均匀后在900~1100℃下保温预烧2~4小时,随炉冷却得到Sr0.7+x CayBi0.2TiO3主晶相粉料;
步骤2:将步骤1所得主晶相粉料球磨混合均匀后造粒、成型,得到生坯料;
步骤3:烧结;将步骤2所得生坯料在1230~1400℃下保温烧结1.5~3小时,冷却后得到最终的脉冲储能陶瓷材料。
5.一种脉冲储能陶瓷材料的制备方法,其特征在于,包括以下步骤:
步骤1:Sr0.7+xCayBi0.2TiO3主晶相粉料合成;纯度分别为99%的碳酸锶、99.5%的二氧化钛,99.5%三氧化铋和99%的碳酸钙为起始原料,控制Sr、Ca、Bi与Ti之间的摩尔比为Sr:Ca:Bi:Ti=(0.7+x):y:0.2:1,其中0.01≤x≤0.05,0.05≤y≤0.15,球磨混合均匀后在900~1100℃下保温预烧2~4小时,随炉冷却得到Sr0.7+x CayBi0.2TiO3主晶相粉料;
步骤2:将步骤1所得主晶相粉料与CeO2、Nb2O5、Nd2O3、ZnO、MnCO3、SiO2中的一种或几种组成的改性添加剂球磨混合均匀后造粒、成型,得到生坯料;其中所述改性添加剂的加入量占整个脉冲储能陶瓷材料总质量的0.5~4.0%;
步骤3:烧结;将步骤2所得生坯料在1230~1400℃下保温烧结1.5~3小时,冷却后得到最终的脉冲储能陶瓷材料。
6.根据权利要求5所述的脉冲储能陶瓷材料的制备方法,其特征在于,步骤2所述改性添加剂中CeO2、Nb2O5、Nd2O3、ZnO、MnCO3或SiO2整个脉冲储能陶瓷材料总质量的百分比含量为CeO2:0.2~1.0%、Nb2O5:0.5~2.5%、Nd2O3:0.1~2.0%、ZnO:0.2~1.2%、MnCO3:0.1~0.6%、SiO2:0.1~1.0%。
7.根据权利要求4或5所述的脉冲储能陶瓷材料的制备方法,其特征在于,步骤1中所述球磨工艺为:以二氧化锆球为球磨介质,以去离子水为溶剂,按照料、球、水的重量比为1:(3~5):(0.5~1)进行球磨3~12小时。
8.根据权利要求4或5所述的脉冲储能陶瓷材料的制备方法,其特征在于,步骤2中所述球磨工艺为:以二氧化锆球为球磨介质,以去离子水为溶剂,按照料、球、水的重量比为1:(3~5):(0.5~1)进行球磨4~24小时。
9.根据权利要求4或5所述的脉冲储能陶瓷材料的制备方法,其特征在于,步骤2中所述造粒工艺为:以球磨混合料干燥后与聚乙烯醇水溶液混合后造粒,造粒尺寸控制在80~250目。
10.根据权利要求4或5所述的脉冲储能陶瓷材料的制备方法,其特征在于,步骤2中所述成型工艺为:将造粒料放入成型模具中于25MPa压力下干压成型得到生坯料。
11.一种脉冲储能陶瓷材料,其特征在于由权利要求4至10任意一种制备方法得到。
CN202010441335.2A 2020-05-22 2020-05-22 一种脉冲储能陶瓷材料及其制备方法 Pending CN111574220A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010441335.2A CN111574220A (zh) 2020-05-22 2020-05-22 一种脉冲储能陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010441335.2A CN111574220A (zh) 2020-05-22 2020-05-22 一种脉冲储能陶瓷材料及其制备方法

Publications (1)

Publication Number Publication Date
CN111574220A true CN111574220A (zh) 2020-08-25

