CN106365205B - 一种锰锌铁氧体纳米粉体的制备方法 - Google Patents

一种锰锌铁氧体纳米粉体的制备方法 Download PDF

Info

Publication number
CN106365205B
CN106365205B CN201610697635.0A CN201610697635A CN106365205B CN 106365205 B CN106365205 B CN 106365205B CN 201610697635 A CN201610697635 A CN 201610697635A CN 106365205 B CN106365205 B CN 106365205B
Authority
CN
China
Prior art keywords
manganese
solution
powder
zinc
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610697635.0A
Other languages
English (en)
Other versions
CN106365205A (zh
Inventor
彭会芬
华菲
王新
张换却
尹翠翠
索强强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hebei University of Technology
Original Assignee
Hebei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hebei University of Technology filed Critical Hebei University of Technology
Priority to CN201610697635.0A priority Critical patent/CN106365205B/zh
Publication of CN106365205A publication Critical patent/CN106365205A/zh
Application granted granted Critical
Publication of CN106365205B publication Critical patent/CN106365205B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • C01G49/0072Mixed oxides or hydroxides containing manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Compounds Of Iron (AREA)
  • Soft Magnetic Materials (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明为一种锰锌铁氧体纳米粉体的制备方法。该方法包括如下步骤:(1)将亚铁盐溶于去离子水,然后向亚铁盐溶液中滴加沉淀剂,得到悬浊液;(2)向所得悬浊液滴加过氧化氢溶液;(3)按Mn1‑x‑yZnyFe2+(2/3)xO4中Mn、Zn、Fe摩尔比,称取锰盐、锌盐先后溶于去离子水制成溶液,然后加入到步骤(2)得到的悬浊液中,再滴加沉淀剂;(4)再加入PEG表面活性剂;(5)溶液沸腾回流反应6‑10h;(6)在500‑800℃热处理4‑10h,得到最终产物锰锌铁氧体纳米粉体。本发明的锰锌铁氧体纳米粉体中粒子直径细小(约30nm),具有高的饱和磁化强度(≥100emu/g)。

