CN106098797A - 一种二极管用外延片及其制备方法 - Google Patents

一种二极管用外延片及其制备方法 Download PDF

Info

Publication number
CN106098797A
CN106098797A CN201610497623.3A CN201610497623A CN106098797A CN 106098797 A CN106098797 A CN 106098797A CN 201610497623 A CN201610497623 A CN 201610497623A CN 106098797 A CN106098797 A CN 106098797A
Authority
CN
China
Prior art keywords
layer
growth
ngan
gan
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610497623.3A
Other languages
English (en)
Inventor
王东盛
朱廷刚
李亦衡
张葶葶
王科
李仕强
张子瑜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JIANGSU NENGHUA MICROELECTRONIC TECHNOLOGY DEVELOPMENT Co Ltd
Original Assignee
JIANGSU NENGHUA MICROELECTRONIC TECHNOLOGY DEVELOPMENT Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JIANGSU NENGHUA MICROELECTRONIC TECHNOLOGY DEVELOPMENT Co Ltd filed Critical JIANGSU NENGHUA MICROELECTRONIC TECHNOLOGY DEVELOPMENT Co Ltd
Priority to CN201610497623.3A priority Critical patent/CN106098797A/zh
Publication of CN106098797A publication Critical patent/CN106098797A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02389Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0638Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for preventing surface leakage due to surface inversion layer, e.g. with channel stopper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/6609Diodes
    • H01L29/66143Schottky diodes

Abstract

本发明公开了一种肖特基二极管用外延片及其制备方法,其制成的二极管的晶体质量好,使用寿命长,反向击穿电压高、漏电低。该外延片的制作方法,依次包括如下步骤:A、将AlN盖层通过磁控溅射技术在蓝宝石平片上沉积制得衬底;B、将衬底放入MOCVD设备中加热升温至1040~1100℃,在30~400mbar的压力条件下,在衬底上直接生长GaN二维生长层;C、在950~1050℃温度下,在GaN二维生长层上原位生长SiNx模板层;D、在1000~1080℃温度下,在SiNx模板层上依次生长GaN恢复层和重掺杂nGaN层;E、保持温度不变,在重掺杂nGaN层上生长轻掺杂nGaN层;F、降温至600~750℃,在轻掺杂nGaN层上生长C掺杂的CBGaN帽层。

