CN106220227A - 一种多孔碳化硅陶瓷的制备方法 - Google Patents
一种多孔碳化硅陶瓷的制备方法 Download PDFInfo
- Publication number
- CN106220227A CN106220227A CN201610672950.8A CN201610672950A CN106220227A CN 106220227 A CN106220227 A CN 106220227A CN 201610672950 A CN201610672950 A CN 201610672950A CN 106220227 A CN106220227 A CN 106220227A
- Authority
- CN
- China
- Prior art keywords
- porous silicon
- silicon carbide
- temperature
- ceramic
- cooled
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/56—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
- C04B35/565—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62645—Thermal treatment of powders or mixtures thereof other than sintering
- C04B35/62655—Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B38/00—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
- C04B38/08—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by adding porous substances
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/38—Non-oxide ceramic constituents or additives
- C04B2235/3817—Carbides
- C04B2235/3821—Boron carbides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/42—Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
- C04B2235/422—Carbon
- C04B2235/424—Carbon black
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6562—Heating rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
- C04B2235/9607—Thermal properties, e.g. thermal expansion coefficient
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/141—Feedstock
- Y02P20/145—Feedstock the feedstock being materials of biological origin
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Inorganic Chemistry (AREA)
- Ceramic Products (AREA)
- Porous Artificial Stone Or Porous Ceramic Products (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
本发明公开了一种多孔碳化硅陶瓷的制备方法,属于碳化硅多孔陶瓷制备技术领域。本发明将桦木块干燥至恒重,热解制得多孔碳模板,在多孔模板表面平铺硅粉,二次加热保温后,通空气煅烧,与碳化硼、炭黑等混合球磨制得陶瓷浆料,经脱泡、液氮冻结、冷冻干燥、二次升温保温制得多孔碳化硅陶瓷。本发明的有益效果是:本发明制备步骤简单,所得产品孔径均匀,抗震热性好;机械强度高,无掉渣、开裂、粉化等现象发生。
Description
技术领域
本发明涉及一种多孔碳化硅陶瓷的制备方法,属于碳化硅多孔陶瓷制备技术领域。
背景技术