Description

一种锰锌铁氧体纳米粉体的制备方法
技术领域:
本发明属于磁性纳米技术领域,涉及一种磁性材料的制备方法,尤其涉及一种锰锌铁氧体纳米粉体的制备方法。
背景技术:
磁性纳米粒子因其独特的物理、化学以及磁学性质受到人们的广泛关注,其应用范围相当广泛,包括磁存储介质、磁流体、催化、生物医药/生物技术、分子影像、环境污染治理等众多领域。近年来,随着纳米技术与生物医学结合的日益深入,磁性纳米粒子在生物标记与分离、磁共振成象、药物载体以及疾病诊断与治疗等方面也逐渐显示出广泛的应用前景。
本发明要制备的锰锌铁氧体是由锰、锌、铁组成的具有尖晶石结构的非金属复合氧化物,是国民经济发展中一种非常重要的基础功能材料。与同类金属磁性材料以及同为尖晶石结构的Fe3O4和MnFe2O4铁氧体相比,它在高频下具有高磁导率、低矫顽力和低损耗等物理化学性能。锰锌铁氧体作为软磁铁氧体的一种,属于亚铁磁性物质,磁性来源于两种没有抵消的反向磁矩。但当纳米锰锌铁氧体颗粒小到一定程度(约数十纳米或更小),尺度就可以和亚畴状态相比拟,其磁化矢量自发磁化至饱和,磁矩呈任意取向,呈现出超顺磁性(当去掉外磁场后剩磁很快消失),从而使其在多个领域具有好的应用前景。
对于纳米锰锌铁氧体粒子,目前的主要研究工作是寻求适当的制备方法以获得分散度高、磁性能好的材料。Xuan等人利用FeSO4、MnSO4、ZnSO4与氨水反应采用水热法在高压釜中制备了磁性能和居里点可调节的锰锌铁氧体(J.Magn.Magn.Mater.2007,312:464-469)。这种方法原料易得,产物结晶度较好,无需煅烧,从而减少了粒子的团聚和结构缺陷。但是,该法在相对较高的温度和压力下进行,设备投资大,生产成本相对较高,难以大批量生产。另外,反应在高压釜中进行,人们无法检测反应过程。CN102503390A公开了一种锰锌铁氧体磁性纳米粒子的制备方法,该方法采用高温分解法,使金属前驱体在还原剂和两亲表面活性剂的作用下发生热分解,从而获得单分散的锰锌铁氧体磁性纳米粒子。由于反应在油相中进行,所得纳米粒子无需表面改性即有单分散特性,避免了纳米粒子的团聚和长大。但由于该方法所采用原料全部都是金属的乙酰丙酮盐,成本高应是其主要缺点。CN101481243A公开的纳米锰锌铁氧体颗粒制备方法则是采用Mn、Zn、Fe的硝酸盐在柠檬酸络合剂的作用下形成溶胶乃至凝胶后,继续加热使其自燃获得的纳米材料。这种方法得到的产物纯度较高,但是自燃过程中由于体系升温较快,粒子容易聚集长大以及尺寸分布不均可能是其主要存在的问题。CN101276668A和CN102731079A是前些年我们申请的专利,虽然它们都采用化学共沉淀技术制备了锰锌铁氧体纳米粉末,但前者所用沉淀剂为碱性很强的NaOH,其中的Na+离子残留难以避免,而且会对材料的性能造成不利影响;后者所用沉淀剂改用碱性较弱且易挥发的碳酸氢铵和氨水,但是由于所制备的锰锌铁氧体纳米粒子细小,团聚以及粒子尺寸不均匀会影响其实际应用。
人们发现,铁氧体纳米粒子尺寸减小时,一方面由于表面能的增大导致其容易团聚成大尺寸的二次粒子。另一方面,纳米粒子的饱和磁化强度和居里点也都随着粒子尺度的减小而降低(J.P.Chen,et al,Phys.Rev.,1996,54:1288),而且其中的阳离子在尖晶石结构中A、B位置的分布处于介稳状态,环境温度的变化会导致阳离子分布产生不可逆的变化,从而影响到材料的性能。如何在获得细小锰锌铁氧体纳米粒子的前提下,保持好的分散性、热稳定性以及高的饱和磁化强度是突破其应用的关键问题。
发明内容:
本发明的目的是针对当前技术中存在的缺陷,提供一种锰锌铁氧体纳米粉体的制备方法。本发明采用化学共沉淀法制备锰锌铁氧体纳米粉体,通过在反应过程中加入PEG表面活性剂,充分利用其空间位阻效应阻止纳米粒子的聚集长大,从而获得分散性好的细小纳米晶颗粒(粒径约30nm)。此外,结合随后的热处理能够充分稳定金属阳离子的分布状态,从而使所制备的纳米粉体不仅具有好的热稳定性,而且具有高的饱和磁化强度(室温Ms≥100emu/g)。
本发明的技术方案为:
一种锰锌铁氧体纳米粉体的制备方法,包括如下步骤:
(1)将亚铁盐溶于去离子水,然后向亚铁盐溶液中滴加沉淀剂,将溶液pH值调至6.5-8.5,得到悬浊液;其中的物料比为每150mL去离子水加入0.08-0.12mol亚铁盐;
(2)向步骤(1)所得悬浊液滴加过氧化氢溶液,然后反应0.5-1h直至悬浊液从浅绿色完全转变为红褐色;加入量为每步骤(1)中的150mL去离子水加入3-7mL过氧化氢溶液;
(3)按Mn1-x-y,ZnyFe2+(2/3)xO4中Mn、Zn、Fe摩尔比,称取锰盐、锌盐先后溶于去离子水制成溶液,然后加入到步骤(2)得到的红褐色悬浊液中,再滴加沉淀剂调节溶液pH值为6.5-8.5;其中,本步骤中的去离子水用量为步骤(1)中去离子水的40%;x=0-0.15,y=0.30-0.50;
(4)将步骤(3)液体移至反应器中,然后在搅拌下,将PEG表面活性剂加入到上述溶液中;其中,每升步骤(3)液体加0.002-0.10molPEG表面活性剂;
(5)在搅拌下,将所得溶液沸腾回流反应6-10h,然后将产物经过过滤,沉淀物经去离子水洗涤、烘干;
(6)惰性气氛下将上步所得沉淀产物在500-800℃热处理4-10h,得到最终产物锰锌铁氧体纳米粉体。
所述的惰性气氛为氮气、氩气或二氧化碳。
所述的表面活性剂具体为PEG300、PEG3000、PEG6000或PEG10000。
所述的沉淀剂为碳酸氢铵溶液和氨水组成的混合溶液,体积比为碳酸氢铵溶液∶氨水=1∶1-4∶1,其中碳酸氢铵浓度为:0.1-1mol/L;氨水浓度为5wt%。
所述的步骤(1)和(3)中沉淀剂的滴加速度为:在1.0-1.5h时间内使溶液pH值达到6.5-8.5。
所述的过氧化氢溶液的浓度优选为质量百分浓度30%。
所述亚铁盐为硫酸亚铁或氯化亚铁。
所述锰盐为硫酸锰或氯化锰。
所述锌盐为硫酸锌或氯化锌。
本发明中,所述的锰锌铁氧体(Mn1-x-yZnyFe2+(2/3)xO4)纳米粉体是由Mn、Zn、Fe三种金属离子按比例组成的具有尖晶石结构的复合氧化物,三种金属离子的比例可由制备时的投料比调控,其中,x=0-0.15,y=0.15-0.50。
本发明的有益效果为:
1、纳米粉体材料,尤其是磁性纳米粒子,在尺寸很小时极易团聚成尺寸较大的二次颗粒而影响其使用,为了抑制这一现象的发生,人们常在纳米粒子的表面加入表面活性剂,但带来的问题是材料饱和磁化强度的降低(曹雪等人,精细石油化工,2010,27(4)53-56)。本发明在锰锌铁氧体纳米粉体制备过程中引入PEG表面活性剂,充分利用其空间位阻效应,达到抑制锰锌铁氧体纳米粉体中粒子团聚的目的,并使锰锌铁氧体纳米粒子具有细小粒径(约30nm)。
2、PEG表面活性剂在纳米粒子表面的存在,阻止了其在受热过程中的快速不均匀长大,故能保持其细小的尺寸和好的分散性。
