CN106191806A - 一种高温压电传感器中石墨烯电极的制备方法 - Google Patents

一种高温压电传感器中石墨烯电极的制备方法 Download PDF

Info

Publication number
CN106191806A
CN106191806A CN201610557529.2A CN201610557529A CN106191806A CN 106191806 A CN106191806 A CN 106191806A CN 201610557529 A CN201610557529 A CN 201610557529A CN 106191806 A CN106191806 A CN 106191806A
Authority
CN
China
Prior art keywords
temperature
graphene electrodes
graphene
preparation
temperature piezoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610557529.2A
Other languages
English (en)
Other versions
CN106191806B (zh
Inventor
沈丽明
郭国标
吉成
何大方
暴宁钟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JIANGNAN GRAPHENE RESEARCH INSTITUTE
Original Assignee
JIANGNAN GRAPHENE RESEARCH INSTITUTE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JIANGNAN GRAPHENE RESEARCH INSTITUTE filed Critical JIANGNAN GRAPHENE RESEARCH INSTITUTE
Priority to CN201610557529.2A priority Critical patent/CN106191806B/zh
Publication of CN106191806A publication Critical patent/CN106191806A/zh
Application granted granted Critical
Publication of CN106191806B publication Critical patent/CN106191806B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0227Pretreatment of the material to be coated by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0254Physical treatment to alter the texture of the surface, e.g. scratching or polishing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/513Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using plasma jets

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明提供了一种高温压电传感器中石墨烯电极的制备方法,包括以下步骤:将预处理过的高温压电传感器的高温压电晶片放入等离子体化学气相沉积腔室中,关闭腔室,启动真空泵;至腔室中的气压降至10‑5Torr以下,通入保护气和碳氢化合物气体调节腔室中的压强;启动真空反应炉加热升温,打开等离子体源,恒温沉积,得到石墨烯电极。本发明提供的石墨烯电极的制备方法采用高温压电晶片作为衬底,通过等离子增强化学气相沉积(PECVD)技术直接在无金属催化的晶片表面生长少层或多层的石墨烯作为电极,石墨烯薄膜与晶片之间附着力好,石墨烯膜的导电性能优异。

