CN106283386B - 一种纳米纤维复合凝胶超滤膜及其制备方法 - Google Patents

一种纳米纤维复合凝胶超滤膜及其制备方法 Download PDF

Info

Publication number
CN106283386B
CN106283386B CN201610922764.5A CN201610922764A CN106283386B CN 106283386 B CN106283386 B CN 106283386B CN 201610922764 A CN201610922764 A CN 201610922764A CN 106283386 B CN106283386 B CN 106283386B
Authority
CN
China
Prior art keywords
solution
nanofiber
membrane
ultrafiltration membrane
butyric ester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610922764.5A
Other languages
English (en)
Other versions
CN106283386A (zh
Inventor
蔡志江
张青
宋现友
翟婷婷
熊平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Polytechnic University
Original Assignee
Tianjin Polytechnic University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Polytechnic University filed Critical Tianjin Polytechnic University
Priority to CN201610922764.5A priority Critical patent/CN106283386B/zh
Publication of CN106283386A publication Critical patent/CN106283386A/zh
Application granted granted Critical
Publication of CN106283386B publication Critical patent/CN106283386B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4374Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece using different kinds of webs, e.g. by layering webs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/145Ultrafiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/48Polyesters
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4209Inorganic fibres
    • D04H1/4242Carbon fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning

Abstract

本发明公开一种纳米纤维复合凝胶超滤膜及其制备方法,属于高分子材料领域。该方法包括以下过程:首先,将聚羟基丁酸酯溶于溶剂中配置成纺丝溶液、将聚氧乙烯、海藻酸钠及碳纳米管溶解分散在去离子水中配置成纺丝溶液;其次,采用同步静电纺丝装置先纺制第一层聚羟基丁酸酯纳米纤维膜,然后第一层膜上同时纺制聚羟基丁酸酯纳米纤维膜和聚氧乙烯/海藻酸钠纳米纤维复合膜作为第二层,最后在第二层膜上纺制聚氧乙烯/海藻酸钠/碳纳米管纳米纤维膜作为第三层;将上述三层纳米纤维膜经过水雾处理后放入交联剂水溶液中交联,最终形成纳米纤维复合凝胶超滤膜。本发明制备方法过程简单,所制备的纳米纤维复合凝胶超滤膜具有低孔径和高孔隙率,与传统超滤膜相比,其通量和截留率都较高;而且使用本发明的纳米纤维复合凝胶超滤膜对水进行过滤过程中,不需要使用化学药剂,可以有效的避免了水质二次污染。