Description

一种二极管用外延片及其制备方法
技术领域
本发明涉及半导体制造技术领域,具体涉及一种二极管用外延片及其制备方法。
背景技术
肖特基二极管利用金属与半导体接触形成的金属-半导体接触原理制作而成,是一种热载流子二极管,具有低正向电压、超高速等特点,被广泛地应用在高频、大电流、低电压整流电路以及微波电子混频电路、检波电路、高频数字逻辑电路、交流-直流变换系统中,是电子器件中常见的分立器件。现有技术中,肖特基二极管普遍采用外延片作为其半导体部件。而用于GaN肖特基二极管的外延片的衬底主要有三种,即蓝宝石衬底、硅衬底和碳化硅衬底。其中,由于碳化硅的价格昂贵,而Si衬底不适合用于制作垂直结构的肖特基二极管,故蓝宝石衬底在垂直结构的肖特基二极管中应用更为广泛。现有技术中普遍使用的平片状蓝宝石衬底由于其位错密度较高,制成的二极管电子器件漏电流较高、易击穿、晶体质量不高。
发明内容
本发明的目的是提供一种二极管外延片及其制备方法,制成的外延片的电流密度小、反向击穿电压高,位错密度低,有效减少了由其制成的二极管终端器件的漏电通道,显著提高了器件的反向击穿电压和正向导通电流,增加了器件的使用寿命。
为达到上述目的,本发明采用的一种技术方案是:一种二极管用外延片的制备方法,依次包括如下步骤:
A、将AlN盖层通过磁控溅射技术在蓝宝石平片上沉积制得衬底;
B、将所述衬底放入MOCVD设备中加热升温至1040~1100℃,在30~400mbar的压力条件下,在所述衬底上直接生长GaN二维生长层;
C、在950~1050℃温度下,在所述GaN二维生长层上原位生长SiNx模板层;
D、在1000~1080℃温度下,在所述SiNx模板层上依次生长GaN恢复层和重掺杂nGaN层;
E、保持温度不变,在所述重掺杂nGaN层上生长轻掺杂nGaN层;
F、降温至600~750℃,在所述轻掺杂nGaN层上生长C掺杂的CBGaN帽层。
优选地,步骤C中,在所述GaN二维生长层上使用SiH4和NH3原位生长形成了所述SiNx模板层。
优选地,步骤A中,所述AlN盖层是通过PVD或sputter设备在蓝宝石平片上沉积制成所述衬底,所述AlN盖层的厚度为5~200nm。
优选地,所述重掺杂nGaN层、轻掺杂nGaN层的生长压力均为200~700mbar。
优选地,所述CBGaN帽层的生长压力为100~400mbar。
本发明的又一技术方案为:
一种如上述制备方法制备的二极管用外延片,包括:具有AlN盖层的衬底;通过MOCVD技术沉积于所述衬底上表面的GaN二维生长层;原位生长在所述GaN二维生长层上表面上的SiNx模板层;依次生长在所述SiNx模板层上表面上的GaN恢复层、重掺杂nGaN层、轻掺杂nGaN、CBGaN帽层。
优选地,所述SiNx层的厚度低于一个原子层的厚度。
优选地,所述GaN缓冲层的厚度为0.3~1μm;所述GaN恢复层的厚度为2~5μm;所述重掺杂nGaN层的厚度为2~3.5μm;所述轻掺杂nGaN层的厚度为4~12μm,所述CBGaN帽层的厚度为1~20nm。
优选地,所述重掺杂nGaN层和轻掺杂nGaN层的掺杂源为SiH4,其掺杂浓度分别为1E18~1.5E19cm-3和3E15~1.5E16cm-3
优选地,所述CBGaN帽层中C的掺杂源为CBr4,其掺杂浓度为5E18~1E20cm-3
本发明采用以上技术方案,相比现有技术具有如下优点:
1、本发明的衬底通过在蓝宝石平片上覆盖AlN盖层来替代低温GaN缓冲层,同时在GaN二维生长层上原位生长SiNx模板层,显著减少了刃位错密度和螺位错密度,使二极管外延片结构的XRD102和002分别降低至100arcsec和80arcsec以下,总位错密度降低至5*107/cm3以下。低位错密度减少了肖特基二极管终端器件的漏电通道,可显著提高反向击穿电压和正向导通电流,提高了外延片的晶体质量、增加了器件的使用寿命;同时还节约了生长时间。
2、本发明中还采用了CBGaN帽层结构,该CBGaN帽层的生长使用了CBr4作为C的掺杂源,帽层中有较高的碳含量,使得帽层中电阻率显著提升。该帽层起到了使电流横向扩展,减小电流密度的作用。因此可有效提高器件的反向击穿电压。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图,其中:
附图1是本发明所述的二极管用外延片的结构示意图。
上述附图中:1、衬底;11、蓝宝石平片;12、AlN盖层;2、GaN二维生长层;3、SiNx模板层;4、GaN恢复层;5、重掺杂nGaN层;6、轻掺杂nGaN层;7、CBGaN帽层。
具体实施方式
下面结合附图来对本发明的技术方案作进一步的阐述。
参见图1所示,一种二极管用外延片,包括依次层叠设置的衬底、GaN二维生长层、SiNx模板层、GaN恢复层、重掺杂nGaN层、轻掺杂nGaN层、CBGaN帽层。
其中,该衬底为带有AlN盖层12的蓝宝石平片11衬底,该衬底由AlN盖层12采用PVD或sputter设备在蓝宝石平片11上磁控溅射沉积而成,该AlN盖层12厚度为5~200nm。
该SiNx模板层是在GaN二维生长层上使用SiH4和NH3原位生长形成的,该SiNx层的厚度低于一个原子层的厚度。
这里,通过采用AlN盖层12替代了低温GaN层,同时配合SiNx模板层,可显著减少了整个外延片的刃位错密度和螺位错密度,使肖特基二极管外延片结构的XRD102和002分别降低至100arcsec和80arcsec以下,总位错密度降低至5*107/cm3以下。低位错密度减少了肖特基二极管终端器件的漏电通道,可显著提高反向击穿电压和正向导通电流,提高了外延片的晶体质量,增加了器件的使用寿命,同时还节约了外延片的生长时间。
而这里采用了CBGaN帽层结构,该CBGaN帽层的生长使用了CBr4作为C的掺杂源,掺杂浓度为5E18~1E20cm-3。帽层中有较高的碳含量,使得帽层中电阻率显著提升。该帽层起到了使电流横向扩展,减小电流密度的作用。因此可有效提高器件的反向击穿电压。
一种上述二极管用外延片的制备方法,依次包括如下步骤:
A、将AlN盖层12利用PVD或sputter设备采用磁控溅射技术在蓝宝石平片11上沉积制得衬底,AlN盖层12的厚度为5~200nm;
B、将衬底放入MOCVD设备中加热升温至1040~1100℃,在30~400mbar的压力条件下,在衬底上直接生长GaN二维生长层;
C、在950~1050℃温度下,在GaN二维生长层上原位生长SiNx模板层;
D、在1000~1080℃温度下,在SiNx模板层上依次生长GaN恢复层和重掺杂nGaN层;
E、保持温度不变,在重掺杂nGaN层上生长轻掺杂nGaN层;
F、降温至600~750℃,在轻掺杂nGaN层上生长C掺杂的CBGaN帽层。
优选地,所述重掺杂nGaN层、轻掺杂nGaN层的生长压力均为200~700mbar。
优选地,所述CBGaN帽层的生长压力为100~400mbar。
这里,该GaN二维生长层的厚度为0.3~1μm;GaN恢复层的厚度为2~5μm;重掺杂nGaN层的厚度为2~3.5μm;轻掺杂nGaN层的厚度为4~12μm,CBGaN帽层的厚度为1~20nm。
重掺杂nGaN层和轻掺杂nGaN层的掺杂源均为SiH4,其掺杂浓度分别为1E18~1.5E19cm-3和3E15~1.5E16cm-3
其中,GaN二维生长层的生长压力为30~400mbar;重掺杂nGaN层、轻掺杂nGaN层的生长压力均为200~700mbar;而CBGaN帽层的生长压力为100~400mbar。
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并加以实施,并不能以此限制本发明的保护范围,凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围内。