3、适当温度的热处理能够充分稳定金属阳离子的分布状态,从而能显著提高材料的热稳定性,并使其具有高的饱和磁化强度(≥100emu/g)。这一数值比粒径相近的Co掺杂锰锌铁氧体粒子(~25.2nm)的饱和磁化强度(73emu/g,Zhang et al,Physica B,2009,404:2327-2331)提高了约40%,约是曹雪等人报道的PEG6000包覆的锰锌铁氧体纳米粒子饱和磁化强度的2.5倍。尽管Maryam等人(J.Mag.Mag.Mater.,2015,393:429-436)报道的锰锌铁氧体纳米粉体在粒径为7nm时,具有103emu/g很高的饱和磁化强度,但这是在5K条件下获得的结果。当温度升高至室温时,这一指标迅速降至52.6emu/g,远远低于我们的结果。Song等人(Hydrometallurgy,2015,153:66-73)以废弃的Zn-Mn电池为原料、NaOH为沉淀剂,采用生物萃取、化学共沉淀和沸腾回流等多个过程制备的锰锌铁氧体纳米粒子在粒径为48.24nm时获得了102emu/g,但当粒子尺寸减小至23.73nm时,饱和磁化强度却只有84.43emu/g。
附图说明:
图1为实施例1添加PEG300后制备的Mn1-x-yZnyFe2+(2/3)xO4纳米粉体的红外光谱。
图2为实施例3添加PEG6000后制备的Mn1-x-yZnyFe2+(2/3)xO4纳米粉体的红外光谱。
图3为本发明添加PEG制备的Mn1-x-yZnyFe2+(2/3)xO4纳米粉体的TEM照片,其中,(a)为添加PEG300的纳米粉体;(b)为添加PEG6000的纳米粉体。
图4为本发明添加不同PEG制备的Mn1-x-yZnyFe2+(2/3)xO4纳米粉体的XRD谱。
图5为本发明添加不同PEG制备的Mn1-x-yZnyFe2+(2/3)xO4纳米粉体的磁滞回线。
具体实施方式:
以下结合具体实施例对上述方案做进一步说明。应理解这些实施例是用于说明本发明而不限于限制本发明的范围。实施例中采用的实施条件可以根据厂家的条件做进一步调整,未注明的实施条件通常为常规试验中的条件。
实施例1
本实施例的具体步骤如下:
步骤一,称取27.802g硫酸亚铁(FeSO4·7H2O)(0.1mol铁)溶于150mL去离子水,置于500mL烧杯中搅拌均匀。称取100mL碳酸氢铵(浓度为0.5mol/L)与100mL氨水(浓度为5wt%)倒入分液漏斗内混合均匀,然后向硫酸亚铁溶液中缓慢滴加(滴加时间为1.5h)进行亚铁离子的沉淀,此时硫酸亚铁溶液的pH值调至7.2,亚铁离子完全沉淀,得到悬浊液。
步骤二,称取4.0mL H2O2溶液(质量百分浓度为30%的H2O2溶液),加入步骤一得到的悬浊液中,反应持续0.5h使液体颜色从浅绿色完全转化为红褐色。
步骤三,称取5.493g硫酸锰(MnSO4·H2O)(0.0325mol锰)与5.0323g硫酸锌(ZnSO4·7H2O)(0.0175mol锌)(按照制得的锰锌铁氧体纳米粉体的名义化学式为Mn0.65Zn0.35Fe2O4,相应的x=0,y=0.35。),分别溶于60mL去离子水制成溶液,加入到步骤二悬浊液中,再缓慢滴加(用时1.5h)体积比为1∶1的碳酸氢铵(浓度为0.5mol/L)与氨水(浓度为5wt%)配制成的混合溶液沉淀剂,调节溶液pH值至8.0。
步骤四,将步骤三的溶液转移至500mL烧瓶中,在持续搅拌的条件下,加入PEG300表面活性剂,加入量为每升步骤三的液体加0.04molPEG300,然后继续在搅拌下,沸腾回流反应6h。产物经过滤,去离子水洗涤3次,80℃烘干8h。所得产物的红外光谱分析结果如图1所示,归属纯PEG300的2875cm-1和1105cm-1两个强峰在未添加PEG的产物中没有出现,但在添加PEG300的产物中分别在2861.8cm-1和1084.4cm-1两个位置观察到相应的峰,它们分别对应PEG300分子中CH2基团和C-O-C基团的伸缩振动峰。尽管其强度较弱,但它表明PEG300表面活性剂确实存在于样品表面。