Description

一种纳米纤维复合凝胶超滤膜及其制备方法
技术领域
本发明属于高分子材料领域,具体涉及一种纳米纤维复合凝胶超滤膜及其制备方法。
背景技术
超滤膜一般由单一的材料制成,孔隙率很低,而且表面孔径比较大,使膜的通量和截留率都不高。静电纺丝技术是在高压静电场作用下,利用电场力牵伸带电聚合物溶液或熔体,使之伸长、变细,最终固化形成直径在几十纳米到几百纳米范围内的纳米纤维的纺丝技术。它不仅适用于合成高聚物也适用于天然高聚物。静电纺纤维最主要的特点是纤维比传统的纺丝方法细的多,直径一般在数十纳米到上千纳米,所形成的纤维膜是一种有纳米微孔的并且孔隙互通的多孔材料,孔隙率可高达80%左右。由于这种制备纳米纤维的技术具有简单、廉价、高效和环保等特点,因此静电纺纳米纤维在分离膜领域的应用研究倍受各国研究者的关注。在液体过滤领域,由于静电纺纳米纤维膜的高孔隙率和完全开孔结构,使其具有着比相应的传统材料更高的过滤通量。
聚羟基丁酸酯(PHB)是聚羟基脂肪酸脂(PHAs)中典型的一种可生物降解线性高分子聚合物,存在于许多细菌的细胞质内,属于类脂性质的碳源类贮藏物,具有贮藏能量、碳源以及降低细胞内渗透压等作用。外观呈白色粉末,无特殊气味,不溶于水、甲醇等,而易容于氯仿、二氯甲烷、异丙醇等溶剂。用静电纺丝的方法制备的聚羟基丁酸酯纤维具有纤维直径小,比表面积高的特点,并且具有更好的生物相容性和生物降解性,可作为组织工程的支架、药物释放及过滤膜材料。但是由于其力学性能较差,在实际使用中脆性很大,韧性差,容易发生脆裂。碳纳米管是一种具有特殊结构的一维量子材料,具有良好的共轭体系、高的电子亲和能与离子化能、光稳定性较强、良好的光电性能和物理机械性能使其在改善聚合物材料光学、电学、力学、热学等方面拥有广泛的应用前景。本发明采用聚羟基丁酸酯和碳纳米管为原料,制备三层复合结构的纳米纤维复合凝胶超滤膜,它是由一层多孔的纳米纤维膜为支撑层和一层亲水性物质为涂层的进行复合得到。与传统过滤膜相比,由不同材质制成的致密层和多孔层为超滤膜提供了低孔径和高孔隙率,而且静电纺纳米纤维基膜是开孔结构,从而使超滤膜达到高通量和高截留率的效果。使用本发明的纳米纤维复合凝胶超滤膜对水进行过滤过程中,不需要使用化学药剂,这样有效的避免了水质二次污染的产生,对净水工程投入成本的降低起到了有效的作用。而且膜化学稳定性较好,对酸碱具有较强的适应性,耐热耐水性能较好。不仅能够有效的提高工业和生活废水的回收率,而且能够有效的降低污水排放过程中对环境所带来的污染,实现对水资源的有效保护。
发明内容
本发明的目的是提供一种纳米纤维复合凝胶超滤膜及其制备方法,以该方法制备的纳米纤维复合凝胶超滤膜具有高通量和高截留率。
本发明是通过下述技术方案加以实现的。一种纳米纤维复合凝胶超滤膜及其制备方法,该方法首先将聚羟基丁酸酯溶于溶剂中配置成纺丝溶液、将聚氧乙烯、海藻酸钠及碳纳米管溶解分散在去离子水中配置成纺丝溶液;其次,采用同步静电纺丝装置先纺制第一层聚羟基丁酸酯纳米纤维膜,然后在第一层膜上同时纺制聚羟基丁酸酯纳米纤维膜和聚氧乙烯/海藻酸钠纳米复合纤维膜作为第二层,最后在第二层膜上纺制聚氧乙烯/海藻酸钠/碳纳米管纤维膜作为第三层;将上述三层纳米纤维膜经过水雾处理后放入交联剂水溶液中交联,最终形成纳米纤维复合凝胶超滤膜。该方法其特征在于包括以下过程:
(1)室温下将分子量为20~60万的聚羟基丁酸酯溶解于溶剂中,磁力搅拌6h,配制成质量体积分数为1~5%的溶液(I)、室温下将分子量为2~10万的聚氧乙烯和分子量为10~50万的海藻酸钠按质量比1∶1~1∶3溶解去离子水中,磁力搅拌3h,配制成质量体积分数为3~10%的溶液(II);室温在溶液(II)中加入碳纳米管,碳纳米管与去离子水的质量比为0.02~0.1,超声分散2h,磁力搅拌3h,配制成溶液(III);
(2)将溶液(I)加入到注射器中,并将其固定在微量注射泵上,采用滚筒进行接收,高压静电调节范围10~20kV,注射泵流速0.1~0.5mL/h,接收距离10~20cm,获得直径为300~500nm第一层聚羟基丁酸酯纳米纤维膜;