Claims (10)

1.一种二极管用外延片的制备方法,其特征在于,依次包括如下步骤:
A、将AlN盖层通过磁控溅射技术在蓝宝石平片上沉积制得衬底;
B、将所述衬底放入MOCVD设备中加热升温至1040~1100℃,在30~400mbar的压力条件下,在所述衬底上直接生长GaN二维生长层;
C、在950~1050℃温度下,在所述GaN二维生长层上原位生长SiNx模板层;
D、在1000~1080℃温度下,在所述SiNx模板层上依次生长GaN恢复层和重掺杂nGaN层;
E、保持温度不变,在所述重掺杂nGaN层上生长轻掺杂nGaN层;
F、降温至600~750℃,在所述轻掺杂nGaN层上生长C掺杂的CBGaN帽层。
2.根据权利要求1所述的制备方法,其特征在于,步骤C中,在所述GaN二维生长层上使用SiH4和NH3原位生长形成了所述SiNx模板层。
3.根据权利要求1所述的制备方法,其特征在于,步骤A中,所述AlN盖层是通过PVD或sputter设备在蓝宝石平片上沉积制成所述衬底,所述AlN盖层的厚度为5~200nm。
4.根据权利要求1所述的制备方法,其特征在于,所述重掺杂nGaN层、轻掺杂nGaN层的生长压力均为200~700mbar。
5.根据权利要求1所述的制备方法,其特征在于,所述CBGaN帽层的生长压力为100~400mbar。
6.一种如权利要求1~5任一项权利要求所述的制备方法制备的二极管用外延片,其特征在于,包括:具有AlN盖层的衬底;通过MOCVD技术沉积于所述衬底上表面的GaN二维生长层;原位生长在所述GaN二维生长层上表面上的SiNx模板层;依次生长在所述SiNx模板层上表面上的GaN恢复层、重掺杂nGaN层、轻掺杂nGaN、CBGaN帽层。
7.根据权利要求6所述的二极管用外延片,其特征在于,所述SiNx层的厚度低于一个原子层的厚度。
8.根据权利要求6所述的二极管用外延片,其特征在于,所述GaN缓冲层的厚度为0.3~1μm;所述GaN恢复层的厚度为2~5μm;所述重掺杂nGaN层的厚度为2~3.5μm;所述轻掺杂nGaN层的厚度为4~12μm,所述CBGaN帽层的厚度为1~20nm。
9.根据权利要求6所述的二极管用外延片,其特征在于,所述重掺杂nGaN层和轻掺杂nGaN层的掺杂源为SiH4,其掺杂浓度分别为1E18~1.5E19cm-3和3E15~1.5E16 cm-3
10.根据权利要求6所述的二极管用外延片,其特征在于,所述CBGaN帽层中C的掺杂源为CBr4,其掺杂浓度为5E18~1E20 cm-3
CN201610497623.3A 2016-06-30 2016-06-30 一种二极管用外延片及其制备方法 Pending CN106098797A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610497623.3A CN106098797A (zh) 2016-06-30 2016-06-30 一种二极管用外延片及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610497623.3A CN106098797A (zh) 2016-06-30 2016-06-30 一种二极管用外延片及其制备方法

Publications (1)

Publication Number Publication Date
CN106098797A true CN106098797A (zh) 2016-11-09

Family

ID=57215355

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610497623.3A Pending CN106098797A (zh) 2016-06-30 2016-06-30 一种二极管用外延片及其制备方法

Country Status (1)

