CN106145954A - 再结晶碳化硅棚板的制备方法 - Google Patents

再结晶碳化硅棚板的制备方法 Download PDF

Info

Publication number
CN106145954A
CN106145954A CN201610513097.5A CN201610513097A CN106145954A CN 106145954 A CN106145954 A CN 106145954A CN 201610513097 A CN201610513097 A CN 201610513097A CN 106145954 A CN106145954 A CN 106145954A
Authority
CN
China
Prior art keywords
sic
refractory slab
silicon carbide
base substrate
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610513097.5A
Other languages
English (en)
Inventor
麦鹤瀛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Foshan Yeston Black Carbon Materials Ltd By Share Ltd
Original Assignee
Foshan Yeston Black Carbon Materials Ltd By Share Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Foshan Yeston Black Carbon Materials Ltd By Share Ltd filed Critical Foshan Yeston Black Carbon Materials Ltd By Share Ltd
Priority to CN201610513097.5A priority Critical patent/CN106145954A/zh
Publication of CN106145954A publication Critical patent/CN106145954A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/636Polysaccharides or derivatives thereof
    • C04B35/6365Cellulose or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Abstract

本发明公开了一种再结晶碳化硅棚板制备方法,制备过程包括如下步骤,(1)选用不同粒级的SiC粉按比例称量,加入适量水及羧甲基纤维素,均匀混合,得混合料;(2)将上述混合料加入模具中冲压成型,获得棚板坯体;(3)将所述棚板坯体置于烧结炉中烧结采用充填惰性气体以隔绝空气并形成保护气氛;烧结温度达到1950℃~2400℃,保温1小时;继续升温至2800℃,保温60‑80min,断电后自然冷却至室温。相比于同类型的产品,具有良好的高温强度,抗热震性能,抗氧化性能和可导热性能,使用寿命长,性能更加优越。

