CN106380896B - 一种涡旋磁纳米环溶胶的制备方法 - Google Patents

一种涡旋磁纳米环溶胶的制备方法 Download PDF

Info

Publication number
CN106380896B
CN106380896B CN201610787732.9A CN201610787732A CN106380896B CN 106380896 B CN106380896 B CN 106380896B CN 201610787732 A CN201610787732 A CN 201610787732A CN 106380896 B CN106380896 B CN 106380896B
Authority
CN
China
Prior art keywords
rings
nano
colloidal sol
vortex magnetic
magnetic nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610787732.9A
Other languages
English (en)
Other versions
CN106380896A (zh
Inventor
樊海明
刘晓丽
张艺凡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi Baici Kangda Medical Technology Co ltd
Original Assignee
Northwest University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwest University filed Critical Northwest University
Priority to CN201610787732.9A priority Critical patent/CN106380896B/zh
Publication of CN106380896A publication Critical patent/CN106380896A/zh
Application granted granted Critical
Publication of CN106380896B publication Critical patent/CN106380896B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/22Compounds of iron
    • C09C1/24Oxides of iron
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/02Inorganic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/08Treatment with low-molecular-weight non-polymer organic compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Public Health (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

本发明涉及一种涡旋磁纳米环溶胶的制备方法,即将无磁性表面裸露的α‑Fe2O3纳米环粉末通过溶液法还原成表面包覆油酸的涡旋磁γ‑Fe2O3/Fe3O4纳米环,进一步氧化油酸成具有亲水性的羧基而得到涡旋磁纳米环溶胶。该方法工艺简单,制备成本低,制备的涡旋磁纳米环溶胶保持纳米环大小形貌均匀、结晶性好、涡旋磁畴结构稳定以及具有高的饱和磁化强度,磁溶胶分散性好,生物相容性高,并且同时实现了对涡旋磁纳米环表面的羧基功能化修饰,引入的羧基功能基团易与抗体、核酸以及药物结合,从而更广泛地应用于包括特定肿瘤靶向治疗在内的生物医学领域。