Country Link
CN (1) CN106098797A (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101427391A (zh) * 2006-02-23 2009-05-06 阿祖罗半导体股份公司 氮化物半导体部件及其制造工艺
CN101894868A (zh) * 2009-02-18 2010-11-24 万国半导体有限公司 改良正向传导的氮化镓半导体器件
CN103346083A (zh) * 2013-07-09 2013-10-09 苏州捷芯威半导体有限公司 氮化镓肖特基二极管及其制造方法
CN103531625A (zh) * 2012-07-05 2014-01-22 先进动力设备技术研究协会 氮化物系化合物半导体元件
CN103952683A (zh) * 2013-06-14 2014-07-30 西安电子科技大学 含有SiNx插入层的半极性m面GaN基的半导体器件的制备方法
US20140302665A1 (en) * 2011-09-30 2014-10-09 Osram Opto Semiconductors Gmbh Method for producing an optoelectronic nitride compound semiconductor component
CN104821341A (zh) * 2014-02-05 2015-08-05 意法半导体(图尔)公司 垂直氮化镓肖特基二极管
CN105428426A (zh) * 2015-11-09 2016-03-23 江苏能华微电子科技发展有限公司 一种二级管用外延片及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101427391A (zh) * 2006-02-23 2009-05-06 阿祖罗半导体股份公司 氮化物半导体部件及其制造工艺
CN101894868A (zh) * 2009-02-18 2010-11-24 万国半导体有限公司 改良正向传导的氮化镓半导体器件
US20140302665A1 (en) * 2011-09-30 2014-10-09 Osram Opto Semiconductors Gmbh Method for producing an optoelectronic nitride compound semiconductor component
CN103531625A (zh) * 2012-07-05 2014-01-22 先进动力设备技术研究协会 氮化物系化合物半导体元件
CN103952683A (zh) * 2013-06-14 2014-07-30 西安电子科技大学 含有SiNx插入层的半极性m面GaN基的半导体器件的制备方法
CN103346083A (zh) * 2013-07-09 2013-10-09 苏州捷芯威半导体有限公司 氮化镓肖特基二极管及其制造方法
CN104821341A (zh) * 2014-02-05 2015-08-05 意法半导体(图尔)公司 垂直氮化镓肖特基二极管
CN105428426A (zh) * 2015-11-09 2016-03-23 江苏能华微电子科技发展有限公司 一种二级管用外延片及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
F.YUN ET.AL: "Efficacy of single and double SiNx interlayers ondefect reduction in GaN overlayers grown by organometallic vapor-phaseepitaxy", 《J.APPL.PHYS》 *
M.J.KAPPERS.ET.AL: "Low dislocationdensity GaN growth on high-temperature AIN buffer layers on(0001)sapphire", 《J.CRYST.GROWTH》 *
S.SAKAI.ET.AL: "A New Method of Reducing Dislocation Density in GaN Layer Grown on Sapphire Substrate by MOVPE", 《J.CRYST.GROWTH》 *

Similar Documents

Publication Publication Date Title
Fu et al. Demonstration of AlN Schottky barrier diodes with blocking voltage over 1 kV
JP4677499B2 (ja) 電子デバイス用エピタキシャル基板およびその製造方法
CN108538711B (zh) 用于使用工程化衬底的氮化镓电子器件的方法和系统
CN104137226A (zh) 适用于具有异质衬底的iii族氮化物器件的缓冲层结构
CN104600109A (zh) 一种高耐压氮化物半导体外延结构及其生长方法
CN101694842B (zh) 一种功率型AlGaN/GaN肖特基二极管及其制作方法
US9847223B2 (en) Buffer stack for group IIIA-N devices
WO2015171705A1 (en) Nucleation and buffer layers for group iii-nitride based semiconductor devices
CN103077964A (zh) 改进p-GaN薄膜欧姆接触的材料结构及其制备方法
JP2019506740A (ja) ショットキーバリア整流器
US10529561B2 (en) Method of fabricating non-etch gas cooled epitaxial stack for group IIIA-N devices
Zhu et al. Effects of rapid thermal annealing on ohmic contact of AlGaN/GaN HEMTs
JP5082392B2 (ja) ショットキバリアダイオード
CN108389894A (zh) 一种高电子迁移率晶体管外延结构
JP5622499B2 (ja) 電子デバイス用エピタキシャル基板およびその製造方法
CN109300976A (zh) 半导体器件及其制作方法
CN102054875B (zh) 一种功率型GaN基肖特基二极管及其制作方法
CN115775730A (zh) 一种准垂直结构GaN肖特基二极管及其制备方法
CN106098746A (zh) 一种二极管用外延片及其制备方法
CN106098797A (zh) 一种二极管用外延片及其制备方法
CN111009579A (zh) 半导体异质结构及半导体器件
CN106098748B (zh) 二极管用外延片及其制备方法
CN106098747A (zh) 一种肖特基二极管用外延片及其制备方法
Dharmarasu et al. Realization of two‐dimensional electron gas in AlGaN/GaN HEMT structure grown on Si (111) by PA‐MBE
CN208142186U (zh) 一种高电子迁移率晶体管外延结构

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20161109

RJ01 Rejection of invention patent application after publication