CN108109805A - 一种由peg调控制得的羧酸型磁性纳米粒子及其应用 - Google Patents

一种由peg调控制得的羧酸型磁性纳米粒子及其应用 Download PDF

Info

Publication number
CN108109805A
CN108109805A CN201711365300.XA CN201711365300A CN108109805A CN 108109805 A CN108109805 A CN 108109805A CN 201711365300 A CN201711365300 A CN 201711365300A CN 108109805 A CN108109805 A CN 108109805A
Authority
CN
China
Prior art keywords
particle
nano
carboxylic acid
acid type
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711365300.XA
Other languages
English (en)
Other versions
CN108109805B (zh
Inventor
张其坤
姜琳靖
孙明雪
江照艳
张新虹
刘小娟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Normal University
Original Assignee
Shandong Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Normal University filed Critical Shandong Normal University
Priority to CN201711365300.XA priority Critical patent/CN108109805B/zh
Publication of CN108109805A publication Critical patent/CN108109805A/zh
Application granted granted Critical
Publication of CN108109805B publication Critical patent/CN108109805B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/36Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/08Ferroso-ferric oxide (Fe3O4)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/0018Diamagnetic or paramagnetic materials, i.e. materials with low susceptibility and no hysteresis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/0036Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity
    • H01F1/0045Zero dimensional, e.g. nanoparticles, soft nanoparticles for medical/biological use
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/88Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by thermal analysis data, e.g. TGA, DTA, DSC
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties

Abstract

本发明属于功能纳米材料制备技术领域,涉及一种由PEG调控制得的羧酸型磁性纳米粒子及其应用。本发明采用共沉淀法制备纳米四氧化三铁,为减少四氧化三铁纳米粒子的团聚,制备四氧化三铁粒子的时候在体系中加入分子量为400‑2000的聚乙二醇以调节体系粘性,制备的颗粒均匀的纳米级磁性四氧化三铁具有良好的磁性、抗氧化性、分散性;再结合化学修饰,从而制备分散性良好的羧酸型纳米磁性材料。本发明羧酸型磁性纳米粒子可用于癌症靶向磁场治疗以及去除重金属离子方面。