Description

一种涡旋磁纳米环溶胶的制备方法
技术领域
本发明涉及一种涡旋磁纳米环溶胶的制备方法,属于纳米功能材料制备技术领域。
背景技术
磁性纳米颗粒,由于独特的纳米尺寸效应及形貌依赖的磁学特性,使其在磁共振成像,药物输送及抗肿瘤磁热疗等生物医学领域日趋成为研究热点。相比于临床使用的超顺磁氧化铁纳米颗粒,涡旋磁氧化铁纳米环,由于更大的颗粒尺寸及独特的磁涡旋结构,一方面,具备大的表面积,高的热化学稳定性,高的饱和磁化值及长效肿瘤滞留时间;另一方面,独特的磁化闭合分布降低了杂散场,能有效削弱颗粒间的磁相互作用,使得纳米环可形成良好的水分散体,近年来引起人们的广泛关注。
目前,涡旋磁Fe3O4纳米环的合成通过“两步法”实现:先水热生长形成α-Fe2O3纳米环,再利用氢气还原得到γ-Fe2O3/Fe3O4纳米环。然而,还原过程中,为确保得到晶相单一的γ-Fe2O3/Fe3O4纳米环,不但需精准控制还原温度和反应时间,而且还需精准调节反应气体流速,H2比例及α-Fe2O3的加入量。此外,此方法得到的γ-Fe2O3/Fe3O4纳米环,形貌发生畸变坍塌,且无表面活性剂包覆,导致样品的后续表面修饰及相关生物学应用变得困难。因此,找到一种简单易行的方法制备形貌完整、晶相单一和分散性良好的涡旋磁γ-Fe2O3/Fe3O4纳米环溶胶势在必行。
发明内容
根据现有技术所存在的上述问题及需求,本发明旨在提出一种简单可行的大规模制备用于生物医学领域的涡旋磁纳米环溶胶的方法,以克服现有技术的不足。
为实现上述发明目的,本发明采用的技术方案如下:
一种涡旋磁纳米环溶胶的制备方法:将无磁性表面裸露的α-Fe2O3纳米环粉末通过溶液法还原成表面包覆油酸的涡旋磁γ-Fe2O3/Fe3O4纳米环,进一步通过氧化油酸成具有亲水性的羧基而得到涡旋磁纳米环溶胶。
具体地说,上述制备方法包括以下步骤:
(1)将无磁性α-Fe2O3纳米环超声分散于三辛胺溶剂中,滴加油酸于上述溶液中,N2保护下,280-360oC回流反应,随后自然冷却并洗涤收集样品,将所得的涡旋磁γ-Fe2O3/Fe3O4纳米环分散在非极性有机溶剂或极性有机溶剂与非极性有机溶剂的混合溶剂中;
(2)加入浓度为KMnO4、H2O2、NaIO4或NaClO氧化剂水溶液,室温搅拌,洗涤、离心后,重新分散到水中,得到涡旋磁纳米环溶胶。
所述非极性有机溶剂选自正己烷、甲苯、氯仿,所述极性有机溶剂选自四氢呋喃、乙酸乙酯、乙腈;所述混合溶剂为体积比为1:0.1-1:10的极性有机溶剂与非极性有机溶剂的混合溶剂。
所述步骤(2)中,加入催化剂RuCl3,氧化剂与涡旋磁纳米环的质量比为1:1-10:1。
一种涡旋磁纳米环溶胶的制备方法,包括以下步骤:
(1)将无磁性α-Fe2O3纳米环超声分散于三辛胺溶剂中,滴加油酸于上述溶液中,N2保护下,280-360oC回流反应,随后自然冷却并洗涤收集样品,将所得的涡旋磁γ-Fe2O3/Fe3O4纳米环分散在非极性有机溶剂或极性有机溶剂与非极性有机溶剂的混合溶剂中;
(2)加入浓度为KMnO4、H2O2、NaIO4或NaClO氧化剂水溶液,室温搅拌,洗涤、离心后,重新分散到水中,得到涡旋磁纳米环溶胶;
(3)将得到的涡旋磁纳米环溶胶负载抗癌化疗剂,包括阿霉素,阿霉素、柔红霉素、5-氟尿嘧啶、紫杉醇、洛铂、博莱霉素,多西他赛、吉西他宾、异长春花碱、羟基喜树碱。