Description

一种高温压电传感器中石墨烯电极的制备方法
技术领域
本发明属于压电传感器材料领域领域,具体涉及一种高温压电传感器中石墨烯电极的制备方法。
背景技术
由于高温环境下供电和导线联接困难,电子线路难以正常工作,常规传感器的使用受到限制,因此研究开发适合高温环境下使用的无线无源传感技术非常必要。压电传感器是一种基于压电效应制备而成的器件,压电传感器在生产和生活中有着广泛的应用;由压电晶体制备的高温压电传感元件在航空航天、国防民用等方面发挥重要的作用。高温压电传感器中电极材料通常采用贵金属例如Pt,Ir或Pd作为导电电极,此类贵金属材料原料稀缺、价格昂贵,大大增加了器件成本,因此发展一种导电性能优异,热稳定性好且原料价格低廉的电极材料迫在眉睫。
石墨烯具有优异的电学、热学性能,常温下电子迁移率超过1.5×104cm2/V·s,高于纳米碳管和晶体硅;电阻率只有约10-6Ω·cm,比Au或者Ag更低,为目前世界上电阻率最小的材料。石墨烯电阻率极低,电子迁移速度极快,热稳定性好,因此被期待用来发展高性能的新一代电子元件。另外,对于长时间应用于苛刻条件中的高温压电传感器来说,导热性能对传感器的精度及寿命显得尤为重要,而石墨烯具有极高的导热系数,近几年来被提倡用于散热等方面应用。因此,如果在高温压电晶体传感元件电极层中引入石墨烯薄膜,一方面可以降低金属电极的电阻,增强电极材料的导电性,另一方面还能大幅提高金属电极的散热性能。
目前,石墨烯薄膜电极的制备方法主要包括为晶体外延生长法,氧化石墨烯分散液旋涂法和化学气相沉积法。外延生长法:以SiC为例,在高温下加热SiC单晶,使得其表面Si原子被蒸发,剩下的C原子通过重排形成石墨烯,外延生长法需要苛刻的高温高真空环境,同时制得的石墨烯薄膜不易转移到其他衬底上。氧化石墨烯分散液旋涂法:配制一定浓度的氧化石墨烯分散液,将其旋涂到基板上,通过改变分散液浓度,旋涂仪的转速和旋涂次数来调控膜层厚度,最后通过退火获得石墨烯电极。氧化石墨烯分散液旋涂法环保,高效,且成本低廉,是目前最有可能实现石墨烯工业化生产的方法,但其缺点也非常明显,氧化石墨烯分散液制备过程中所使用的强氧化剂会严重破坏石墨烯的电子结构以及晶体的完整性,影响其电学性质,因而在一定程度上限制了其在精密的微电子领域的应用。化学气相沉积法被认为是最有可能制备出高质量、大面积石墨烯的方法,其过程为:将碳源和保护气一起通入到高温(800—1100℃)沉积腔室内,反应一段时间,碳原子在金属或者非金属基板沉积并形成单层或多层石墨烯。化学气相沉积法中通常会引入Cu、Ni等金属催化剂,沉积过程中,碳源气体首先吸附在金属基板上,在基板上溶解后,扩散生长形成石墨烯。化学气相沉积法制备的石墨烯质量虽好,但同样存在石墨烯膜转移过程复杂的缺点,进而影响到石墨烯在电子器件方面的应用。
发明内容
技术问题:为了解决现有技术的缺陷高温压电传感器中电极材料性能一般且价格昂贵等问题,本发明提供了一种导电性能优异、热稳定性好且原料丰富的石墨烯电极材料的制备方法。
技术方案:本发明提供的一种高温压电传感器中石墨烯电极的制备方法,包括以下步骤:
(1)将预处理过的高温压电传感器的高温压电晶片放入等离子体化学气相沉积腔室中,关闭腔室,启动真空泵;至腔室中的气压降至10-5Torr以下,通入保护气和碳氢化合物气体调节腔室中的压强;
(2)启动真空反应炉加热升温,打开等离子体源,恒温沉积,得到石墨烯电极。
步骤(1)中,所述高温压电晶片的预处理方法为:将高温压电晶片研磨、抛光,超声清洗,N2气体吹干,即得;优选地,超声清洗步骤为:分别用去离子水、丙酮和乙醇超声清洗10—15min。
步骤(1)中,所述高温压电晶片包括Ba2TiSi2O7(BTS)、La3Ga5SiO14(LGS)、La3Ga5.5Ta0.5O14(LGT)、Ca3TaGa3Si2O14(CTGS)等
步骤(1)中,通入保护气和碳氢化合物气体后,腔室中的压强为0.05—1Torr。
步骤(1)中,所述保护气为Ar气体;所述碳氢化合物气体为CH4、C2H6、C3H8、C2H4或C3H6;所述保护气与碳氢化合物气体的流量比为10:1—1:1;所述保护气流量为10—100sccm,碳氢化合物气体流量为10—50sccm。
步骤(2)中,真空反应炉加热升温程序为:室温升温至400—700℃,恒温15—20min;升温速率为10-20℃/min,其中,250℃和/或550℃时分别恒温20—30min,分步退火能够消除机械加工带来的应力。
步骤(2)中,沉积温度为400—700℃,沉积时间为30—150min。
有益效果:本发明提供的石墨烯电极的制备方法采用高温压电晶片作为衬底,通过等离子增强化学气相沉积(PECVD)技术直接在无金属催化的晶片表面生长少层或多层的石墨烯作为电极,石墨烯薄膜与晶片之间附着力好,石墨烯膜的导电性能优异。
具体而言,本发明相对于现有技术具有以下突出的优势:
(1)生长工艺简单,省去了薄膜转移过程,沉积条件相对温和、温度低,无催化剂,避免了引入金属杂质。
(2)可以实现任意形状石墨烯膜的沉积,电极尺寸与沉积腔室大小相关。