碳化硅多孔陶瓷是一种兼具结构性和功能性的陶瓷材料,其不仅具有陶瓷基体的优良性能,而且还具有较大的气孔率、气孔表面积以及可调节的气孔形状、气孔孔径尺寸及其分布、气孔在三维空间的分布及其连通性等;还具有相匹配的优良热、电、磁、光、化学等性能。而具有大孔结构的碳化桂陶瓷的较引人注目的应用则是其可在严苟的环境条件下作为气体、液体(如溶融金属)、固体颗粒的过滤材料,催化剂载体,其它也可以应用于太阳能受体材料,物理与化学传感器等。碳化硅多孔陶瓷的制备方法有有机泡沫(聚合物)浸渍法和发泡法等。有机泡沫(聚合物)浸渍法是将有机泡沫浸渍陶瓷浆料,经干燥后在高温下使有机泡沫载体分解,获得多孔陶瓷材料的一种方法。它借助于有机泡沫体所具有的三维网状骨架结构,将制备好的浆料浸渍有机泡沫网状体中,烧掉有机泡沫后获得的孔隙是网眼型的。但在烧结过程中由于泡沫热分解产生筋孔,会导致产品的机械强度低、易掉渣。发泡法是向陶瓷组分中添加有机或无机化学物质即发泡剂,充分搅拌均匀后,利用物理方法、机械方法和化学方法,使添加物形成挥发性气体,产生气泡,经干燥和烧成后制得多孔陶瓷。但由于发泡反应速度快,短时间内产生大量气体,出现起泡、坯体塌陷和孔径不均匀等现象,导致产品开裂、粉化,抗热震性较差。
发明内容
本发明所要解决的技术问题:针对目前方法制备多孔碳化硅陶瓷,孔径不均匀,机械强度低,易掉渣、开裂、粉化,抗热震性较差的弊端,提供了一种将桦木块干燥至恒重,热解制得多孔碳模板,在多孔模板表面平铺硅粉,二次加热保温后,通空气煅烧,与碳化硼、炭黑等混合球磨制得陶瓷浆料,经脱泡、液氮冻结、冷冻干燥、二次升温保温制得多孔碳化硅陶瓷的方法。本发明制备步骤简单,所得产品孔径均匀,机械强度高,无掉渣、开裂、粉化现象发生,抗热震性好,值得推广与使用。
为解决上述技术问题,本发明采用如下所述的技术方案是:
(1)截取一段1~2kg桦木块,将桦木块置于干燥箱中,在105~110℃下干燥至恒重,将干燥后的桦木块按年轮截面向上平放于反应釜中,在氮气氛围下,加热至750~800℃,热解4~5h,随后停止加热,继续通入氮气,待温度冷却至室温,得多孔碳模板;
(2)称取250~400g上述多孔碳模板平铺在反应釜底部,再称取300~500g硅粉平铺在多孔碳模板表面,在氮气氛围下,加热至1500~1550℃,保持温度1~2h,继续加热至1600~1700℃,保持温度1~2h,冷却至500~600℃,通入空气煅烧1~2h,冷却至室温后取出,得生物形态多孔碳化硅;
(3)分别称量70~80g上述生物形态多孔碳化硅,0.5~0.8g碳化硼,2.5~3.0g炭黑,0.2~0.3g四甲基氢氧化铵,2~3mL质量分数为5%聚乙烯醇溶液和70~80mL去离子水,装入行星式球磨机中,以300~400r/min球磨1~2h,再分别加入0.6~0.8g吐温-80和15~20g纳米氧化铝,以200~250r/min球磨30~40min,得陶瓷浆料;
(4)将上述陶瓷浆料置于真空干燥箱中,抽至真空度为1~10Pa,静置脱泡30~40min,将脱泡后的陶瓷浆料注入模具中,并将模具浸入液氮中冻结1~2min,随后转入真空冷冻干燥箱中,在温度为-50~-40℃、真空度为1~10Pa下,冷冻干燥20~24h,脱模后,将脱模物放入管式炉中,以10℃/min速率程序升温至500~600℃,保温1~2h,再以5℃/min速率程序升温至1200~1500℃,保温2~3h,冷却至室温,得多孔碳化硅陶瓷。
本发明制得的多孔碳化硅陶瓷压缩强度为23~35MPa,抗弯强度高达28~39MPa,抗压强度为32~46MPa,气孔率达92.3%以上,热膨胀系数为4.7×10-6m/℃~4.9×10-6m/℃,从750℃到室温快速热震5~6次,抗弯强度无变化。
本发明与其他方法相比,有益技术效果是:
(1)本发明制备步骤简单,所得产品孔径均匀,抗震热性好;
(2)机械强度高,无掉渣、开裂、粉化等现象发生。
具体实施方式
首先截取一段1~2kg桦木块,将桦木块置于干燥箱中,在105~110℃下干燥至恒重,将干燥后的桦木块按年轮截面向上平放于反应釜中,在氮气氛围下,加热至750~800℃,热解4~5h,随后停止加热,继续通入氮气,待温度冷却至室温,得多孔碳模板;然后称取250~400g上述多孔碳模板平铺在反应釜底部,再称取300~500g硅粉平铺在多孔碳模板表面,在氮气氛围下,加热至1500~1550℃,保持温度1~2h,继续加热至1600~1700℃,保持温度1~2h,冷却至500~600℃,通入空气煅烧1~2h,冷却至室温后取出,得生物形态多孔碳化硅;再分别称量70~80g上述生物形态多孔碳化硅,0.5~0.8g碳化硼,2.5~3.0g炭黑,0.2~0.3g四甲基氢氧化铵,2~3mL质量分数为5%聚乙烯醇溶液和70~80mL去离子水,装入行星式球磨机中,以300~400r/min球磨1~2h,再分别加入0.6~0.8g吐温-80和15~20g纳米氧化铝,以200~250r/min球磨30~40min,得陶瓷浆料;最后将上述陶瓷浆料置于真空干燥箱中,抽至真空度为1~10Pa,静置脱泡30~40min,将脱泡后的陶瓷浆料注入模具中,并将模具浸入液氮中冻结1~2min,随后转入真空冷冻干燥箱中,在温度为-50~-40℃、真空度为1~10Pa下,冷冻干燥20~24h,脱模后,将脱模物放入管式炉中,以10℃/min速率程序升温至500~600℃,保温1~2h,再以5℃/min速率程序升温至1200~1500℃,保温2~3h,冷却至室温,得多孔碳化硅陶瓷。