(3)将溶液(I)和溶液(II)分别加入到注射器中,并将其固定在微量注射泵上,采用同步静电纺法同时对溶液(I)和溶液(II)进行静电纺丝,将其直接纺制到步骤(2)所制得的覆盖有聚羟基丁酸酯纤维膜的滚筒上,高压静电调节范围10~30kV,注射泵流速0.05~0.3mL/h,接收距离10~20cm,获得直径为200~400nm第二层聚羟基丁酸酯纳米纤维和聚氧乙烯/海藻酸钠纳米纤维复合膜;
(4)将溶液(III)加入到注射器中,并将其固定在微量注射泵上,将其直接纺制到步骤(3)所制得的覆盖有聚羟基丁酸酯纳米纤维和聚氧乙烯/海藻酸钠纳米纤维复合膜的滚筒上,高压静电调节范围20~35kV,注射泵流速0.01~0.1mL/h,接收距离10~20cm,获得直径为100~200nm第三层聚氧乙烯/海藻酸钠/碳纳米管纤维膜;
(5)将上述三层复合纳米纤维膜经过水雾处理2~10min;
(6)最后将膜放入质量体积分数为2~10%的交联剂水溶液中交联3~24h,并用去离子水反复清洗,制得纳米纤维复合凝胶超滤膜。
本发明制备方法过程简单,所制备的纳米纤维复合凝胶超滤膜具有低孔径和高孔隙率,与传统超滤膜相比,其通量和截留率都较高;而且使用本发明的纳米纤维复合凝胶超滤膜对水进行过滤过程中,不需要使用化学药剂,这样有效的避免了水质二次污染。
具体实施方式
实施例1:
室温下将分子量为20万的聚羟基丁酸酯溶解于三氯甲烷中,磁力搅拌6h,配制成质量体积分数为1%的溶液(I)、室温下将分子量为2万的聚氧乙烯和分子量为10万的海藻酸钠按质量比1∶1溶解去离子水中,磁力搅拌3h,配制成质量体积分数为3%的溶液(II);室温在溶液(II)中加入碳纳米管,碳纳米管与去离子水的质量比为0.02,超声分散2h,磁力搅拌3h,配制成溶液(III);将溶液(I)加入到注射器中,并将其固定在微量注射泵上,采用滚筒进行接收,高压静电调节范围10kV,注射泵流速0.5mL/h,接收距离10cm,获得直径为500nm第一层聚羟基丁酸酯纳米纤维膜;将溶液(I)和溶液(II)分别加入到注射器中,并将其固定在微量注射泵上,采用同步静电纺法同时对溶液(I)和溶液(II)进行静电纺丝,将其直接纺制到步骤(2)所制得的覆盖有聚羟基丁酸酯纤维膜的滚筒上,高压静电调节范围10kV,注射泵流速0.3mL/h,接收距离10cm,获得直径为400nm第二层聚羟基丁酸酯纳米纤维和环氧乙烯/海藻酸钠纳米纤维复合膜;将溶液(III)加入到注射器中,并将其固定在微量注射泵上,将其直接纺制到步骤(3)所制得的覆盖有聚羟基丁酸酯纳米纤维和环氧乙烯/海藻酸钠纳米纤维复合膜的滚筒上,高压静电调节范围20kV,注射泵流速0.1mL/h,接收距离10cm,获得直径为200nm第三层环氧乙烯/海藻酸钠/碳纳米管复合纤维膜;将上述三层复合纳米纤维膜经过水雾处理2min;最后将膜放入质量体积分数为2%的戊二醛水溶液中交联3h,并用去离子水反复清洗,制得纳米纤维复合凝胶超滤膜。
实施例2:
室温下将分子量为40万的聚羟基丁酸酯溶解于异丙醇中,磁力搅拌6h,配制成质量体积分数为3%的溶液(I)、室温下将分子量为5万的聚氧乙烯和分子量为20万的海藻酸钠按质量比1∶1.5溶解去离子水中,磁力搅拌3h,配制成质量体积分数为5%的溶液(II);室温在溶液(II)中加入碳纳米管,碳纳米管与去离子水的质量比为0.05,超声分散2h,磁力搅拌3h,配制成溶液(III);将溶液(I)加入到注射器中,并将其固定在微量注射泵上,采用滚筒进行接收,高压静电调节范围20kV,注射泵流速0.3mL/h,接收距离15cm,获得直径为400nm第一层聚羟基丁酸酯纳米纤维膜;将溶液(I)和溶液(II)分别加入到注射器中,并将其固定在微量注射泵上,采用同步静电纺法同时对溶液(I)和溶液(II)进行静电纺丝,将其直接纺制到步骤(2)所制得的覆盖有聚羟基丁酸酯纤维膜的滚筒上,高压静电调节范围20