Description

再结晶碳化硅棚板的制备方法
技术领域
本发明涉及材料制备技术领域,尤其是涉及一种再结晶碳化硅制品的棚板的制备方法。
背景技术
再结晶碳化硅制品因其具有独特的耐高温、耐腐蚀、抗氧化、导热快、强度高、蓄热小、寿命长及低热膨胀系数等优势而被广泛应用于航空航天、冶金化工、能源、环保等多个领域,然而在恶劣的高温及热冲击条件下使用使其性能降低、寿命变短,再结晶碳化硅棚板即是其一种利用,而目前的再结晶碳化硅棚板大部分是直接使用一定颗粒级的碳化硅微粉,与碳混合后成型生坯,然后在高温下渗硅部分硅与碳反应,生成碳化硅与胚体中的碳化硅结合,达到烧结的目的。中国专利申请名称为一种再结晶碳化硅制品及其制备方法、申请公布号为CN105645963A、申请公布日为2016.06.08、申请号为2016100188804的发明公开了一种再结晶碳化硅制品及其制备方法,再结晶碳化硅制品的原料由质量份数为60~70份碳化硅粗粉、30~40份碳化硅细粉、1~3份碳化硼粉、2~6份生物质糖和1~3份成型助剂组成,碳化硅粗粉的粒径为20~150微米,碳化硅细粉的粒径为0.3~2微米;碳化硼粉的粒径为0.3~2微米;制备方法步骤如下:将生物质糖溶于水得糖水溶液;将碳化硅细粉、碳化硼粉混合均匀,再加入糖水溶液,得混合湿细粉;将碳化硅粗粉、混合湿细粉和成型助剂混合均匀,加水捏炼成可塑泥料;将可塑泥料经真空挤制成型和微波干燥后烧结,出炉后得再结晶碳化硅制品。上述虽然能提高一定有性能,但碳化硅颗粒制品中仍含有较多游离硅的存在,大约含有8-15%的游离硅,其使用温度低于1400℃,最佳使用温度不超过1300℃,超过这个温度制品的强度硬度耐腐蚀性,抗氧化性大幅度下降,导致产品变形氧化开裂断裂,难以满足使用的需求。
发明内容
本发明的目的就是为了解决现有技术之不足而提供的一种不仅具有良好的高温强度,抗热震性能,抗氧化性能和可导热性能,使用寿命长的再结晶碳化硅棚板的制备方法。
发明是通过如下技术方案来达到上述目的的:
再结晶碳化硅棚板的制备过程包括如下步骤,
(1)选用不同粒级的SiC粉按比例称量,加入适量水及羧甲基纤维素,均匀混合,得混合料;
其中粗颗粒(245-255μm)的SiC的含量所占比例为40-60%,90-100μm目的碳化硅粉末25%-35%,1μm碳化硅粉末10%-20%;
羧甲基纤维素0.2%~5%;
上述组份的含量总和为100%;
(2)将上述混合料加入模具中冲压成型,获得棚板坯体;
(3)将所述棚板坯体置于烧结炉中,在所述坯体的两端连接上石墨电极,并在接有石墨电极的棚板坯体外围密封采用充填惰性气体以隔绝空气并形成保护气氛;
(4)将两石墨电极通电,利用坯体的导电性实施自身加热烧结,使烧结温度达到1950℃~2400℃,保温1~2小时;
(5)调节所述制品两端的电压,以每小时不超过80℃的速度,使制品继续升温至2800℃,保温60-80min,断电后自然冷却至室温。
进一步地,所述粗颗粒(245-255μm)的SiC的含量中wt%,SiC 99.6SiO2 0.12Fe2O3<0.03free Si<0.01free C<0.05
90-100μm目的碳化硅含量中wt%,SiC 99.5SiO2 0.16Fe2O3<0.05free Si<0.01free C<0.05
1μm目的碳化硅含量中wt%,SiC 99.2SiO2 0.05Fe2O3<0.05free Si<0.01free C<0.05
进一步地,粗颗粒(245-255μm)的SiC为250μm,其所占比例为50%;
在R-SiC材料的表面涂覆一层与热膨胀指数匹配且氧化扩散系数低的涂层,来提高材料的抗氧化性能。
本发明采用上述技术解决方案所能达到的有益效果是:
采用本发明方法制备的该再结晶碳化硅棚板的导热系数达120~150W/m·K,抗弯强度达120~140MPa,抗热震性好,使用寿命比普通再结晶碳化硅制品提高了30~50%,其具有1650℃的高温负载能力,广泛用于制造氧化铝陶瓷、工程技术陶瓷、磁性材料、粉末冶金、耐火材料及其它特种陶瓷制品在高温和高氧化环境下的辊道窑,该产品性能特点:
△良好高温荷重性能
△优良的导热性能和耐热性能
△良好的抗氧化性能
△优良的耐酸碱性能
△优良的抗热震性能
△使用寿命长。
具体实施方式
以下结合具体实施例对本技术方案作详细的描述。
制备过程包括如下步骤,
(1)选用三种不同粒级的SiC粉按比例称量,加入适量水及羧甲基纤维素,均匀混合,得混合料;三种不同粒级的SiC粉含量重量比如下:所述粗颗粒250μm的SiC的含量中wt%,SiC 99.6SiO2 0.12Fe2O3<0.03free Si<0.01free C<0.05
95μm目的碳化硅含量中wt%,SiC 99.5SiO2 0.16Fe2O3<0.05free Si<0.01free C<0.05
1μm目的碳化硅含量中wt%,SiC 99.2SiO2 0.05Fe2O3<0.05free Si<0.01free C<0.05
其中粗颗粒250μm的SiC的含量所占比例为50%,95μm目的碳化硅粉末32%,1μm碳化硅粉末17%;
羧甲基纤维素1%;
(2)将上述混合料加入模具中通过100t冲压机冲压成型,获得棚板坯体;
(3)将所述棚板坯体置于烧结炉中,在所述坯体的两端连接上石墨电极,并在接有石墨电极的棚板坯体外围密封采用充填惰性气体以隔绝空气并形成保护气氛;
(4)将两石墨电极通电,利用坯体的导电性实施自身加热烧结,使烧结温度达到1950℃~2400℃,保温1小时;
(5)调节所述制品两端的电压,以每小时不超过80℃的速度,使制品继续升温至2800℃,保温80min,断电后自然冷却至室温。
在R-SiC材料的表面涂覆一层与热膨胀指数匹配且氧化扩散系数低的涂层,来提高材料的抗氧化性能。
实验表明粗碳化硅(SiC)颗粒的加入对再结晶碳化硅陶瓷(R-SiC)抗热震性能的影响;通过不同温度下热震(水淬试验)后测试不同配方样品的残余强度来评价其抗热震性能,并测试了R-SiC陶瓷在30~1200℃的平均线膨胀系数,通过SEM分析了材料的显微结构及热震损伤机制。结果表明:随着粗SiC颗粒(250μm)含量的提高,R-SiC陶瓷的密度、临界热震温差均先升后降;含有50%250μm SiC颗粒陶瓷的密度最大,为2.60g·cm~(-3),线膨胀系数最小,为4.60×10~(-6)/℃,抗热震性能最好,其临界热震温差达395℃;250μm SiC颗粒的引入使得R-SiC在热震过程中产生大量的微裂纹,能够迅速吸收存储在材料中的弹性应变能,从而提高其抗热震性能。
随着粗SiC颗粒(245-255μm)含量的提高,R-SiC陶瓷的密度、临界热震温差均先升后降;含有50%250μm SiC颗粒棚板的密度最大,为2.60g·cm~(-3),线膨胀系数最小,为4.60×10~(-6)/℃,抗热震性能最好,其临界热震温差达395℃;250μm SiC颗粒的引入使得R-SiC在热震过程中产生大量的微裂纹,能够迅速吸收存储在材料中的弹性应变能,从而提高其抗热震性能。
实验中,我们发现,当两种不同粒级SiC颗粒的比例达到=65:35时,R-SiC体积密度最大,当成型压力为100MPa、成型水分为6wt%、CMC含量为2wt%时,生坯试样表面光整,容易脱模,且烧成后体积密度最高为2.54g/cm3;当烧成温度为2400℃时,可获得SiC颗粒间结合很好,且抗弯强度高达64MPa的R-SiC陶瓷材料。
以上所述的仅是本发明的优选实施方式,应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。