Description

一种由PEG调控制得的羧酸型磁性纳米粒子及其应用
技术领域
本发明属于功能纳米材料制备技术领域,涉及一种由PEG调控制得的羧酸型磁性纳米粒子及其应用。
背景技术
磁性纳米粒子作为一种重要的纳米材料,以其特殊的磁性能,在信息技术、生物医学领域具有广阔的应用前景。磁性Fe3O4纳米材料作为磁性纳米材料的一种,由于具有良好的磁性和表面活性,在生物、医学、催化、分离、环境保护、污水处理等领域有着广泛的应用。
纳米Fe3O4的制备方法有很多,如:共沉淀法、溶胶-凝胶法、微乳液法、水热法、氧化沉淀法等。共沉淀法是目前最简单最常用的方法,但其制备的磁性四氧化三铁纳米颗粒在应用上存在缺陷:利用共沉淀法制备的磁性四氧化三铁纳米颗粒,由于磁性纳米粒子具有高比表面积、高比表面能,以及粒子各向异性的偶极距作用从而很容易团聚,Fe3O4很容易被氧化成γ-Fe2O3,从而导致粒子发生聚集和沉淀,不能形成稳定的分散体系。因而,亟需一种简单且有效改善磁性四氧化三铁纳米颗粒分散性能、稳定性能及抗氧化性能的制备方法。
发明内容
为了解决上述问题,本发明提供了一种由聚乙烯二醇调控制得的羧酸型磁性纳米粒子及其应用。
本发明通过以下技术方案实现:
本发明第一个方面,提供一种羧酸型磁性纳米粒子的制备方法,由聚乙烯二醇参与纳米四氧化三铁的制备。
本发明第二个方面,提供所述制备得到的羧酸型磁性纳米粒子在癌症靶向磁场治疗方面的应用。
本发明第三个方面,提供所述制备得到的羧酸型磁性纳米粒子在重金属离子去除方面的应用。
本发明与现有技术相比,具有以下技术优势:
(1)本发明制备得到的四氧化三铁纳米颗粒剩磁很低,是软磁材料且具有良好的超顺磁性;
(2)本发明制备得到的四氧化三铁纳米颗粒经二氧化硅改性和氯乙酸修饰后得到的粒子分散性较好,球形结构,粒径分布均匀,热稳定性非常好;并且具有较大的离子交换量,可以应用于癌症靶向磁场治疗仪器中,也可应用于重金属离子的去除。
附图说明
图1为加入PEG1000时制备的磁性纳米颗粒的显微镜照片。
图2为加入PEG1500时制备的磁性纳米颗粒的显微镜照片。
图3为加入PEG2000时制备的磁性纳米颗粒的显微镜照片。
图4为磁滞回线。
图5为SiO2包裹纳米Fe3O4粒子前后红外谱图。
图6为ClCH2COOH再次包裹Fe3O4粒子前后的红外谱图。
图7为KH550和ClCH2COOH修饰纳米Fe3O4粒子红外谱图。
图8为Fe3O4粒子的TEM照片。
图9为Fe3O4@SiO2粒子的TEM照片。
图10为Fe3O4@SiO2@ClCH2COOH粒子的TEM照片。
图11为Fe3O4的TG。
图12为Fe3O4@SiO2的TG。
图13为Fe3O4@SiO2@ClCH2COOH的TG。
具体实施方式
应该指出,以下详细说明都是示例性的,旨在对本发明提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本发明所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本发明的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、部件和/或它们的组合。
为了满足相关产业对高稳定性磁性纳米颗粒的需求,本发明提供了一种由聚乙烯二醇调控制得的羧酸型磁性纳米粒子,由分子量范围为400-2000的聚乙烯二醇调节体系粘度制得。
在本发明优选的技术方案中,所述由聚乙烯二醇调控制得的羧酸型磁性纳米粒子由分子量范围为1000的聚乙烯二醇调节体系粘度制得。
本发明第二方面,提供一种由聚乙烯二醇调控制得的羧酸型磁性纳米粒子的制备方法,包括以下步骤:
(1)聚乙烯二醇参与的纳米四氧化三铁的制备;
(2)纳米四氧化三铁的改性;
(3)羧酸与改性的纳米级四氧化三铁进行共价耦合。
在本发明优选的技术方案中,步骤(1)中:二价铁盐和三价铁盐物质的量之比为2:1.1;沉淀剂氨水的使用浓度为1.5M。
在本发明优选的技术方案中,步骤(2)中:将纳米四氧化三铁和Na2SiO3·9H2O按质量比1:6混合后,加入去离子水在氮气保护下水浴加热至85~90℃,滴加2M的盐酸溶液至体系pH值为5.5~6,水浴加热60分钟,收集黑色粉末,经洗涤、抽滤、干燥后得改性后纳米四氧化三铁。
在本发明优选的方案中,步骤(3)中:将上述步骤(2)改性的纳米级四氧化三铁放入与Na2CO3、羧酸混合加入去离子水,强力机械搅拌并通入氮气保护,用水浴锅加热至50~60℃,反应1~1.5h;停止搅,收集黑色粉末,经洗涤、抽滤、干燥后即得。
在本发明优选的方案中,步骤(3)中所用羧酸为ClCH2COOH。