步骤五,将步骤四的烘干产物于500℃氮气气氛中热处理10h制得Mn0.65Zn0.35Fe2O4纳米粉体,粉体的TEM微观形貌如图3a)所示。它们呈尺寸细小、分散性好的球形颗粒,粒径约30nm。图4的XRD谱表明添加PEG300表面活性剂后,与未添加的材料(有少量杂相衍射峰,图中箭头所示)相比,所形成的化合物为纯的锰锌铁氧体纳米粉体。利用LakeShore-7400振动样品磁强计,在20KOe的最大磁场强度下,测定的产物磁滞回线如图5所示。由此,可确定该材料在298K下的饱和磁化强度Ms=105.2emu/g。
实施例2
其他步骤同实例1,变化之处在于:
一是制得的锰锌铁氧体纳米粉体的名义化学式为Mn0.7Zn0.15Fe2.1O4(0.1mol铁,0.0333mol锰,0.0071mol锌;此时,对应的x=0.15,y=0.15);
二是所加H2O2溶液改为5mL;
三是配制成的混合溶液沉淀剂中碳酸氢铵与氨水体积比为2∶1,调节溶液的pH值为7.3-7.5;
四是添加的表面活性剂改为PEG3000,加入量为每升步骤三的液体加0.008molPEG3000;
五是所得沉淀产物于600℃氩气气氛中热处理8h。根据图4的XRD谱可知,所得产物为纯的锰锌铁氧体纳米粉体,而且图5的磁滞回线测试结果表明添加PEG3000后所得锰锌铁氧体纳米粉体的室温饱和磁化强度Ms=102.5emu/g。
实施例3
其他步骤同实例1,变化之处在于:
一是所用原料分别为氯化亚铁(FeCl2·4H2O),氯化锰(MnCl2·4H2O)和氯化锌(ZnCl2)。制得的锰锌铁氧体纳米粉体的名义化学式为Mn0.585Zn0.4Fe2.01O4(0.1mol铁,0.0291mol锰,0.0199mol锌;此时,对应的x=0.015,y=0.4);
二是所加H2O2溶液改为6mL;
三是配制成的混合溶液沉淀剂中碳酸氢铵与氨水体积比为3∶1,调节溶液的pH值为6.5-7.8;
四是添加的表面活性剂改为PEG6000,加入量为每升步骤三的液体加0.006molPEG6000。对烘干后的沉淀产物进行红外光谱分析的结果(图2)表明,归属纯PEG6000的2875.3cm-1和1105cm-1两个强峰在未添加PEG的产物中没有出现,而添加PEG6000的产物分别在2858cm-1和1075.3cm-1两个位置产生了峰。尽管其强度较弱,但它们分别对应PEG6000分子中CH2基团和C-O-C基团的伸缩振动峰,表明PEG6000表面活性剂确实存在于样品表面;
五是所得沉淀产物于700℃二氧化碳气氛中热处理6h。图3b)为所得粉体的TEM微观形貌,同样地,它们也是细小均匀的球状纳米颗粒,粒子尺寸约30nm,并且分散性也较好。图4的XRD谱证实所得产物并未发现其它杂相的衍射峰,说明其为纯的锰锌铁氧体纳米粉体。由图5的磁滞回线可知,添加PEG6000后所得锰锌铁氧体纳米粉体的室温饱和磁化强度Ms=110.5emu/g。
实施例4
其他步骤同实例3,变化之处在于:
一是制得的锰锌铁氧体纳米粉体的名义化学式为Mn0.575Zn0.35Fe2.05O4(0.1mol铁,0.02805mol锰,0.01707mol锌;此时,对应的x=0.075,y=0.35);
二是所加H2O2溶液改为7mL;
三是配制成的混合溶液沉淀剂中碳酸氢铵与氨水体积比为4∶1,调节溶液的pH值为7.0-8.0;
四是添加的表面活性剂改为PEG10000,加入量为每升步骤三的液体加0.004molPEG10000;
五是所得沉淀产物于600℃氩气气氛中热处理5h。图4的XRD谱表明所得产物为纯的锰锌铁氧体纳米粉体,而且图5的磁滞回线测试结果表明添加PEG10000后所得锰锌铁氧体纳米粉体的室温饱和磁化强度Ms=100.5emu/g。
本发明未尽事宜为公知技术。