(3)高温压电传感元件中常用的电极材料为Pt、Ir或者Pd,其原料稀缺、价格昂贵、性能一般,而本发明制备的石墨烯电极导电性好(电阻率在10-3Ω·cm数量级以下),热稳定性好,导热系数远高于Pt、Ir、Pd电极,在材料性能上完全可能取代现有的Pt、Ir、Pd电极。
具体实施方式
下面对本发明石墨烯电极的制备方法作出进一步说明。
实施例1
将研磨抛光好的BTS晶片分别用去离子水、丙酮和乙醇超声10min,取出晶片,用压缩N2气体将其表面吹干后放入等离子体化学气相沉积腔室中,关闭腔室,启动真空泵;至腔室中的气压降至10-5Torr以下,通入Ar和CH4气体,控制Ar气体流量为100sccm,CH4流量为10sccm,调节腔室中的压强为1Torr。启动化学沉积腔室加热电源,设置升温程序为:室温升温至400℃,恒温15min;升温速率为10℃/min,其中,250℃时恒温25min;打开等离子体源,400℃恒温沉积30min,得到石墨烯电极。
石墨烯电极与高温压电晶片之间的附着力一般,经胶带多次粘贴发现有微量石墨烯剥落。经测试,石墨烯电极的电阻率约为8.5×10-4Ω·cm。
实施例2
将研磨抛光好的LGS晶片分别用去离子水、丙酮和乙醇超声15min,取出晶片,用压缩N2气体将其表面吹干后放入等离子体化学气相沉积腔室中,关闭腔室,启动真空泵;至腔室中的气压降至10-5Torr以下,通入Ar和CH4气体,控制Ar气体流量为75sccm,CH4流量为25sccm,调节腔室中的压强为0.5Torr。启动化学沉积腔室加热电源,设置升温程序为:室温升温至700℃,恒温20min;升温速率为15℃/min,其中,250℃和550℃时各恒温20min;打开等离子体源,700℃恒温沉积80min,得到石墨烯电极。
石墨烯电极与高温压电晶片之间的附着力强,经胶带多次粘贴发现几乎无石墨烯剥落。经测试,石墨烯电极的电阻率约为8.0×10-4Ω·cm。
实施例3
将研磨抛光好的LGT晶片分别用去离子水、丙酮和乙醇超声12min,取出晶片,用压缩N2气体将其表面吹干后放入等离子体化学气相沉积腔室中,关闭腔室,启动真空泵;至腔室中的气压降至10-5Torr以下,通入Ar和C2H6气体,控制Ar气体流量为50sccm,C2H6流量为50sccm,调节腔室中的压强为0.05Torr。启动化学沉积腔室加热电源,设置升温程序为:室温升温至500℃,恒温18min;升温速率为20℃/min,其中,250℃时恒温25min;打开等离子体源,500℃恒温沉积150min,得到石墨烯电极。
石墨烯电极与高温压电晶片之间的附着力强,经胶带多次粘贴发现几乎无石墨烯剥落。测试发现,石墨烯电极的电阻率约为8.0×10-4Ω·cm。
实施例4
将研磨抛光好的CTGS晶片分别用去离子水、丙酮和乙醇超声15min,取出晶片,用压缩N2气体将其表面吹干后放入等离子体化学气相沉积腔室中,关闭腔室,启动真空泵;至腔室中的气压降至10-5Torr以下,通入Ar和C3H8气体,控制Ar气体流量为75sccm,C3H8流量为25sccm,调节腔室中的压强为0.25Torr。启动化学沉积腔室加热电源,设置升温程序为:室温升温至600℃,恒温20min;升温速率为15℃/min,其中,250℃和550℃时分别恒温30min;打开等离子体源,600℃恒温沉积120min,得到石墨烯电极。
石墨烯电极与高温压电晶片之间的附着力强,经胶带多次粘贴发现有几乎无石墨烯剥落。经测试,石墨烯电极的电阻率约为9.0×10-4Ω·cm。
实施例5
高温压电传感器中石墨烯电极的制备方法,与实施例4基本相同,不同之处仅在于:Ar气体的流量为10sccm,C3H8流量为10sccm。
石墨烯电极与高温压电晶片之间的附着力强,经胶带多次粘贴发现几乎无石墨烯剥落。经测试,石墨烯电极的电阻率约为9.5×10-4Ω·cm。
实施例6
高温压电传感器中石墨烯电极的制备方法,与实施例4基本相同,不同之处仅在于:用C2H4气体替代C3H8作为碳氢化合物气体。
石墨烯电极与高温压电晶片之间的附着力强,经胶带多次粘贴发现几乎无石墨烯剥落。经测试,石墨烯电极的电阻率约为9.0×10-4Ω·cm。
实施例7
高温压电传感器中石墨烯电极的制备方法,与实施例4基本相同,不同之处仅在于:用C3H6气体替代C3H8作为碳氢化合物气体。
石墨烯电极与高温压电晶片之间的附着力强,经胶带多次粘贴发现无石墨烯剥落。经测试,石墨烯电极的电阻率约为9.2×10-4Ω·cm。
目前现有石墨烯电极制备方法中,SiC外延生长法制备的石墨烯电极由于其能耗高,难以大面积生长以及转移到其他基板上,因此此法不适合大规模制备石墨烯电极;传统CVD法(金属表面外延生长石墨烯)制备的石墨烯电极虽然具有较好的电阻率(5×10-4Ω·cm左右),但是其能耗高,转移方法繁琐,且在转移过程中容易引入杂质,降低电极的导电性能;氧化石墨烯溶液法制备的石墨烯膜电阻率通常在1.5×10-3Ω·cm以上,膜的电阻率较高,难以满足石墨烯电极导电性要求;而本发明仍然能够获得较好的电阻率(8×10-4Ω·cm左右),同时热稳定性好,导热系数远高于Pt、Ir、Pd电极,在材料性能上完全可能取代现有的Pt、Ir、Pd电极。
表1热稳定性检测结果
表2导热系数测试结果