在本发明进一步优选的方案中,加入的Na2CO3和ClCH2COOH的质量比为15:8。
本发明第三方面,提供一种由聚乙烯二醇调控制得的羧酸型磁性纳米粒子在癌症靶向磁场治疗方面的应用。
本发明第四方面,提供一种由聚乙烯二醇调控制得的羧酸型磁性纳米粒子在重金属离子去除方面的应用。
为了使得本领域技术人员能够更加清楚地了解本发明的技术方案,以下将结合具体的实施例详细说明本发明的技术方案。
实施例1一种由聚乙烯二醇调控制得的羧酸型磁性纳米粒子的制备方法
所述由聚乙烯二醇调控制得的羧酸型磁性纳米粒子的制备方法,包括以下步骤:
(1)聚乙烯二醇参与的纳米四氧化三铁的制备:量取12ml 0.17M的FeCl3·6H2O,10ml 0.1M的FeCl2·4H2O,放于500ml的四口烧瓶中,加入20ml的50%的分子量为1000的PEG溶液,搅拌均匀配成混合溶液;在N2保护下,用水浴锅加热至85~90℃,在强力电动搅拌过程中逐滴滴加1.5M的氨水,混合溶液由橙黄色逐渐转变为橙红色,最终转变为黑色,同时有大量黑色颗粒状固体生成,待pH升至8~9,再继续滴加10ml 1.5M的氨水使之充分水解,停止搅拌并在三口烧瓶下方放置磁铁,静置待黑色粉末完全沉于瓶底,用移液管移出上层液体,黑色颗粒用去离子水洗涤3次,抽滤、干燥后可获得粒径为150nm的四氧化三铁纳米颗粒;
(2)纳米四氧化三铁的改性:将上述步骤中制备的纳米级四氧化三铁0.1g放于500ml的四口烧瓶中,加入0.6gNa2SiO3·9H2O,再加入100ml去离子水。强力电动搅拌并通入氮气保护,用水浴锅加热至85~90℃,开始逐滴滴加2M的盐酸溶液,把体系的pH调节到6,水浴加热60分钟,停止搅拌,四口烧瓶下方放置磁铁,待黑色粉末全部沉于瓶底,用移液管移出上层液体,黑色粉末用去离子水洗涤3次,抽滤、干燥后可获得再次改性后的纳米级四氧化三铁,产品装入称量瓶中密封保存;
(3)羧酸与改性的纳米级四氧化三铁进行共价耦合:将上述步骤中制备的改性的纳米级四氧化三铁0.1g放入500ml三口烧瓶中,再加入0.75gNa2CO3和0.4gClCH2COOH,最后加入100ml去离子水,强力机械搅拌并通入氮气保护,用水浴锅加热至50~60℃,反应1~1.5h后停止搅拌,三口烧瓶下方放置磁铁,待黑色粉末全部沉于瓶底,用移液管移出上层液体,黑色粉末用去离子水洗涤3次,抽滤、干燥后即得。
实施例2一种由聚乙烯二醇调控制得的羧酸型磁性纳米粒子的制备方法
所述由聚乙烯二醇调控制得的羧酸型磁性纳米粒子的制备方法,包括以下步骤:
(1)聚乙烯二醇参与的纳米四氧化三铁的制备:量取12ml 0.17M的FeCl3·6H2O,10ml 0.1M的FeCl2·4H2O,放于500ml的四口烧瓶中,加入20ml的50%的分子量为1500的PEG溶液,搅拌均匀配成混合溶液;在N2保护下,用水浴锅加热至85~90℃,在强力电动搅拌过程中逐滴滴加1.5M的氨水,混合溶液由橙黄色逐渐转变为橙红色,最终转变为黑色,同时有大量黑色颗粒状固体生成,待pH升至8~9,再继续滴加10ml 1.5M的氨水使之充分水解,停止搅拌并在三口烧瓶下方放置磁铁,静置待黑色粉末完全沉于瓶底,用移液管移出上层液体,黑色颗粒用去离子水洗涤3次,抽滤、干燥后可获得粒径为50-500nm的四氧化三铁纳米颗粒;
(2)纳米四氧化三铁的改性与实施例1中改性方法类似;
(3)羧酸与改性的纳米级四氧化三铁进行共价耦合方法与实施例1类似。实施例3一种由聚乙烯二醇调控制得的羧酸型磁性纳米粒子的制备方法
所述由聚乙烯二醇调控制得的羧酸型磁性纳米粒子的制备方法,包括以下步骤:
(1)聚乙烯二醇参与的纳米四氧化三铁的制备:量取12ml 0.17M的FeCl3·6H2O,10ml 0.1M的FeCl2·4H2O,放于500ml的四口烧瓶中,加入20ml的50%的分子量为400的PEG溶液,搅拌均匀配成混合溶液;在N2保护下,用水浴锅加热至85~90℃,在强力电动搅拌过程中逐滴滴加1.5M的氨水,混合溶液由橙黄色逐渐转变为橙红色,最终转变为黑色,同时有大量黑色颗粒状固体生成,待pH升至8~9,再继续滴加10ml 1.5M的氨水使之充分水解,停止搅拌并在三口烧瓶下方放置磁铁,静置待黑色粉末完全沉于瓶底,用移液管移出上层液体,黑色颗粒用去离子水洗涤3次,抽滤、干燥后可获得粒径为50-500nm的四氧化三铁纳米颗粒;
(2)纳米四氧化三铁的改性与实施例1中改性方法类似;
(3)羧酸与改性的纳米级四氧化三铁进行共价耦合方法与实施例1类似。实施例4一种由聚乙烯二醇调控制得的羧酸型磁性纳米粒子的制备方法
所述由聚乙烯二醇调控制得的羧酸型磁性纳米粒子的制备方法,包括以下步骤:
(1)聚乙烯二醇参与的纳米四氧化三铁的制备:量取12ml 0.17M的FeCl3·6H2O,10ml 0.1M的FeCl2·4H2O,放于500ml的四口烧瓶中,加入20ml的50%的分子量为2000的PEG溶液,搅拌均匀配成混合溶液;在N2保护下,用水浴锅加热至85~90℃,在强力电动搅拌过程中逐滴滴加1.5M的氨水,混合溶液由橙黄色逐渐转变为橙红色,最终转变为黑色,同时有大量黑色颗粒状固体生成,待pH升至8~9,再继续滴加10ml 1.5M的氨水使之充分水解,停止搅拌并在三口烧瓶下方放置磁铁,静置待黑色粉末完全沉于瓶底,用移液管移出上层液体,黑色颗粒用去离子水洗涤3次,抽滤、干燥后可获得粒径为50-500nm的四氧化三铁纳米颗粒;
(2)纳米四氧化三铁的改性与实施例1中改性方法类似;
(3)羧酸与改性的纳米级四氧化三铁进行共价耦合方法与实施例1类似。
对比例1
与实施例1的区别在于,PEG分子量为2500,其它均与实施例1相似。制备得到的纳米四氧化三铁产品为纳米块状体且粒径分散不均匀。
对比例2
与实施例1的区别在于,制备得到纳米四氧化三铁后再与PEG混合,其它均与实施例1相似。混合后纳米四氧化三铁产品为块状,分散不均匀。
对比例3
与实施例1的区别在于,二价铁盐和三价铁盐按物质的量之2:1.3,其它均与实施例1相似。制备得到的纳米四氧化三铁产品为纳米块状,粒径分布不均匀。
对比例4
与实施例1的区别在于,用0.8gNa2SiO3·9H2O对纳米四氧化三铁进行修饰,其它均与实施例1相似。制备得到的纳米四氧化三铁产品为纳米块状,粒径分布不均匀。
对比例5
与实施例1的区别在于,用KH550替换Na2SiO3·9H2O对纳米四氧化三铁进行修饰,其它均与实施例1相似。经红外光谱分析很明显在2700cm-1-3000cm-1多了一个吸收峰,即为-NH2的特征吸收峰,而羧基的特征吸收峰面积明显缩小,证明KH550的胺基与ClCH2COOH的羧基反应,就使得制得的材料没有离子交换功能。
试验例一、四氧化三铁纳米粒子粘度的影响
分别按实施例1-3及对比例1-3方法制备四氧化三铁纳米粒子,并对制备得到的磁性纳米颗粒进行显微镜观察。由图1、2可知,实施例1和实施例2制备得到的四氧化三铁粒子呈纳米颗粒状,由图3可知,实施例3制备得到的四氧化三铁粒子开始呈纳米接枝状。而对比例1-3制备得到的四氧化三铁粒子均呈纳米块状,存在明显的分散不均的现象。
试验例二、四氧化三铁纳米粒子磁性检测
对实施例1三个阶段中所得离子进行磁性检测,结果如图4所示。
由图4可知,制备得到的Fe3O4粒子的磁滞回线,两条磁滞回线基本重合,说明得到的Fe3O4粒子剩磁很低,是软磁材料且具有良好的超顺磁性,Fe3O4的饱和磁化强度为26.58emu/g,较块体Fe3O4室温下的饱和磁化强度(92emu/g)小,这可能是由于在纳米尺度内,粒子的直径减小,饱和磁矩也相应降低之故。矫顽力为66.91Oe,剩余磁化强度为3.05emu/g。
试验例二、红外光谱分析(FTIR)
1.SiO2包裹纳米Fe3O4粒子前后红外图谱
由图5可知,很明显在1050cm-1处多了一个吸收峰,即为-Si-O-Si-的特征吸收峰,证明SiO2已经成功包裹在纳米四氧化三铁的表面了。
2.ClCH2COOH再次包裹纳米Fe3O4粒子
由图6可知,很明显在3400cm-1-3500cm-1多了一个吸收峰,即为羧基的特征吸收峰,证明ClCH2COOH已经成功包裹在纳米四氧化三铁的表面了。
3.用KH550修饰纳米Fe3O4再包裹ClCH2COOH。
由图7可知,很明显在2700cm-1-3000cm-1多了一个吸收峰,即为-NH2的特征吸收峰,而羧基的特征吸收峰面积明显缩小,证明KH550的胺基与ClCH2COOH的羧基反应,这样就使得制得的材料没有离子交换功能,因此不能先包KH550再包ClCH2COOH。
试验例三、透射电子显微镜(TEM)照片
采用透射电子显微镜(TEM)直接观测用实施例1制得的Fe3O4纳米粒子、SiO2、ClCH2COOH依次包裹改性的Fe3O4纳米粒子的大小及形态。由图8-10可看出粒子分散性较好,球形结构,粒径分布较均匀。
试验例四、热重分析
对实施例1各阶段制备得到的粒子进行热重分析,结果如图11-13所示。由图11可知,在600℃时,Fe3O4仅失重6.51%,既产品中Fe3O4含93.49%。热稳定性非常好。图12为Fe3O4包裹SiO2后的TG分析。在600℃时,失重7.59%,既产品中Fe3O4含92.41%。热稳定性非常好。图13为Fe3O4包裹SiO2和ClCH2COOH后的TG分析。在600℃时,失重9.65%,既产品中Fe3O4含90.35%。热稳定性非常好。综合以上三图,可以看出产品热稳定性非常好,且每一步物质都成功包覆。