Family

ID=72117827

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010441335.2A Pending CN111574220A (zh) 2020-05-22 2020-05-22 一种脉冲储能陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN111574220A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112552040A (zh) * 2020-12-24 2021-03-26 电子科技大学 脉冲储能陶瓷材料及其制备方法
CN112745118A (zh) * 2021-01-11 2021-05-04 电子科技大学 脉冲储能陶瓷材料及其制备方法
CN114292104A (zh) * 2021-12-28 2022-04-08 摩比天线技术(深圳)有限公司 一种脉冲电容器用储能陶瓷材料及其制备方法
CN114899008A (zh) * 2022-04-29 2022-08-12 厦门松元电子股份有限公司 一种抗阶梯电压的高介电陶瓷介质材料、陶瓷电容器及其制备方法
CN115784735A (zh) * 2022-12-28 2023-03-14 广州天极电子科技股份有限公司 一种降低sct容量温度系数且提高介电常数的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100518249B1 (ko) * 2002-12-03 2005-10-04 가부시키가이샤 무라타 세이사쿠쇼 유전체 세라믹 및 세라믹 전자부품
US20080303720A1 (en) * 2007-06-07 2008-12-11 Vishay Intertechnology, Inc. Ceramic dielectric formulation for broad band uhf antenna
CN105084892A (zh) * 2015-08-11 2015-11-25 电子科技大学 高介单层微型陶瓷电容器基片材料及其制备方法
CN108439974A (zh) * 2018-04-13 2018-08-24 电子科技大学 脉冲储能介质陶瓷材料及其制备方法
CN109354492A (zh) * 2018-10-09 2019-02-19 中国科学院光电技术研究所 铋基无铅高储能密度陶瓷材料及其制备方法
CN109516799A (zh) * 2019-01-22 2019-03-26 电子科技大学 一种具有高温度稳定性的高介陶瓷电容器材料及其制备方法
CN109970446A (zh) * 2019-04-24 2019-07-05 北京元六鸿远电子科技股份有限公司 一种用于中温烧结的锶铋钛基储能介质材料及制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100518249B1 (ko) * 2002-12-03 2005-10-04 가부시키가이샤 무라타 세이사쿠쇼 유전체 세라믹 및 세라믹 전자부품
US20080303720A1 (en) * 2007-06-07 2008-12-11 Vishay Intertechnology, Inc. Ceramic dielectric formulation for broad band uhf antenna
CN105084892A (zh) * 2015-08-11 2015-11-25 电子科技大学 高介单层微型陶瓷电容器基片材料及其制备方法
CN108439974A (zh) * 2018-04-13 2018-08-24 电子科技大学 脉冲储能介质陶瓷材料及其制备方法
CN109354492A (zh) * 2018-10-09 2019-02-19 中国科学院光电技术研究所 铋基无铅高储能密度陶瓷材料及其制备方法
CN109516799A (zh) * 2019-01-22 2019-03-26 电子科技大学 一种具有高温度稳定性的高介陶瓷电容器材料及其制备方法
CN109970446A (zh) * 2019-04-24 2019-07-05 北京元六鸿远电子科技股份有限公司 一种用于中温烧结的锶铋钛基储能介质材料及制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PENG ZHAO: "Novel Ca doped Sr0.7Bi0.2TiO3 lead-free relaxor ferroelectrics with high energy density and efficiency", 《JOURNAL OF THE EUROPEAN CERAMIC SOCIETY》 *
PENG ZHAO: "Study of Dielectric Characteristics and Energy Storage Properties of Sr0.7Bi0.2TiO3 Doped with CaTiO3", 《KEY ENGINEERING MATERIALS》 *
刘冠芳: "钛酸锶陶瓷烧结的研究进展", 《绝缘材料》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112552040A (zh) * 2020-12-24 2021-03-26 电子科技大学 脉冲储能陶瓷材料及其制备方法
CN112745118A (zh) * 2021-01-11 2021-05-04 电子科技大学 脉冲储能陶瓷材料及其制备方法
CN112745118B (zh) * 2021-01-11 2022-10-04 电子科技大学 脉冲储能陶瓷材料及其制备方法
CN114292104A (zh) * 2021-12-28 2022-04-08 摩比天线技术(深圳)有限公司 一种脉冲电容器用储能陶瓷材料及其制备方法
CN114899008A (zh) * 2022-04-29 2022-08-12 厦门松元电子股份有限公司 一种抗阶梯电压的高介电陶瓷介质材料、陶瓷电容器及其制备方法
CN114899008B (zh) * 2022-04-29 2024-01-30 厦门松元电子股份有限公司 一种抗阶梯电压的高介电陶瓷介质材料、陶瓷电容器及其制备方法
CN115784735A (zh) * 2022-12-28 2023-03-14 广州天极电子科技股份有限公司 一种降低sct容量温度系数且提高介电常数的方法
CN115784735B (zh) * 2022-12-28 2024-04-26 广州天极电子科技股份有限公司 一种降低sct容量温度系数且提高介电常数的方法