上述制备方法得到的涡旋磁纳米环溶胶在制备肿瘤靶向药物中的应用。
与现有技术相比,本发明提供了一种涡旋磁纳米环溶胶的制备方法,通过表面油酸包覆及氧化,实现了对无磁性α-Fe2O3到涡旋磁Fe3O4纳米环的相转变和表面的羧基功能化修饰两个目的。该方法工艺简单,制备成本低,制备的涡旋磁纳米环溶胶保持纳米环大小形貌均匀、结晶性好、涡旋磁畴结构稳定以及具有高的饱和磁化强度,在室温下,磁滞回线测量没有剩磁和矫顽力,磁溶胶分散性好,生物相容性高,并且同时实现了对涡旋磁纳米环表面的羧基功能化修饰,引入的羧基功能基团易与抗体、核酸以及药物结合,从而更广泛地用于包括特定肿瘤靶向治疗在内的生物医学应用领域。
附图说明
图1 a 为本发明实施例1的α-Fe2O3纳米环粉末和Fe3O4纳米环分散在油相和水相的照片;b 为外径为70 nm表面油酸包覆的Fe3O4纳米环扫描电镜(SEM)示意图;c 为外径为70 nm表面油酸被氧化后的Fe3O4纳米环SEM示意图;d 为外径为70 nm表面油酸被氧化后的Fe3O4纳米环透射电镜(TEM)示意图;
图2 为本发明实施例1的外径为70 nm α-Fe2O3和Fe3O4纳米环X射线粉末衍射(XRD)示意图;
图3为本发明实施例1的外径为70 nm表面油酸被氧化后的Fe3O4纳米环分散在水中的水化半径示意图;
图4为本发明实施例1的外径为70 nm包覆油酸和油酸被氧化后的Fe3O4纳米环振动样品磁强计(VSM) 示意图;
图5 a为涡旋磁纳米环的明场TEM示意图;b为涡旋磁纳米环的电子全息示意图。
具体实施方式
为使发明的目的、技术方案及优点更加清楚明白,以下参照附图并举实施例,对发明进一步详细说明。
实施例1:
外径为70 nm Fe3O4纳米环涡旋磁溶胶的制备:
(1) 首先合成外径为70 nm α-Fe2O3纳米环: 通过水热法制备。0.8 mL FeCl3(0.5M) 水溶液,0.72 mL NH4H2PO4 (0.02M) 水溶液,38.5 mL去离子水混合于50 mL反应釜,搅拌均匀,在220 ℃反应48 h。反应结束后,等温度自然冷却降室温,用体积比为 1:1的酒精和水洗3遍,烘干,得到α-Fe2O3红色固体粉末;
(2) 表面包覆油酸同时实现溶液法还原无磁性α-Fe2O3纳米环成涡旋磁Fe3O4纳米环: 将制得的α-Fe2O3 纳米环 (100 mg) 分散于35 mL 三辛胺溶剂中,超声处理30分钟。将1 mmol油酸加入上述混合液,所得溶液转入100 mL 三口烧瓶中,并安装冷凝管。将混合溶液加热至340 ℃,开始回流,并通入流量比为 5% H2/95% Ar 混合气体。反应体系在 340℃ 保持30 min,随后自然冷却。所得黑色沉淀用乙醇离心洗涤3次,最终所得样品再次分散于正己烷中;
(3) 涡旋磁纳米环溶胶的制备: 将含10 mg表面油酸包覆的Fe3O4纳米环的正己烷溶液加入 2 mL 乙酸乙酯和乙腈混合溶液(体积比1:1)中。然后,加入高碘酸钠 (20 mg/mL)溶液和3 mg RuCl3,搅拌均匀。2 h以后,原本均质的反应体系发生分层:将无色的上层正己烷除去;将下层的水溶液收集并进行磁分离。用乙醇和去离子水多次洗涤,得到的Fe3O4纳米环被重新分散进水中,得到Fe3O4纳米环涡旋磁溶胶。