Claims (10)

1.一种羧酸型磁性纳米粒子的制备方法,其特征在于,由聚乙烯二醇参与纳米四氧化三铁的制备。
2.根据权利要求1所述的制备方法,其特征在于,所述聚乙烯二醇的分子量范围为400-2000。
3.根据权利要求1所述的制备方法,其特征在于,包括以下步骤:
(1)聚乙烯二醇参与的纳米四氧化三铁的制备;
(2)纳米四氧化三铁的改性;
(3)羧酸与改性的纳米级四氧化三铁进行共价耦合。
4.根据权利要求3所述的方法,其特征在于,步骤(1)中:二价铁盐和三价铁盐按物质的量之2:1.1进行混合,加入分子量为400-2000的聚乙烯二醇;沉淀剂氨水的使用浓度为1.5M,所制备的纳米四氧化三铁的粒径为50-500纳米。
5.根据权利要求3所述方法,其特征在于,步骤(2)中:将纳米四氧化三铁和Na2SiO3·9H2O按质量比1:6混合后,加入去离子水在氮气保护下水浴加热至85~90℃,滴加2M的盐酸溶液至体系pH值为5.5~6,水浴加热60分钟,收集黑色粉末,经洗涤、抽滤、干燥后得改性后纳米四氧化三铁。
6.根据权利要求3所述的方法,其特征在于,步骤(3)中:将上述步骤(2)改性的纳米级四氧化三铁放入与Na2CO3、羧酸混合加入去离子水,强力机械搅拌并通入氮气保护,用水浴锅加热至50~60℃,反应1~1.5h;停止搅,收集黑色粉末,经洗涤、抽滤、干燥后即得。
7.根据权利要求6所述的方法,其特征在于,步骤(3)中所用羧酸为氯乙酸或丙烯酸。
8.根据权利要求6或7所述的方法,其特征在于,加入的Na2CO3和ClCH2COOH的质量比为15:8。
9.根据权利1所述方法制备得到的羧酸型磁性纳米粒子在癌症靶向磁场治疗方面的应用。
10.根据权利1所述方法制备得到的羧酸型磁性纳米粒子在重金属离子去除方面的应用。
CN201711365300.XA 2017-12-18 2017-12-18 一种由peg调控制得的羧酸型磁性纳米粒子及其应用 Expired - Fee Related CN108109805B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711365300.XA CN108109805B (zh) 2017-12-18 2017-12-18 一种由peg调控制得的羧酸型磁性纳米粒子及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711365300.XA CN108109805B (zh) 2017-12-18 2017-12-18 一种由peg调控制得的羧酸型磁性纳米粒子及其应用