Claims (7)

1.一种高温压电传感器中石墨烯电极的制备方法,其特征在于:包括以下步骤:
(1)将预处理过的高温压电晶片放入等离子体化学气相沉积腔室中,关闭腔室,启动真空泵;至腔室中的气压降至10-5Torr以下,通入保护气和碳氢化合物气体调节腔室中的压强;
(2)启动真空反应炉加热升温,打开等离子体源,恒温沉积,得到石墨烯电极。
2.根据权利要求1所述的一种高温压电传感器中石墨烯电极的制备方法,其特征在于:步骤(1)中,所述高温压电晶片的预处理方法为:将高温压电晶片研磨、抛光,超声清洗,N2气体吹干,即得;优选地,超声清洗步骤为:分别用去离子水、丙酮和乙醇超声清洗10—15min。
3.根据权利要求1所述的一种高温压电传感器中石墨烯电极的制备方法,其特征在于:步骤(1)中,所述高温压电晶片包括Ba2TiSi2O7(BTS)、La3Ga5SiO14(LGS)、La3Ga5.5Ta0.5O14(LGT)、Ca3TaGa3Si2O14(CTGS)。
4.根据权利要求1所述的一种高温压电传感器中石墨烯电极的制备方法,其特征在于:步骤(1)中,通入保护气和碳氢化合物气体后,腔室中的压强为0.05—1Torr。
5.根据权利要求1所述的一种高温压电传感器中石墨烯电极的制备方法,其特征在于:步骤(1)中,所述保护气为Ar气体;所述碳氢化合物气体为CH4、C2H6、C3H8、C2H4或C3H6;所述保护气与碳氢化合物气体的流量比为10:1—1:1;所述保护气流量为10—100sccm,碳氢化合物气体流量为10—50sccm。
6.根据权利要求1所述的一种高温压电传感器中石墨烯电极的制备方法,其特征在于:步骤(2)中,真空反应炉加热升温程序为:室温升温至400—700℃,恒温15—20min;升温速率为10-20℃/min,其中,250℃和/或550℃时分别恒温20—30min。
7.根据权利要求1所述的一种高温压电传感器中石墨烯电极的制备方法,其特征在于:步骤(2)中,沉积温度为400—700℃,沉积时间为30—150min。
CN201610557529.2A 2016-07-14 2016-07-14 一种高温压电传感器中石墨烯电极的制备方法 Expired - Fee Related CN106191806B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610557529.2A CN106191806B (zh) 2016-07-14 2016-07-14 一种高温压电传感器中石墨烯电极的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610557529.2A CN106191806B (zh) 2016-07-14 2016-07-14 一种高温压电传感器中石墨烯电极的制备方法

Publications (2)

Publication Number Publication Date
CN106191806A true CN106191806A (zh) 2016-12-07
CN106191806B CN106191806B (zh) 2018-11-23

Family

ID=57474674

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610557529.2A Expired - Fee Related CN106191806B (zh) 2016-07-14 2016-07-14 一种高温压电传感器中石墨烯电极的制备方法

Country Status (1)