kV,注射泵流速0.1mL/h,接收距离15cm,获得直径为300nm第二层聚羟基丁酸酯纳米纤维和聚氧乙烯/海藻酸钠纳米纤维复合膜;将溶液(III)加入到注射器中,并将其固定在微量注射泵上,将其直接纺制到步骤(3)所制得的覆盖有聚羟基丁酸酯纳米纤维和聚氧乙烯/海藻酸钠纳米纤维复合膜的滚筒上,高压静电调节范围25kV,注射泵流速0.05mL/h,接收距离15cm,获得直径为150nm第三层聚氧乙烯/海藻酸钠/碳纳米管复合纤维膜;将上述三层复合纳米纤维膜经过水雾处理5min;最后将膜放入质量体积分数为5%的氯化钙水溶液中交联8h,并用去离子水反复清洗,制得纳米纤维复合凝胶超滤膜。
实施例3:
室温下将分子量为60万的聚羟基丁酸酯溶解于三氟乙酸中,磁力搅拌6h,配制成质量体积分数为5%的溶液(I)、室温下将分子量为10万的聚氧乙烯和分子量为50万的海藻酸钠按质量比1∶3溶解去离子水中,磁力搅拌3h,配制成质量体积分数为10%的溶液(II);室温在溶液(II)中加入碳纳米管,碳纳米管与去离子水的质量比为0.1,超声分散2h,磁力搅拌3h,配制成溶液(III);将溶液(I)加入到注射器中,并将其固定在微量注射泵上,采用滚筒进行接收,高压静电调节范围20kV,注射泵流速0.1mL/h,接收距离20cm,获得直径为300nm第一层聚羟基丁酸酯纳米纤维膜;将溶液(I)和溶液(II)分别加入到注射器中,并将其固定在微量注射泵上,采用同步静电纺法同时对溶液(I)和溶液(II)进行静电纺丝,将其直接纺制到步骤(2)所制得的覆盖有聚羟基丁酸酯纤维膜的滚筒上,高压静电调节范围30kV,注射泵流速0.05mL/h,接收距离20cm,获得直径为200nm第二层聚羟基丁酸酯纳米纤维和聚氧乙烯/海藻酸钠纳米纤维复合膜;将溶液(III)加入到注射器中,并将其固定在微量注射泵上,将其直接纺制到步骤(3)所制得的覆盖有聚羟基丁酸酯纳米纤维和聚氧乙烯/海藻酸钠纳米纤维复合膜的滚筒上,高压静电调节范围35kV,注射泵流速0.01mL/h,接收距离20cm,获得直径为100nm第三层环氧乙烯/海藻酸钠/碳纳米管复合纤维膜;将上述三层复合纳米纤维膜经过水雾处理10min;最后将膜放入质量体积分数为10%的氯化钙水溶液中交联14h,并用去离子水反复清洗,制得纳米纤维复合凝胶超滤膜。
实施例4:
室温下将分子量为45万的聚羟基丁酸酯溶解于体积比为1∶1的三氯甲烷/N,N二甲基甲酰胺中,磁力搅拌6h,配制成质量体积分数为3.5%的溶液(I)、室温下将分子量为5万的聚氧乙烯和分子量为30万的海藻酸钠按质量比1∶2溶解去离子水中,磁力搅拌3h,配制成质量体积分数为5.5%的溶液(II);室温在溶液(II)中加入碳纳米管,碳纳米管与去离子水的质量比为0.07,超声分散2h,磁力搅拌3h,配制成溶液(III);将溶液(I)加入到注射器中,并将其固定在微量注射泵上,采用滚筒进行接收,高压静电调节范围15kV,注射泵流速0.4mL/h,接收距离16cm,获得直径为380nm第一层聚羟基丁酸酯纳米纤维膜;将溶液(I)和溶液(II)分别加入到注射器中,并将其固定在微量注射泵上,采用同步静电纺法同时对溶液(I)和溶液(II)进行静电纺丝,将其直接纺制到步骤(2)所制得的覆盖有聚羟基丁酸酯纤维膜的滚筒上,高压静电调节范围24kV,注射泵流速0.15mL/h,接收距离16cm,获得直径为280nm第二层聚羟基丁酸酯纳米纤维和聚氧乙烯/海藻酸钠纳米纤维复合膜;将溶液(III)加入到注射器中,并将其固定在微量注射泵上,将其直接纺制到步骤(3)所制得的覆盖有聚羟基丁酸酯纳米纤维和聚氧乙烯/海藻酸钠纳米纤维复合膜的滚筒上,高压静电调节范围30kV,注射泵流速0.03mL/h,接收距离16cm,获得直径为130nm第三层聚氧乙烯/海藻酸钠/碳纳米管复合纤维膜;将上述三层复合纳米纤维膜经过水雾处理8min;最后将膜放入质量体积分数为8%的戊二醛水溶液中交联24h,并用去离子水反复清洗,制得纳米纤维复合凝胶超滤膜。