Publications (2)

Publication Number Publication Date
CN108109805A true CN108109805A (zh) 2018-06-01
CN108109805B CN108109805B (zh) 2020-05-05

Family

ID=62210907

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711365300.XA Expired - Fee Related CN108109805B (zh) 2017-12-18 2017-12-18 一种由peg调控制得的羧酸型磁性纳米粒子及其应用

Country Status (1)

Country Link
CN (1) CN108109805B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111747452A (zh) * 2020-07-22 2020-10-09 浙江华源颜料股份有限公司 一种纳米级四氧化三铁的制备工艺
CN115159587A (zh) * 2022-07-21 2022-10-11 江苏先丰纳米材料科技有限公司 三氧化钼纳米片负载四氧化三铁磁性纳米颗粒的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007169261A (ja) * 2005-12-23 2007-07-05 Ind Technol Res Inst 特異的標的機能を有する蛍光磁気ナノ粒子
US20110165086A1 (en) * 2010-01-07 2011-07-07 Chulhyun Lee Iron oxide nanoparticles as mri contrast agents and their preparing method
CN102489343A (zh) * 2011-12-08 2012-06-13 山东师范大学 一种铁磁性离子交换材料及其制备方法
CN103723773A (zh) * 2012-10-16 2014-04-16 国家纳米科学中心 一种四氧化三铁纳米颗粒的水溶胶及其制备方法和应用
CN104637644A (zh) * 2015-03-06 2015-05-20 山东大学 一种制备磁性液体的颗粒包覆方法
CN104923175A (zh) * 2014-03-21 2015-09-23 兰州大学 一种Fe3O4磁纳米颗粒及其制备方法和应用
CN107096039A (zh) * 2017-04-27 2017-08-29 武汉理工大学 一种磁靶向双载药递释系统及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007169261A (ja) * 2005-12-23 2007-07-05 Ind Technol Res Inst 特異的標的機能を有する蛍光磁気ナノ粒子
US20110165086A1 (en) * 2010-01-07 2011-07-07 Chulhyun Lee Iron oxide nanoparticles as mri contrast agents and their preparing method
US20130315839A1 (en) * 2010-01-07 2013-11-28 Korea Basic Science Institute Iron oxide nanoparticles as mri contrast agents and their preparing method
CN102489343A (zh) * 2011-12-08 2012-06-13 山东师范大学 一种铁磁性离子交换材料及其制备方法
CN103723773A (zh) * 2012-10-16 2014-04-16 国家纳米科学中心 一种四氧化三铁纳米颗粒的水溶胶及其制备方法和应用
CN104923175A (zh) * 2014-03-21 2015-09-23 兰州大学 一种Fe3O4磁纳米颗粒及其制备方法和应用
CN104637644A (zh) * 2015-03-06 2015-05-20 山东大学 一种制备磁性液体的颗粒包覆方法
CN107096039A (zh) * 2017-04-27 2017-08-29 武汉理工大学 一种磁靶向双载药递释系统及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
周魁: "表面改性磁性Fe3O4/SiO2复合微球的制备与表征", 《有机硅材料》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111747452A (zh) * 2020-07-22 2020-10-09 浙江华源颜料股份有限公司 一种纳米级四氧化三铁的制备工艺
CN111747452B (zh) * 2020-07-22 2022-11-04 浙江华源颜料股份有限公司 一种纳米级四氧化三铁的制备工艺
CN115159587A (zh) * 2022-07-21 2022-10-11 江苏先丰纳米材料科技有限公司 三氧化钼纳米片负载四氧化三铁磁性纳米颗粒的制备方法