Claims (1)

1.一种锰锌铁氧体纳米粉体的制备方法,其特征为包括如下步骤:
(1)将亚铁盐溶于去离子水,然后向亚铁盐溶液中滴加沉淀剂,将溶液pH值调至6.5-8.5,得到悬浊液;其中的物料比为每150mL去离子水加入0.08-0.12mol铁盐;
(2)向步骤(1)所得悬浊液滴加过氧化氢溶液,然后反应0.5-1h直至悬浊液从浅绿色完全转变为红褐色;加入量为每步骤(1)中的150mL去离子水加入3-7mL过氧化氢溶液;
(3)按Mn1-x-yZnyFe2+(2/3)xO4中Mn、Zn、Fe摩尔比,称取锰盐、锌盐先后溶于去离子水制成溶液,然后加入到步骤(2)得到的红褐色悬浊液中,再滴加沉淀剂调节溶液pH值为6.5-8.5;其中,本步骤中的去离子水用量为步骤(1)中去离子水的40%;x=0-0.15,y=0.30-0.50;
(4)将步骤(3)液体移至反应器中,然后在搅拌下,将PEG表面活性剂加入到上述溶液中;其中,每升步骤(3)液体加0.002-0.10molPEG表面活性剂;
(5)在搅拌下,将所得溶液沸腾回流反应6-10h,然后将产物经过过滤,沉淀物经去离子水洗涤、烘干;
(6)惰性气氛下将上步所得沉淀产物在500-800℃热处理4-10h,得到最终产物锰锌铁氧体纳米粉体;
所述的惰性气氛为氮气、氩气或二氧化碳;
所述的表面活性剂具体为PEG300、PEG3000、PEG6000或PEG10000;
所述的沉淀剂为碳酸氢铵溶液和氨水组成的混合溶液,体积比为碳酸氢铵溶液:氨水=1:1-4:1,其中碳酸氢铵浓度为:0.1-1mol/L;氨水浓度为5wt%;
所述的步骤(1)和(3)中沉淀剂的滴加速度为:在1.0-1.5h时间内使溶液pH值达到6.5-8.5;
所述的过氧化氢溶液的浓度为质量百分浓度30%;
所述亚铁盐为硫酸亚铁或氯化亚铁;所述锰盐为硫酸锰或氯化锰;所述锌盐为硫酸锌或氯化锌。
CN201610697635.0A 2016-08-18 2016-08-18 一种锰锌铁氧体纳米粉体的制备方法 Expired - Fee Related CN106365205B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610697635.0A CN106365205B (zh) 2016-08-18 2016-08-18 一种锰锌铁氧体纳米粉体的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610697635.0A CN106365205B (zh) 2016-08-18 2016-08-18 一种锰锌铁氧体纳米粉体的制备方法