Claims (3)

1.一种纳米纤维复合凝胶超滤膜的制备方法,其特征是它包括下列步骤:
(1)室温下将分子量为20~60万的聚羟基丁酸酯溶解于溶剂中,磁力搅拌6h,配制成质量体积分数为1~5%的溶液(I)、室温下将分子量为2~10万的聚氧乙烯和分子量为10~50万的海藻酸钠按质量比1∶1~1∶3溶解去离子水中,磁力搅拌3h,配制成质量体积分数为3~10%的溶液(II);室温在溶液(II)中加入碳纳米管,碳纳米管与去离子水的质量比为0.02~0.1,超声分散2h,磁力搅拌3h,配制成溶液(III);
(2)将溶液(I)加入到注射器中,并将其固定在微量注射泵上,采用滚筒进行接收,高压静电调节范围10~20kV,注射泵流速0.1~0.5mL/h,接收距离10~20cm,获得直径为300~500nm第一层聚羟基丁酸酯纳米纤维膜;
(3)将溶液(I)和溶液(II)分别加入到注射器中,并将其固定在微量注射泵上,采用同步静电纺法同时对溶液(I)和溶液(II)进行静电纺丝,将其直接纺制到步骤(2)所制得的覆盖有聚羟基丁酸酯纤维膜的滚筒上,高压静电调节范围10~30kV,注射泵流速0.05~0.3mL/h,接收距离10~20cm,获得直径为200~400nm第二层聚羟基丁酸酯纳米纤维和聚氧乙烯/海藻酸钠纳米纤维复合膜;
(4)将溶液(III)加入到注射器中,并将其固定在微量注射泵上,将其直接纺制到步骤(3)所制得的覆盖有聚羟基丁酸酯纳米纤维和聚氧乙烯/海藻酸钠纳米纤维复合膜的滚筒上,高压静电调节范围20~35kV,注射泵流速0.01~0.1mL/h,接收距离10~20cm,获得直径为100~200nm第三层聚氧乙烯/海藻酸钠/碳纳米管复合纳米纤维膜;
(5)将上述三层复合纳米纤维膜经过水雾处理2~10min;
(6)最后将膜放入质量体积分数为2~10%的交联剂水溶液中交联3~24h,并用去离子水反复清洗,制得纳米纤维复合凝胶超滤膜。
2.根据权利要求1所述的纳米纤维复合凝胶超滤膜的制备方法,其特征是:所述的溶剂可以是三氯甲烷、异丙醇、N,N-二甲基甲酰胺、三氟乙酸中的一种,也可以是二种溶剂的混合物。
3.根据权利要求1所述的纳米纤维复合凝胶超滤膜的制备方法,其特征是:所述的交联剂是戊二醛和氯化钙中的一种。
CN201610922764.5A 2016-10-24 2016-10-24 一种纳米纤维复合凝胶超滤膜及其制备方法 Expired - Fee Related CN106283386B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610922764.5A CN106283386B (zh) 2016-10-24 2016-10-24 一种纳米纤维复合凝胶超滤膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610922764.5A CN106283386B (zh) 2016-10-24 2016-10-24 一种纳米纤维复合凝胶超滤膜及其制备方法

Publications (2)

Publication Number Publication Date
CN106283386A CN106283386A (zh) 2017-01-04
CN106283386B true CN106283386B (zh) 2019-01-01

Family

ID=57719984

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610922764.5A Expired - Fee Related CN106283386B (zh) 2016-10-24 2016-10-24 一种纳米纤维复合凝胶超滤膜及其制备方法

Country Status (1)

Country Link
CN (1) CN106283386B (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107022097A (zh) * 2017-04-21 2017-08-08 天津工业大学 一种纳米纤维增强丝素蛋白膜及其制备方法
CN107433171A (zh) * 2017-06-12 2017-12-05 安徽省颍上县正泰电器有限责任公司 一种温敏型介孔碳纳米管复合纤维‑纳米二氧化硅凝胶的制备方法
CN107879392A (zh) * 2017-11-29 2018-04-06 成都创客之家科技有限公司 一种饮用水过滤芯
CN108126535B (zh) * 2018-03-03 2021-01-08 浙江富铭工业机械有限公司 一种增强型复合中空纤维膜的制备方法
CN110180406B (zh) * 2019-06-17 2022-01-07 湖南工业大学 一种高水通量、高抗污环保水处理膜
WO2021003599A1 (zh) * 2019-07-05 2021-01-14 大连理工大学 一种碳纳米管/纳米纤维导电复合膜及其制备方法
CN112316494A (zh) * 2020-10-27 2021-02-05 洪月恒 一种应用于分离油水乳液的分离膜的制备方法
CN113413774B (zh) * 2021-06-23 2023-01-17 江苏大学 一种多层生物基纳米纤维重金属过滤膜、制备方法及其用途
CN115418795B (zh) * 2022-09-02 2024-01-12 浙江理工大学 单面超疏水单面超亲水的Janus型微纳米复合纤维膜及其制备方法
CN115722081A (zh) * 2023-01-13 2023-03-03 江苏新视界先进功能纤维创新中心有限公司 一种自增强纳米纤维水处理滤膜的高效制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102660841A (zh) * 2012-04-28 2012-09-12 东华大学 双亲水温敏性聚合物/乳酸聚合物复合纳米纤维毡及其制备方法
CN103585891A (zh) * 2013-11-13 2014-02-19 济南泰易膜科技有限公司 一种抗压微孔膜及其制备方法
CN103603140A (zh) * 2013-11-20 2014-02-26 东华大学 一种复合纳米纤维材料的制备方法
CN103895293A (zh) * 2014-03-05 2014-07-02 符思敏 具有自洁性碳纳米管改性的纳米纤维膜织物及制备方法
CN105032202A (zh) * 2015-07-01 2015-11-11 上海洁晟环保科技有限公司 一种多层复合超滤膜及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101396035B1 (ko) * 2011-12-23 2014-05-19 한국생산기술연구원 전기방사방법에 의한 활성탄소나노섬유 제조방법
CN104226126A (zh) * 2014-09-17 2014-12-24 句容亿格纳米材料厂 一种过滤用纳米纤维膜