Claims (4)

1.一种再结晶碳化硅棚板的制备方法,特征在于,它包括如下步骤,
(1)选用不同粒级的SiC粉按比例称量,加入适量水及羧甲基纤维素,均匀混合,得混合料;
其中粗颗粒的SiC的含量所占比例为40-60%,粒径为245-255μm,90-100μm目的碳化硅粉末25%-35%,1μm碳化硅粉末10%-20%;
羧甲基纤维素0.2%~5%;
上述组份的含量总和为100%;
(2)将上述混合料加入模具中冲压成型,获得棚板坯体;
(3)将所述棚板坯体置于烧结炉中,在所述坯体的两端连接上石墨电极,并在接有石墨电极的棚板坯体外围密封采用充填惰性气体以隔绝空气并形成保护气氛;
(4)将两石墨电极通电,利用坯体的导电性实施自身加热烧结,使烧结温度达到1950℃~2400℃,保温1~2小时;
(5)调节所述制品两端的电压,以每小时不超过80℃的速度,使制品继续升温至2800℃,保温60-80min,断电后自然冷却至室温。
2.根据权利要求1所述的再结晶碳化硅棚板制备方法,其特征在于,所述粗颗粒的SiC的含量中wt%,SiC 99.6
SiO2 0.12Fe2O3<0.03free Si<0.01free C<0.05;
90-100μm目的碳化硅含量中wt%,SiC 99.5
SiO2 0.16Fe2O3<0.05free Si<0.01free C<0.05;
1μm目的碳化硅含量中wt%,SiC 99.2
SiO2 0.05Fe2O3<0.05free Si<0.01free C<0.05。
3.根据权利要求1或2所述的再结晶碳化硅棚板制备方法,其特征在于,粗颗粒的SiC为250μm,其所占比例为50%。
4.根据权利要求1或2所述的再结晶碳化硅棚板制备方法,其特征在于,在R-SiC材料的表面涂覆一层与热膨胀指数匹配且氧化扩散系数低的涂层。
CN201610513097.5A 2016-06-30 2016-06-30 再结晶碳化硅棚板的制备方法 Pending CN106145954A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610513097.5A CN106145954A (zh) 2016-06-30 2016-06-30 再结晶碳化硅棚板的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610513097.5A CN106145954A (zh) 2016-06-30 2016-06-30 再结晶碳化硅棚板的制备方法

Publications (1)

Publication Number Publication Date
CN106145954A true CN106145954A (zh) 2016-11-23

Family

ID=57349697

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610513097.5A Pending CN106145954A (zh) 2016-06-30 2016-06-30 再结晶碳化硅棚板的制备方法

Country Status (1)