图1a表明本发明实施例1的α-Fe2O3纳米环粉末和Fe3O4纳米环分散在油相和水相的照片。从图中可以得出无磁性α-Fe2O3纳米环可以通过表面油酸包覆及进一步氧化的方法,转化为可均匀分散在水相的涡旋磁Fe3O4纳米环。
图1b和1c分别是油酸包覆后和油酸氧化后的Fe3O4 纳米环SEM示意图。从图中可以看出,经过溶液法包覆油酸还原后,纳米环的形貌并未发生破坏,并且均为完整的纳米环状,大小均一,尺寸仍为70 nm。
将制备的70 nm Fe3O4磁性纳米环分散于水后,滴加在300孔的铜网上,自然干燥后,于透射电镜(加速电压200 kV)下观测样品的大小和形态。图1d为所制备的70 nm Fe3O4磁性纳米环的TEM照片,形貌呈环状,且分散性良好。
图2 表明本发明实施例1所得的α-Fe2O3纳米环和Fe3O4纳米环包覆油酸和氧化油酸后的XRD示意图。应用XRD技术(Cu靶Ka射线)对粉末的物相进行鉴别,波长为0.154 nm,扫描角度为20°到80°。测定结果见图2,在油酸包覆及氧化之前,所得纳米环为单一的α-Fe2O3相。在油酸包覆及被氧化后,均为单一的Fe3O4相。图谱上各晶面的特征峰分别与国际粉末联合会提供的α-Fe2O3标准PDF卡(JCPDS card No. 33-0664)和Fe3O4标准PDF卡(JCPDS cardNo. 19-0629)中的XRD图谱的特征峰完全吻合,且无杂峰出现,这表明所制备的油酸包覆和油酸被氧化后的磁性纳米环为Fe3O4,而且纯度较高。这样的对比显示,α-Fe2O3纳米环粉末可以经过本发明的方法被转化成涡旋磁Fe3O4纳米环溶胶。
用激光粒度仪测定水合动力学半径,结果见图3。从70 nm Fe3O4纳米环水合动力学粒径及其分布图可知,其平均水合动力学粒径为130.5 nm,该尺寸满足磁性纳米材料在生物医学方面的应用要求。而且图中显示纳米环溶胶的尺寸分布较窄,说明涡旋磁纳米环溶胶具有良好的分散性。
将制备的70 nm Fe3O4磁性纳米环使用VSM进行磁性表征,在磁场范围-20kOe ~ +20kOe内,于室温下测定样品的磁学性能,结果见图4。从图4可以看出,所制备样品的磁滞回线不同于铁磁性材料的磁滞回线,其特点在于两条不重合的磁化曲线,在原点处重合,这正体现了四氧化三铁亚铁磁纳米环的一个重要磁学特征:具有稳定的涡旋态(vortex state)磁畴结构,其稳定的磁化方向是沿环状结构形成涡旋态。并且在经过高温还原以后,油酸包覆和油酸被氧化后的Fe3O4纳米环均保持这种涡旋态的磁滞回线。与体相磁体不同,在无外场的情况下,涡旋磁态纳米环之间磁偶极相互作用极小,整体不显现磁极性,没有剩磁和矫顽力;其磁特性与超顺磁性质也有较大差别,在外场存在的情况下,其发生vortex state到onion state转变,迅速被磁化,其磁化强度明显大于超顺磁纳米颗粒,有明显的磁滞损耗现象。
从图5电子全息图中进一步观察到用该方法制备的涡旋磁纳米环溶胶具有稳定的涡旋磁态。涡旋磁纳米环由于所有的磁通量都围绕轴心旋转,降低了杂散场,从而形成涡旋磁态。因此,无外加磁场时,由于磁矩闭合分布,总的磁矩为零。涡旋磁纳米环之间无磁相互作用,从而形成稳定的涡旋磁溶胶。
以上所述仅为发明的较佳实施例而已,并不用以限制发明,凡在发明的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在发明的范围之内。