Publications (2)

Publication Number Publication Date
CN106365205A CN106365205A (zh) 2017-02-01
CN106365205B true CN106365205B (zh) 2018-06-15

Family

ID=57878453

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610697635.0A Expired - Fee Related CN106365205B (zh) 2016-08-18 2016-08-18 一种锰锌铁氧体纳米粉体的制备方法

Country Status (1)

Country Link
CN (1) CN106365205B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113087516B (zh) * 2021-03-31 2022-07-22 重庆上甲电子股份有限公司 利用工业废弃物制备锰锌铁氧体的低温烧结方法
CN113428903A (zh) * 2021-07-21 2021-09-24 中国科学院电工研究所 一种制备纳米锰锌铁氧体纤维的方法
CN114751459B (zh) * 2022-04-06 2023-06-02 中国科学院电工研究所 制备锰锌铁氧体纤维的方法与锰锌铁氧体纤维

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1458118A (zh) * 2003-04-24 2003-11-26 哈尔滨工程大学 纳米永磁铁氧体粉末的制备方法
CN101306472A (zh) * 2008-06-06 2008-11-19 东华大学 一种锰锌铁氧体磁性纳米微球的制备方法
CN101475368A (zh) * 2009-01-09 2009-07-08 东华大学 一种醇热法制备镍锌铁氧体(NixZn1-xFe2O4)磁性纳米粉体的方法
CN101560101A (zh) * 2009-05-26 2009-10-21 东华大学 一种醇热法制备钴锌铁氧体(CoxZn1-xFe2O4)磁性纳米粉体的方法
CN101665362B (zh) * 2009-08-31 2013-05-01 广西冶金研究院 一种锰锌铁氧体晶体的合成方法
CN101913855B (zh) * 2010-08-24 2011-11-16 中北大学 锶铁氧体磁性纳米粒子的制备方法及其磁性减震橡胶
CN102225866B (zh) * 2011-04-22 2013-03-27 宋玉军 一种铁氧体纳米颗粒的制备方法
CN102731079B (zh) * 2012-07-02 2013-12-04 河北工业大学 一种制备MnZn铁氧体的方法
CN104599807B (zh) * 2014-11-21 2018-10-26 中国科学院电工研究所 一种溶胶-凝胶法制备锰锌铁氧体薄膜的方法

Also Published As

Publication number Publication date
CN106365205A (zh) 2017-02-01

Similar Documents

Publication Publication Date Title
Wang et al. Synthesis and characterization of uniform and crystalline magnetite nanoparticles via oxidation-precipitation and modified co-precipitation methods
Cheng et al. Tunable synthesis of carboxyl-functionalized magnetite nanocrystal clusters with uniform size
WP et al. XPS and magnetic properties of CoFe2O4 nanoparticles synthesized by a polyacrylamide gel route
Ozkaya et al. A novel synthetic route to Mn3O4 nanoparticles and their magnetic evaluation
Li et al. Hydrothermal synthesis of ultrafine α-Fe2O3 and Fe3O4 powders
Peng et al. Effect of reaction condition on microstructure and properties of (NiCuZn) Fe2O4 nanoparticles synthesized via co-precipitation with ultrasonic irradiation
Mao et al. Synthesis of magnetite octahedrons from iron powders through a mild hydrothermal method
Tajabadi et al. Effect of alkaline media concentration and modification of temperature on magnetite synthesis method using FeSO4/NH4OH
Kumar et al. Synthesis and characterization of iron oxide nanoparticles (Fe2O3, Fe3O4): a brief review
CN106365205B (zh) 一种锰锌铁氧体纳米粉体的制备方法
Chen et al. Controllable synthesis of magnetic Fe3O4 particles with different morphology by one-step hydrothermal route
CN105741996A (zh) 一种基于低温等离子体的超顺磁性纳米颗粒的制备方法
CN101125684A (zh) 一种γ-Fe2O3磁性纳米颗粒的制备方法
Lavorato et al. Redox phase transformations in magnetite nanoparticles: impact on their composition, structure and biomedical applications
CN108455682B (zh) 一种水性Fe3O4纳米粉体的制备方法
Yu et al. Effects of synthetical conditions on octahedral magnetite nanoparticles
Ali et al. Size and shape control synthesis of iron oxide–based nanoparticles: Current status and future possibility
Xu et al. Structure and magnetic properties of multi-morphological CoFe2O4/CoFe nanocomposites by one-step hydrothermal synthesis
Hu et al. Weakly magnetic field-assisted synthesis of magnetite nano-particles in oxidative co-precipitation
Khurshid et al. Chemically synthesized nanoparticles of iron and iron-carbides
Hedayatnasab et al. Synthesis of highly stable superparamagnetic iron oxide nanoparticles under mild alkaline reagents and anaerobic condition
CN114496442A (zh) 一种纳米磁性颗粒及其制备方法和磁性液体
CN108109805A (zh) 一种由peg调控制得的羧酸型磁性纳米粒子及其应用
Zhang et al. Effect of reductant and PVP on morphology and magnetic property of ultrafine Ni powders prepared via hydrothermal route
Ragupathi et al. Influences of temperature on synthesis of α-iron oxide nanoparticles, characterization and catalytic activity

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180615