实例1
首先截取一段1kg桦木块,将桦木块置于干燥箱中,在105℃下干燥至恒重,将干燥后的桦木块按年轮截面向上平放于反应釜中,在氮气氛围下,加热至750℃,热解4h,随后停止加热,继续通入氮气,待温度冷却至室温,得多孔碳模板;然后称取250g上述多孔碳模板平铺在反应釜底部,再称取300g硅粉平铺在多孔碳模板表面,在氮气氛围下,加热至1500℃,保持温度1h,继续加热至1600℃,保持温度1h,冷却至500℃,通入空气煅烧1h,冷却至室温后取出,得生物形态多孔碳化硅;再分别称量70g上述生物形态多孔碳化硅,0.5g碳化硼,2.5g炭黑,0.2g四甲基氢氧化铵,2mL质量分数为5%聚乙烯醇溶液和70mL去离子水,装入行星式球磨机中,以300r/min球磨1h,再分别加入0.6g吐温-80和15g纳米氧化铝,以200r/min球磨30min,得陶瓷浆料;最后将上述陶瓷浆料置于真空干燥箱中,抽至真空度为1Pa,静置脱泡30min,将脱泡后的陶瓷浆料注入模具中,并将模具浸入液氮中冻结1min,随后转入真空冷冻干燥箱中,在温度为-50℃、真空度为1Pa下,冷冻干燥20h,脱模后,将脱模物放入管式炉中,以10℃/min速率程序升温至500℃,保温1h,再以5℃/min速率程序升温至1200℃,保温2h,冷却至室温,得多孔碳化硅陶瓷。本发明制备步骤简单,所得产品孔径均匀,抗震热性好;机械强度高,无掉渣、开裂、粉化等现象发生;本发明制得的多孔碳化硅陶瓷压缩强度为23MPa,抗弯强度高达28MPa,抗压强度为32MPa,气孔率达92.5%,热膨胀系数为4.7×10-6/℃,从750℃到室温快速热震5次,抗弯强度无变化。
实例2
首先截取一段2kg桦木块,将桦木块置于干燥箱中,在108℃下干燥至恒重,将干燥后的桦木块按年轮截面向上平放于反应釜中,在氮气氛围下,加热至775℃,热解5h,随后停止加热,继续通入氮气,待温度冷却至室温,得多孔碳模板;然后称取320g上述多孔碳模板平铺在反应釜底部,再称取400g硅粉平铺在多孔碳模板表面,在氮气氛围下,加热至1525℃,保持温度2h,继续加热至1650℃,保持温度2h,冷却至550℃,通入空气煅烧2h,冷却至室温后取出,得生物形态多孔碳化硅;再分别称量75g上述生物形态多孔碳化硅,0.7g碳化硼,2.8g炭黑,0.3g四甲基氢氧化铵,3mL质量分数为5%聚乙烯醇溶液和75mL去离子水,装入行星式球磨机中,以350r/min球磨2h,再分别加入0.7g吐温-80和18g纳米氧化铝,以225r/min球磨35min,得陶瓷浆料;最后将上述陶瓷浆料置于真空干燥箱中,抽至真空度为6Pa,静置脱泡35min,将脱泡后的陶瓷浆料注入模具中,并将模具浸入液氮中冻结2min,随后转入真空冷冻干燥箱中,在温度为-45℃、真空度为6Pa下,冷冻干燥22h,脱模后,将脱模物放入管式炉中,以10℃/min速率程序升温至550℃,保温2h,再以5℃/min速率程序升温至1350℃,保温3h,冷却至室温,得多孔碳化硅陶瓷。本发明制备步骤简单,所得产品孔径均匀,抗震热性好;机械强度高,无掉渣、开裂、粉化等现象发生;本发明制得的多孔碳化硅陶瓷压缩强度为29MPa,抗弯强度高达34MPa,抗压强度为39MPa,气孔率达93.0%,热膨胀系数为4.8×10-6/℃,从750℃到室温快速热震6次,抗弯强度无变化。
实例3
首先截取一段2kg桦木块,将桦木块置于干燥箱中,在110℃下干燥至恒重,将干燥后的桦木块按年轮截面向上平放于反应釜中,在氮气氛围下,加热至800℃,热解5h,随后停止加热,继续通入氮气,待温度冷却至室温,得多孔碳模板;然后称取400g上述多孔碳模板平铺在反应釜底部,再称取500g硅粉平铺在多孔碳模板表面,在氮气氛围下,加热至1550℃,保持温度2h,继续加热至1700℃,保持温度2h,冷却至600℃,通入空气煅烧2h,冷却至室温后取出,得生物形态多孔碳化硅;再分别称量80g上述生物形态多孔碳化硅,0.8g碳化硼,3.0g炭黑,0.3g四甲基氢氧化铵,3mL质量分数为5%聚乙烯醇溶液和80mL去离子水,装入行星式球磨机中,以400r/min球磨2h,再分别加入0.8g吐温-80和20g纳米氧化铝,以250r/min球磨40min,得陶瓷浆料;最后将上述陶瓷浆料置于真空干燥箱中,抽至真空度为10Pa,静置脱泡40min,将脱泡后的陶瓷浆料注入模具中,并将模具浸入液氮中冻结2min,随后转入真空冷冻干燥箱中,在温度为-40℃、真空度为10Pa下,冷冻干燥24h,脱模后,将脱模物放入管式炉中,以10℃/min速率程序升温至600℃,保温2h,再以5℃/min速率程序升温至1500℃,保温3h,冷却至室温,得多孔碳化硅陶瓷。本发明制备步骤简单,所得产品孔径均匀,抗震热性好;机械强度高,无掉渣、开裂、粉化等现象发生;本发明制得的多孔碳化硅陶瓷压缩强度为35MPa,抗弯强度高达39MPa,抗压强度为46MPa,气孔率达93.5%,热膨胀系数为4.9×10-6/℃,从750℃到室温快速热震6次,抗弯强度无变化。