Claims (9)

1.一种涡旋磁纳米环溶胶的制备方法,其特征在于:将无磁性表面裸露的α-Fe2O3纳米环粉末通过溶液法还原成表面包覆油酸的涡旋磁γ-Fe2O3/Fe3O4纳米环,进一步通过氧化油酸成具有亲水性的羧基而得到涡旋磁纳米环溶胶。
2.根据权利要求1所述涡旋磁纳米环溶胶的制备方法,其特征在于包括以下步骤:
(1)将无磁性α-Fe2O3纳米环超声分散于三辛胺溶剂中,滴加油酸于上述溶液中,N2保护下,280-360oC回流反应,随后自然冷却并洗涤收集样品,将所得的涡旋磁γ-Fe2O3/Fe3O4纳米环分散在非极性有机溶剂或极性有机溶剂与非极性有机溶剂的混合溶剂中;
(2)加入KMnO4、H2O2、NaIO4或NaClO氧化剂水溶液,室温搅拌,洗涤、离心后,重新分散到水中,得到涡旋磁纳米环溶胶。
3.根据权利要求2所述的涡旋磁纳米环溶胶的制备方法,其特征在于:所述非极性有机溶剂选自正己烷、甲苯、氯仿。
4.根据权利要求2所述的涡旋磁纳米环溶胶的制备方法,其特征在于:所述极性有机溶剂选自四氢呋喃、乙酸乙酯、乙腈。
5.根据权利要求2所述的涡旋磁纳米环溶胶的制备方法,其特征在于:所述混合溶剂为体积比为1:0.1-1:10的极性有机溶剂与非极性有机溶剂的混合溶剂。
6.根据权利要求2所述的涡旋磁纳米环溶胶的制备方法,其特征在于:所述步骤(2)中加入催化剂RuCl3
7.根据权利要求2所述的涡旋磁纳米环溶胶的制备方法,其特征在于:所述步骤(2)中,氧化剂与涡旋磁纳米环的质量比为1:1-10:1。
8.一种涡旋磁纳米环溶胶的制备方法,其特征在于包括以下步骤:
(1)将无磁性α-Fe2O3纳米环超声分散于三辛胺溶剂中,滴加油酸于上述溶液中,N2保护下, 280-360oC回流反应,随后自然冷却并洗涤收集样品,将所得的涡旋磁γ-Fe2O3/Fe3O4纳米环分散在非极性有机溶剂或极性有机溶剂与非极性有机溶剂的混合溶剂中;
(2)加入KMnO4、H2O2、NaIO4或NaClO氧化剂水溶液,室温搅拌,洗涤、离心后,重新分散到水中,得到涡旋磁纳米环溶胶;
(3)将得到的涡旋磁纳米环溶胶负载抗癌化疗剂,包括阿霉素、柔红霉素、5-氟尿嘧啶、紫杉醇、洛铂、博莱霉素,多西他赛、吉西他宾、异长春花碱、羟基喜树碱。
9.权利要求1-7任意之一所述制备方法得到的涡旋磁纳米环溶胶在制备肿瘤靶向药物中的应用。
CN201610787732.9A 2016-08-31 2016-08-31 一种涡旋磁纳米环溶胶的制备方法 Active CN106380896B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610787732.9A CN106380896B (zh) 2016-08-31 2016-08-31 一种涡旋磁纳米环溶胶的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610787732.9A CN106380896B (zh) 2016-08-31 2016-08-31 一种涡旋磁纳米环溶胶的制备方法

Publications (2)

Publication Number Publication Date
CN106380896A CN106380896A (zh) 2017-02-08
CN106380896B true CN106380896B (zh) 2018-05-15

Family

ID=57938663

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610787732.9A Active CN106380896B (zh) 2016-08-31 2016-08-31 一种涡旋磁纳米环溶胶的制备方法

Country Status (1)

Country Link
CN (1) CN106380896B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107556809B (zh) * 2017-09-14 2020-12-18 西安理工大学 一种led-uv磁性防伪油墨制备方法
CN115532244B (zh) * 2022-10-31 2024-04-12 西安交通大学 一种环状利血平分子印迹磁性纳米材料及其制备方法和应用

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012135872A1 (ru) * 2011-03-30 2012-10-04 Kolesnik Viktor Grigorjevich Способ восстановления кремния и титана путем генерации электромагнитных взаимодействий частиц sio2, fetio3 и магнитных волн
CN102500291B (zh) * 2011-09-30 2015-04-08 深圳市易瑞生物技术有限公司 具有壳核结构的磁性荧光纳米颗粒的制备方法及应用
CN102690112B (zh) * 2012-05-25 2013-09-18 南通华兴磁性材料有限公司 一种用于宽频抗电磁干扰的锰锌铁氧体材料及其制造方法
CN103112904B (zh) * 2013-02-25 2014-12-17 哈尔滨理工大学 一种能与聚乙烯复合制备纳米电介质的纳米Fe3O4粉的方法
CN103341165B (zh) * 2013-05-31 2015-04-01 上海师范大学 一种具有光热功能的Fe@Fe3O4纳米粒子及其制备方法和应用
CN103861108A (zh) * 2014-03-03 2014-06-18 西北大学 新型涡旋磁畴铁基纳米磁热疗介质及其在肿瘤磁热疗中的应用
CN104587986A (zh) * 2014-12-17 2015-05-06 华南理工大学 磁性纳米混合半胶束及其制备方法与在吸附、分离环境水样中阳离子染料的应用