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102660841A (zh) * 2012-04-28 2012-09-12 东华大学 双亲水温敏性聚合物/乳酸聚合物复合纳米纤维毡及其制备方法
CN103585891A (zh) * 2013-11-13 2014-02-19 济南泰易膜科技有限公司 一种抗压微孔膜及其制备方法
CN103603140A (zh) * 2013-11-20 2014-02-26 东华大学 一种复合纳米纤维材料的制备方法
CN103895293A (zh) * 2014-03-05 2014-07-02 符思敏 具有自洁性碳纳米管改性的纳米纤维膜织物及制备方法
CN105032202A (zh) * 2015-07-01 2015-11-11 上海洁晟环保科技有限公司 一种多层复合超滤膜及其制备方法

Also Published As

Publication number Publication date
CN106283386A (zh) 2017-01-04

Similar Documents

Publication Publication Date Title
CN106283386B (zh) 一种纳米纤维复合凝胶超滤膜及其制备方法
Cui et al. Electrospun nanofiber membranes for wastewater treatment applications
Zhang et al. Structural design and environmental applications of electrospun nanofibers
CN101947415B (zh) 静电纺丝和静电喷雾方法相结合制备纳米纤维基复合分离膜
CN104436760B (zh) 一种磁响应高效油水分离纤维膜及其制备方法
CN102691175B (zh) 一种具有单向透水性能的复合纤维膜及其制备方法
CN104562292B (zh) 多孔微纳米pet纤维的制备方法
CN101530750A (zh) 聚四氟乙烯超细纤维多孔膜的制备方法
Zhou et al. Biodegradable, biomimetic, and nanonet-engineered membranes enable high-flux and highly-efficient oil/water separation
EP4052782A1 (en) Polymer-based film, preparation method therefor, and use thereof
CN102268745B (zh) 静电纺丝法制备pan多孔纳米纤维
Hu et al. A biodegradable composite filter made from electrospun zein fibers underlaid on the cellulose paper towel
CN106245232A (zh) 氧化石墨烯@高聚物纳米纤维多层膜及其制备方法和应用
CN103122583B (zh) 一种两亲性的核壳结构的纳米纤维的制备
CN104128099B (zh) 一种基于静电纺和自组装技术的复合纳滤膜及其制备方法
CN106400305B (zh) 一种大孔静电纺纳米纤维膜的制备方法
CN106283389A (zh) 一种疏水/亲水浸润性差异复合纤维膜及其制备方法
CN101538776A (zh) 同轴聚膦腈纳米纤维复合膜及其制备方法
CN102268784A (zh) 多孔天然高分子纳米纤维无纺布的制备
Tabe Electrospun nanofiber membranes and their applications in water and wastewater treatment
CN113604964A (zh) 一种有序复合纤维膜及其制备方法与应用
CN104562436A (zh) 一种表面结构可控的纤维膜及其制备方法
Bai et al. Efficient and recyclable ultra-thin diameter polyacrylonitrile nanofiber membrane: Selective adsorption of cationic dyes
Hou et al. Fabrication and morphology study of electrospun cellulose acetate/polyethylenimine nanofiber
Mu et al. Electric field induced phase separation on electrospinning polyelectrolyte based core–shell nanofibers

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190101

Termination date: 20191024