Claims (1)
1.一种多孔碳化硅陶瓷的制备方法,其特征在于具体制备步骤为:
(1)截取一段1~2kg桦木块,将桦木块置于干燥箱中,在105~110℃下干燥至恒重,将干燥后的桦木块按年轮截面向上平放于反应釜中,在氮气氛围下,加热至750~800℃,热解4~5h,随后停止加热,继续通入氮气,待温度冷却至室温,得多孔碳模板;
(2)称取250~400g上述多孔碳模板平铺在反应釜底部,再称取300~500g硅粉平铺在多孔碳模板表面,在氮气氛围下,加热至1500~1550℃,保持温度1~2h,继续加热至1600~1700℃,保持温度1~2h,冷却至500~600℃,通入空气煅烧1~2h,冷却至室温后取出,得生物形态多孔碳化硅;
(3)分别称量70~80g上述生物形态多孔碳化硅,0.5~0.8g碳化硼,2.5~3.0g炭黑,0.2~0.3g四甲基氢氧化铵,2~3mL质量分数为5%聚乙烯醇溶液和70~80mL去离子水,装入行星式球磨机中,以300~400r/min球磨1~2h,再分别加入0.6~0.8g吐温-80和15~20g纳米氧化铝,以200~250r/min球磨30~40min,得陶瓷浆料;
(4)将上述陶瓷浆料置于真空干燥箱中,抽至真空度为1~10Pa,静置脱泡30~40min,将脱泡后的陶瓷浆料注入模具中,并将模具浸入液氮中冻结1~2min,随后转入真空冷冻干燥箱中,在温度为-50~-40℃、真空度为1~10Pa下,冷冻干燥20~24h,脱模后,将脱模物放入管式炉中,以10℃/min速率程序升温至500~600℃,保温1~2h,再以5℃/min速率程序升温至1200~1500℃,保温2~3h,冷却至室温,得多孔碳化硅陶瓷。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610672950.8A CN106220227A (zh) | 2016-08-16 | 2016-08-16 | 一种多孔碳化硅陶瓷的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610672950.8A CN106220227A (zh) | 2016-08-16 | 2016-08-16 | 一种多孔碳化硅陶瓷的制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN106220227A true CN106220227A (zh) | 2016-12-14 |
Family
ID=57552395
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610672950.8A Withdrawn CN106220227A (zh) | 2016-08-16 | 2016-08-16 | 一种多孔碳化硅陶瓷的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106220227A (zh) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106830942A (zh) * | 2017-01-20 | 2017-06-13 | 镇江纽科利核能新材料科技有限公司 | 一种多孔b4c陶瓷骨架及其冷冻注模工艺 |
CN108503367A (zh) * | 2018-06-29 | 2018-09-07 | 南通志乐新材料有限公司 | 一种高温烟气除尘用复合型陶瓷过滤材料 |
CN110483054A (zh) * | 2019-09-10 | 2019-11-22 | 潍坊工商职业学院 | 一种大尺寸复杂形状人造宝石工艺品的制备方法 |
CN114479952A (zh) * | 2020-10-27 | 2022-05-13 | 中国石油化工股份有限公司 | 一种生物质制氢热载体及其制备方法与应用 |
CN116589299A (zh) * | 2023-05-05 | 2023-08-15 | 哈尔滨工业大学 | 一种仿生年轮结构的多孔碳化硅陶瓷骨架及其制备方法和在高性能复合相变材料中的应用 |
CN116730318A (zh) * | 2023-04-19 | 2023-09-12 | 昆明理工大学 | 一种新型生物质多孔碳的制备方法及应用 |
-
2016
- 2016-08-16 CN CN201610672950.8A patent/CN106220227A/zh not_active Withdrawn
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106830942A (zh) * | 2017-01-20 | 2017-06-13 | 镇江纽科利核能新材料科技有限公司 | 一种多孔b4c陶瓷骨架及其冷冻注模工艺 |