Similar Documents

Publication Publication Date Title
CN111574220A (zh) 一种脉冲储能陶瓷材料及其制备方法
Qiu et al. Bi (Mg2/3Nb1/3) O3 addition inducing high recoverable energy storage density in lead-free 0.65 BaTiO3-0.35 Bi0. 5Na0. 5TiO3 bulk ceramics
Liu et al. Investigation of electrical and electric energy storage properties of La-doped Na0. 3 Sr0. 4Bi0. 3TiO3 based Pb-free ceramics
CN108751982B (zh) 一种无铅高储能密度陶瓷材料及其制备方法
CN106915960B (zh) 一种无铅高储能密度和储能效率陶瓷材料及其制备方法
Huang et al. The effect of rare-earth oxides on the energy storage performances in BaTiO3 based ceramics
Li et al. Study of the structure, electrical properties, and energy storage performance of ZnO-modified Ba0. 65Sr0. 245Bi0. 07TiO3 Pb-free ceramics
Jiao et al. Energy storage performance of 0.55 Bi0. 5Na0. 5TiO3-0.45 SrTiO3 ceramics doped with lanthanide elements (Ln= La, Nd, Dy, Sm) using a viscous polymer processing route
CN112745118B (zh) 脉冲储能陶瓷材料及其制备方法
CN113248253A (zh) 一种巨介电常数钛酸锶介质陶瓷及其制备方法
Chen et al. Novel lead-free (1-x) Sr0. 7Bi0. 2TiO3-xLa (Mg0. 5Zr0. 5) O3 energy storage ceramics with high charge-discharge and excellent temperature-stable dielectric properties
CN114394833B (zh) 钨青铜结构高储能密度及功率密度无铅储能介质陶瓷材料
Zhang et al. Energy storage and charge-discharge performance of B-site doped NBT-based lead-free ceramics
Wang et al. Enhanced energy storage performance in (1-x) Bi0. 85Sm0. 15FeO3-xCa0. 5Sr0. 5Ti0. 9Zr0. 1O3 relaxor ceramics
CN113511893B (zh) 一种bnt基三层结构的高储能密度陶瓷及其制备方法
Yang et al. Enhancement of energy storage performances in BaTiO3-based ceramics via introducing Bi (Mg2/3Sb1/3) O3
CN108439974A (zh) 脉冲储能介质陶瓷材料及其制备方法
CN111533554B (zh) 一种高压陶瓷脉冲电容器、介质材料及其制备方法
CN107721417A (zh) 一种具有高储能密度的锆钛酸钡电介质材料及其制备方法
CN112142466B (zh) 一种铌镱酸铅基反铁电陶瓷材料及其制备方法
CN109320236B (zh) 一种高储能密度和充放电性能的复合材料及其制备方法
CN115947598B (zh) 一种可与贱金属内电极共烧的反铁电材料及其制备方法
CN114292104B (zh) 一种脉冲电容器用储能陶瓷材料及其制备方法
CN112552040A (zh) 脉冲储能陶瓷材料及其制备方法
CN107586130A (zh) 一种中温烧结低损耗钛酸钡基介质材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200825