Also Published As

Publication number Publication date
CN106380896A (zh) 2017-02-08

Similar Documents

Publication Publication Date Title
Yang et al. A comprehensive study on the synthesis and paramagnetic properties of PEG-coated Fe3O4 nanoparticles
Mohapatra et al. Iron oxide nanorods as high-performance magnetic resonance imaging contrast agents
Liu et al. Preparation and characterization of hydrophobic superparamagnetic magnetite gel
Xie et al. One-pot synthesis of monodisperse iron oxide nanoparticles for potential biomedical applications
Mikhaylova et al. Superparamagnetism of magnetite nanoparticles: dependence on surface modification
Farimani et al. Study of structural and magnetic properties of superparamagnetic Fe3O4/SiO2 core–shell nanocomposites synthesized with hydrophilic citrate-modified Fe3O4 seeds via a sol–gel approach
Marchegiani et al. Sonochemical synthesis of versatile hydrophilic magnetite nanoparticles
Lei et al. A facile two-step modifying process for preparation of poly (SStNa)-grafted Fe3O4/SiO2 particles
Cheraghi et al. Effect of lemon juice on microstructure, phase changes, and magnetic performance of CoFe2O4 nanoparticles and their use on release of anti-cancer drugs
Wang et al. Monodisperse polyvinylpyrrolidone-coated CoFe2O4 nanoparticles: Synthesis, characterization and cytotoxicity study
Devi et al. Superparamagnetic properties and significant applications of iron oxide nanoparticles for astonishing efficacy—a review
Khasraghi et al. Highly biocompatible multifunctional hybrid nanoparticles based on Fe3O4 decorated nanodiamond with superior superparamagnetic behaviors and photoluminescent properties
Kahmei et al. Clustering of MnFe2O4 nanoparticles and the effect of field intensity in the generation of heat for hyperthermia application
Daboin et al. Magnetic SiO2-Mn1-xCoxFe2O4 nanocomposites decorated with Au@ Fe3O4 nanoparticles for hyperthermia
CN103861108A (zh) 新型涡旋磁畴铁基纳米磁热疗介质及其在肿瘤磁热疗中的应用
Liu et al. Novel magnetic vortex nanorings/nanodiscs: Synthesis and theranostic applications
Ziabari et al. The effect of magnetic field on the magnetic and hyperthermia properties of bentonite/Fe3O4 nanocomposite
CN104649334A (zh) 单分散超顺磁四氧化三铁纳米颗粒的制备方法及四氧化三铁纳米颗粒
Khanna et al. Biocompatibility and superparamagnetism in novel silica/CaFe2O4 nanocomposite
Chaudhary et al. Magnetic nanoparticles: synthesis, functionalization, and applications
Liu et al. Preparation and characterization of magnetic luminescent nanocomposite particles
Nistler et al. Production and characterization of long-term stable superparamagnetic iron oxide-shell silica-core nanocomposites
CN106380896B (zh) 一种涡旋磁纳米环溶胶的制备方法
Limaye et al. Magnetic studies of SiO2 coated CoFe2O4 nanoparticles
Tancredi et al. Magnetophoretic mobility of iron oxide nanoparticles stabilized by small carboxylate ligands

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20231012

Address after: Room 024, F1903, 19th Floor, Building 4-A, Xixian Financial Port, Fengdong New City Energy Jinmao District, Xixian New District, Xi'an City, Shaanxi Province, 710021

Patentee after: Shaanxi Baici Kangda Medical Technology Co.,Ltd.

Address before: 710069 No. 229 Taibai North Road, Shaanxi, Xi'an

Patentee before: NORTHWEST University