CN106830942B (zh) * | 2017-01-20 | 2020-02-18 | 镇江纽科利核能新材料科技有限公司 | 一种多孔b4c陶瓷骨架及其冷冻注模工艺 |
CN108503367A (zh) * | 2018-06-29 | 2018-09-07 | 南通志乐新材料有限公司 | 一种高温烟气除尘用复合型陶瓷过滤材料 |
CN108503367B (zh) * | 2018-06-29 | 2019-04-02 | 南通志乐新材料有限公司 | 一种高温烟气除尘用复合型陶瓷过滤材料 |
CN110483054A (zh) * | 2019-09-10 | 2019-11-22 | 潍坊工商职业学院 | 一种大尺寸复杂形状人造宝石工艺品的制备方法 |
CN110483054B (zh) * | 2019-09-10 | 2022-02-08 | 潍坊工商职业学院 | 一种大尺寸复杂形状人造宝石工艺品的制备方法 |
CN114479952A (zh) * | 2020-10-27 | 2022-05-13 | 中国石油化工股份有限公司 | 一种生物质制氢热载体及其制备方法与应用 |
CN116730318A (zh) * | 2023-04-19 | 2023-09-12 | 昆明理工大学 | 一种新型生物质多孔碳的制备方法及应用 |
CN116589299A (zh) * | 2023-05-05 | 2023-08-15 | 哈尔滨工业大学 | 一种仿生年轮结构的多孔碳化硅陶瓷骨架及其制备方法和在高性能复合相变材料中的应用 |
CN116589299B (zh) * | 2023-05-05 | 2023-11-24 | 哈尔滨工业大学 | 一种仿生年轮结构的多孔碳化硅陶瓷骨架及其制备方法和在高性能复合相变材料中的应用 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106220227A (zh) | 一种多孔碳化硅陶瓷的制备方法 | |
CN101525248B (zh) | 陶瓷气凝胶及通过凝胶注模成型制备陶瓷气凝胶的方法 | |
CN104446625A (zh) | 一种高孔隙率多孔陶瓷及其制备方法 | |
CN102653474A (zh) | 高孔隙率多孔陶瓷膜支撑体的制备方法 | |
CN101927996B (zh) | 一种沥青基泡沫炭的制备方法 | |
CN103011884A (zh) | 一种刚玉莫来石轻质隔热材料的制备方法 | |
CN103588482A (zh) | 一种高孔隙率及高强度钇硅氧多孔陶瓷的制备方法 | |
CN105272266A (zh) | 一种先驱体转化碳化硅泡沫陶瓷的制备方法 | |
CN102659398B (zh) | 一种制备轻质镁铝尖晶石隔热材料的方法 | |
CN102643111A (zh) | 一种多孔陶瓷的制备方法 | |
CN107417288A (zh) | 氧化铝纤维增强纳米氧化铝泡沫陶瓷及其制备方法 | |
CN102746013A (zh) | 一种轻质高强氮化硅结合碳化硅耐火材料及其制备方法 | |
CN107399988A (zh) | 一种利用铝硅系工业废渣制备氧化铝‑碳化硅复合多孔陶瓷的方法 | |
CN106478124A (zh) | 一种多孔炭隔热复合材料的制备方法 | |
CN105924225A (zh) | 一种莫来石结合碳化硅多孔陶瓷的制备方法 | |
CN104860712B (zh) | 一种利用废弃熔融石英坩埚制备微孔轻质隔热骨料的方法 | |
CN106316444A (zh) | 一种多孔莫来石陶瓷的制备方法 | |
CN105801108B (zh) | 一种三维孔道结构锂基块体氚增值剂材料的制备方法 | |
CN108863421A (zh) | 一种纤维增强抗热震泡沫陶瓷的制备方法 | |
CN104973856A (zh) | 一种熔融石英陶瓷辊的生产方法 | |
CN105801163A (zh) | 低温固相烧成碳化硅泡沫陶瓷及其制备方法 | |
CN104177120A (zh) | 一种低成本轻质粉煤灰多孔保温材料的制备方法 | |
CN110294636A (zh) | 一种轻质隔热镍冶金废渣泡沫陶瓷及其制备方法 | |
CN106565272A (zh) | 一种碳化硅陶瓷泡末的制备方法 | |
CN104311109A (zh) | 发泡注模、磷酸二氢铝胶结制备泡沫陶瓷的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WW01 | Invention patent application withdrawn after publication |
Application publication date: 20161214 |
|
WW01 | Invention patent application withdrawn after publication |