Country Link
CN (1) CN106191806B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107132257A (zh) * 2017-03-29 2017-09-05 上海新克信息技术咨询有限公司 石墨烯传感器及其制备方法
CN107217239A (zh) * 2017-06-14 2017-09-29 华南理工大学 一种改善常压化学气相沉积法制备的石墨烯薄膜导电性能的方法
CN110405207A (zh) * 2019-08-14 2019-11-05 哈尔滨工业大学 一种pe-cvd辅助sps烧结制备石墨烯增强钛基复合材料的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080187685A1 (en) * 2007-02-07 2008-08-07 Atomic Energy Council - Institute Of Nuclear Energy Research Method of preparing vertically-aligned carbon nanotube under atmospheric and cold-wall heating treatments and making the same
US20090074986A1 (en) * 2007-09-14 2009-03-19 Korea Institute Of Science And Technology Method of preventing abnormal large grains from being included into thin nano-crystalline diamond film
CN103183344A (zh) * 2013-04-24 2013-07-03 哈尔滨工业大学 一种低温高效制备大尺寸石墨烯的方法
CN104030277A (zh) * 2014-06-11 2014-09-10 苏州斯迪克新材料科技股份有限公司 化学气相沉积法制备石墨烯
CN105486326A (zh) * 2015-11-26 2016-04-13 联想(北京)有限公司 一种信息处理方法及电子设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080187685A1 (en) * 2007-02-07 2008-08-07 Atomic Energy Council - Institute Of Nuclear Energy Research Method of preparing vertically-aligned carbon nanotube under atmospheric and cold-wall heating treatments and making the same
US20090074986A1 (en) * 2007-09-14 2009-03-19 Korea Institute Of Science And Technology Method of preventing abnormal large grains from being included into thin nano-crystalline diamond film
CN103183344A (zh) * 2013-04-24 2013-07-03 哈尔滨工业大学 一种低温高效制备大尺寸石墨烯的方法
CN104030277A (zh) * 2014-06-11 2014-09-10 苏州斯迪克新材料科技股份有限公司 化学气相沉积法制备石墨烯
CN105486326A (zh) * 2015-11-26 2016-04-13 联想(北京)有限公司 一种信息处理方法及电子设备

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107132257A (zh) * 2017-03-29 2017-09-05 上海新克信息技术咨询有限公司 石墨烯传感器及其制备方法
CN107217239A (zh) * 2017-06-14 2017-09-29 华南理工大学 一种改善常压化学气相沉积法制备的石墨烯薄膜导电性能的方法
CN110405207A (zh) * 2019-08-14 2019-11-05 哈尔滨工业大学 一种pe-cvd辅助sps烧结制备石墨烯增强钛基复合材料的方法
CN110405207B (zh) * 2019-08-14 2021-07-20 哈尔滨工业大学 一种pe-cvd辅助sps烧结制备石墨烯增强钛基复合材料的方法

Also Published As

Publication number Publication date
CN106191806B (zh) 2018-11-23

Similar Documents

Publication Publication Date Title
JP2008515175A5 (zh)
KR20160044977A (ko) 비정질 탄소원자층의 형성방법 및 비정질 탄소원자층을 포함하는 전자소자
CN106191806B (zh) 一种高温压电传感器中石墨烯电极的制备方法
JP2003298077A (ja) 太陽電池
KR20140115814A (ko) 기판 구조체, 상기 기판 구조체를 형성하는 방법, 및 이를 구비하는 전기소자
CN101942696A (zh) Si基“反向外延”3C-SiC单晶薄膜及其制备方法
CN108982600B (zh) 基于氧化镓/镓酸锌异质结纳米阵列的柔性气敏传感器及其制备方法
CN103214274B (zh) 石墨烯负载多孔陶瓷导电材料及其制备方法
CN105668559A (zh) 一种批量多衬底制备石墨烯薄膜的方法
CN109023291A (zh) 一种石墨烯薄膜及其制备方法与应用
CN106087051A (zh) 同步生长晶圆级ab堆垛双层石墨烯的制备方法及其设备
JPS6170716A (ja) シリコン薄膜ピエゾ抵抗素子の製造法
KR20210018855A (ko) 고효율 화학 기상 증착법 그래핀 주름 제거 방법
CN104835872A (zh) 柔性异质结薄膜太阳能电池及其制备方法
CN104404620A (zh) 一种在大直径6H/4H-SiC硅面和碳面双面同时生长石墨烯的方法
CN113957527A (zh) 制备二维纳米Cs3Cu2I5晶体材料的方法及其应用
CN102891074A (zh) 基于SiC衬底的石墨烯CVD直接外延生长方法及制造的器件
CN102304701A (zh) 一种碳化硅薄膜的制备方法
CN102903616A (zh) 基于ZnO衬底的石墨烯CVD直接外延生长方法及制造的器件
CN103213976B (zh) 一种在衬底表面直接制备石墨烯的方法
CN103074679A (zh) 一种单晶石墨烯的化学气相沉积制备方法
CN107516691A (zh) 一种非晶碳薄膜/单晶硅异质结太阳能电池及其制备方法
JP4639334B2 (ja) ダイヤモンド膜、その製造方法、電気化学素子、及びその製造方法
CN103556217A (zh) 一种制备1至5层单晶石墨烯的方法
CN103101906B (zh) 石墨烯、石墨烯制备方法和应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20181123

Termination date: 20200714