Also Published As

Publication number Publication date
CN108109805B (zh) 2020-05-05

Similar Documents

Publication Publication Date Title
Kalia et al. Magnetic polymer nanocomposites for environmental and biomedical applications
Mohapatra et al. Iron oxide nanorods as high-performance magnetic resonance imaging contrast agents
Ramimoghadam et al. Stable monodisperse nanomagnetic colloidal suspensions: an overview
Bohara et al. One-step synthesis of uniform and biocompatible amine functionalized cobalt ferrite nanoparticles: a potential carrier for biomedical applications
Li et al. Preparation and properties of magnetic Fe3O4–chitosan nanoparticles
Zhu et al. Suspension of Fe3O4 nanoparticles stabilized by chitosan and o-carboxymethylchitosan
Marchegiani et al. Sonochemical synthesis of versatile hydrophilic magnetite nanoparticles
Wang et al. Size-controlled synthesis of water-dispersible superparamagnetic Fe 3 O 4 nanoclusters and their magnetic responsiveness
Zahraei et al. Hydrothermal synthesis of fine stabilized superparamagnetic nanoparticles of Zn2+ substituted manganese ferrite
Basly et al. Properties and suspension stability of dendronized iron oxide nanoparticles for MRI applications
CN104649334B (zh) 单分散超顺磁四氧化三铁纳米颗粒的制备方法及四氧化三铁纳米颗粒
Sun et al. A facile strategy to synthesize monodisperse superparamagnetic OA-modified Fe3O4 nanoparticles with PEG assistant
Jalili et al. Bimagnetic hard/soft and soft/hard ferrite nanocomposites: Structural, magnetic and hyperthermia properties
Bohara et al. Synthesis of functionalized Co0. 5Zn0. 5Fe2O4 nanoparticles for biomedical applications
Dabagh et al. Synthesis of silica-coated silver-cobalt ferrite nanoparticles for biomedical applications
Jamil et al. Synthetic study and merits of Fe 3 O 4 nanoparticles as emerging material
Xu et al. Synthesis of raspberry-like magnetic polystyrene microspheres
Rezaei et al. The Role of PVA Surfactant on Magnetic Properties of MnFe 2 O 4 Nanoparticles Synthesized by Sol-Gel Hydrothermal Method
CN108109805A (zh) 一种由peg调控制得的羧酸型磁性纳米粒子及其应用
Tancredi et al. Magnetophoretic mobility of iron oxide nanoparticles stabilized by small carboxylate ligands
CN106365205B (zh) 一种锰锌铁氧体纳米粉体的制备方法
Qi et al. Synthesis and characterization of water-soluble magnetite nanocrystals via one-step sol-gel pathway
Scano et al. New opportunities in the preparation of nanocomposites for biomedical applications: revised mechanosynthesis of magnetite–silica nanocomposites
CN106380896B (zh) 一种涡旋磁纳米环溶胶的制备方法
Tang et al. Well-dispersed, ultrasmall, superparamagnetic magnesium ferrite nanocrystallites with controlled hydrophilicity/hydrophobicity and high saturation magnetization

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200505

Termination date: 20211218