Country Link
CN (1) CN106145954A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111102844A (zh) * 2019-12-12 2020-05-05 湖南太子新材料科技有限公司 一种烧成锂电池正极材料用匣钵的制备方法
CN115340385A (zh) * 2022-08-30 2022-11-15 武汉工程大学 一种孔径可控的微米孔径碳化硅多孔陶瓷及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1994968A (zh) * 2006-12-15 2007-07-11 湖南大学 一种再结晶碳化硅制品的制备技术
CN101508570A (zh) * 2009-02-06 2009-08-19 潍坊华美精细技术陶瓷有限公司 反应烧结碳化硅陶瓷及其生产工艺
US7727919B2 (en) * 2007-10-29 2010-06-01 Saint-Gobain Ceramics & Plastics, Inc. High resistivity silicon carbide
CN102056862A (zh) * 2008-06-13 2011-05-11 圣戈本陶瓷及塑料股份有限公司 耐体积变化的氮氧化硅或氮氧化硅以及氮化硅粘结的碳化硅耐火材料
CN105645963A (zh) * 2016-01-13 2016-06-08 肖汉宁 一种再结晶碳化硅制品及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1994968A (zh) * 2006-12-15 2007-07-11 湖南大学 一种再结晶碳化硅制品的制备技术
US7727919B2 (en) * 2007-10-29 2010-06-01 Saint-Gobain Ceramics & Plastics, Inc. High resistivity silicon carbide
CN102056862A (zh) * 2008-06-13 2011-05-11 圣戈本陶瓷及塑料股份有限公司 耐体积变化的氮氧化硅或氮氧化硅以及氮化硅粘结的碳化硅耐火材料
CN101508570A (zh) * 2009-02-06 2009-08-19 潍坊华美精细技术陶瓷有限公司 反应烧结碳化硅陶瓷及其生产工艺
CN105645963A (zh) * 2016-01-13 2016-06-08 肖汉宁 一种再结晶碳化硅制品及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
师昌绪等: "《材料科学与工程手册(下)》", 31 January 2004 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111102844A (zh) * 2019-12-12 2020-05-05 湖南太子新材料科技有限公司 一种烧成锂电池正极材料用匣钵的制备方法
CN115340385A (zh) * 2022-08-30 2022-11-15 武汉工程大学 一种孔径可控的微米孔径碳化硅多孔陶瓷及其制备方法

Similar Documents

Publication Publication Date Title
KR101757069B1 (ko) 알루미나 복합체 세라믹스 조성물 및 그의 제조방법
EP2250141B1 (en) Use of a sintered refractory material based on silicon carbide with a silicon nitride binder
Bodhak et al. Densification Study and Mechanical Properties of Microwave‐Sintered Mullite and Mullite–Zirconia Composites
CN102730690B (zh) 一种Al4SiC4材料的合成方法
KR101719284B1 (ko) 사이알론 결합 탄화규소 재료
Derakhshandeh et al. Comparison of spark plasma and microwave sintering of mullite based composite: mullite/Ta2O5 reaction
JP2010013344A (ja) 炭化硅素(SiC)セラミック材料、その製造方法、食器、重粘土製品、および衛生陶器製品の焼成のための焼成用道具材、ならびに複合セラミック体
CN107162597A (zh) 一种浇注成型氮化硅结合碳化硅制品的配方及其制作方法
CN104177087A (zh) 用微波烧结法制备氮化硅结合碳化硅复合材料的方法
CN106145954A (zh) 再结晶碳化硅棚板的制备方法
CN106116614A (zh) 再结晶碳化硅辊棒的制备方法
JP5126984B2 (ja) SiC含有キャスタブル耐火物の製造方法
CN105924182A (zh) 一种高温氮化烧成金属——氮化物结合碳化硅砖及其制备方法
CN108002854B (zh) 一种高导热高抗蚀电煅煤基炭砖及其制备方法
JP2013014487A (ja) 導電性セラミックスの製造方法
KR20200112996A (ko) 크롬 합금 몰리브덴 디실리사이드를 포함하는 가열 요소 및 그의 용도
JPH1149568A (ja) 非鉄溶融金属用黒鉛炭化珪素質坩堝及びその製造方法
CN1108212C (zh) 含塞隆的滑动水口砖
Amin et al. The effect of nanosized carbon black on the physical and thermomechanical properties of Al2O3–SiC–SiO2–C composite
JP4430782B2 (ja) クロミア−ジルコニア焼結体とその製造方法
CN107117947A (zh) 一种高耐磨耐高温陶瓷及其制备方法
JPH10253259A (ja) ローラハース炉用ローラ材及びその製造方法
JPS6058296B2 (ja) 耐熱材料
JP3944871B2 (ja) 炭素含有セラミック焼結体
JP2001284039A (ja) 簡易炉及び焼結体の製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20161123

RJ01 Rejection of invention patent application after publication