CN106046404A - NafionTM修饰的二维层状材料纳米片‑聚合物杂化质子交换膜及其制备方法 - Google Patents

NafionTM修饰的二维层状材料纳米片‑聚合物杂化质子交换膜及其制备方法 Download PDF

Info

Publication number
CN106046404A
CN106046404A CN201610536414.5A CN201610536414A CN106046404A CN 106046404 A CN106046404 A CN 106046404A CN 201610536414 A CN201610536414 A CN 201610536414A CN 106046404 A CN106046404 A CN 106046404A
Authority
CN
China
Prior art keywords
nafion
modified
preparation
layer material
dimensional layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610536414.5A
Other languages
English (en)
Other versions
CN106046404B (zh
Inventor
贾炜
汤蓓蓓
武培怡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudan University
Original Assignee
Fudan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudan University filed Critical Fudan University
Priority to CN201610536414.5A priority Critical patent/CN106046404B/zh
Publication of CN106046404A publication Critical patent/CN106046404A/zh
Application granted granted Critical
Publication of CN106046404B publication Critical patent/CN106046404B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2225Synthetic macromolecular compounds containing fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2256Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2287After-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2287After-treatment
    • C08J5/2293After-treatment of fluorine-containing membranes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/08Ingredients agglomerated by treatment with a binding agent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1046Mixtures of at least one polymer and at least one additive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1046Mixtures of at least one polymer and at least one additive
    • H01M8/1051Non-ion-conducting additives, e.g. stabilisers, SiO2 or ZrO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/10Polymers characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C08J2300/102Polymers characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing halogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/10Polymers characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C08J2300/104Polymers characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2361/00Characterised by the use of condensation polymers of aldehydes or ketones; Derivatives of such polymers
    • C08J2361/04Condensation polymers of aldehydes or ketones with phenols only
    • C08J2361/16Condensation polymers of aldehydes or ketones with phenols only of ketones with phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • C08K2003/3009Sulfides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • C08K2003/385Binary compounds of nitrogen with boron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Fuel Cell (AREA)

Abstract

本发明属于膜技术领域,具体为一种NafionTM修饰的二维层状材料纳米片‑聚合物杂化质子交换膜及其制备方法。本发明首先利用通过聚合物NafionTM协助水相超声剥离二维层状材料粉末,得到有NafionTM修饰的二维层状材料纳米片层;然后将所得到的二维层状材料纳米片层与聚合物溶液共混,制备得到杂化质子交换膜。有NafionTM非共价键修饰的纳米片层,在质子交换膜中分散性良好,甲醇渗透率相较于商品化Nafion117膜有一个数量级的降低,同时其质子传导率与商品化Nafion117膜相当。本发明方法操作简便,环境友好,易于批量化、规模化生产,具有良好的工业化生产基础和广阔的应用前景。

Description

NafionTM修饰的二维层状材料纳米片-聚合物杂化质子交换膜 及其制备方法
技术领域
本发明属于膜技术领域,具体涉及一种NafionTM修饰的二维层状材料纳米片-聚合物杂化质子交换膜及其制备方法。
背景技术
质子交换膜燃料电池是一种不经过燃烧, 直接以电化学反应方式将燃料和氧化剂中的化学能转变为电能的发电装置。质子交换膜燃料电池作为一种清洁、高效、安全的绿色能源展示出了广阔的市场前景,得到了广泛关注。作为燃料电池的关键组成——质子交换膜,其性能优劣显著影响燃料电池的工作性能,它为质子的迁移和输送提供通道,其综合性能对于开发高性能的燃料电池起着至关重要的作用。但是由于甲醇与质子共传输通道,因而高质子传导率的质子交换膜往往需要面对高甲醇渗透率的问题,从而严重影响了电池经济性。这些问题都极大地限制了其实际应用前景。因而需要平衡质子交换膜的传输性能,在降低甲醇渗透率的同时维持膜良好的质子传导性能。
近年来,以氧化石墨烯、二硫化钼以及氮化硼等二维纳米片以其独特的物理、化学、光学、力学及电化学性质受到了广泛关注。利用二维纳米片的阻隔特性,在质子交换膜中加入二维纳米片可以有效降低杂化质子交换膜的甲醇渗透率。《碳》(Carbon, 2012, 50(15): 5395-5402.)将氧化石墨烯与NafionTM共混制备杂化质子交换膜,杂化膜的甲醇渗透率较纯NafionTM膜降低一半,但质子传导率也有所下降。《材料化学A》(Journal ofMaterial Chemistry A, 2014, 2(38):16083-16092.)报道了在将硅球修饰的氧化石墨烯纳米片与NafionTM(全氟磺酸树脂)共混,制备杂化质子交换膜。硅球修饰的氧化石墨烯纳米片的添加量分别为 0.1– 0.8 wt%,当添加量为0.8 wt%时,该杂化质子交换膜的甲醇渗透率是纯NafionTM膜的六分之一,而质子传导率则与纯Nafion膜相当。然而由于目前二维层状材料纳米片制备方法复杂,环境不友好,后处理成本高,难以修饰以及在膜中难以分散等问题限制了二维层状材料纳米片的应用。因此开发二维层状材料纳米片的简便制备修饰方法,从而减少有毒有害的有机溶剂使用并且简化后处理流程,对于更好地利用二维层状材料纳米片的优势、拓展二维层状材料纳米片在杂化质子交换膜中的应用具有重要意义。
开发绿色环保的水相超声剥离二维层状材料的技术会具有操作简便以及广阔的工业化应用前景。迄今这方面的研究报道还较少,2011年《先进材料》(AdvancedMaterials, 2011, 23, 3944–3948)报道了一种用胆酸钠表面活性剂水溶液剥离二维片层材料的方法,2011年《物理化学C》(The Journal of Physical Chemistry C, 2011, 115(6): 2679-2685.)报道了一种在水相中超声液剥离氮化硼片层材料的方法,随后引起了一些相关研究。然而由于小分子表面活性剂与二维层状材料纳米片之间的非共价键作用较弱,导致小分子表面活性剂的修饰能力较弱,容易在离心洗涤过程中被脱去,从而限制了其在聚合物基体中的分散性以及后续实际应用。
本发明首先巧妙地利用聚合物NafionTM中同时存在的超疏水和超亲水部分协助水相超声剥离二维层状材料粉末,得到具有NafionTM非共价键修饰的二维层状材料纳米片层;然后将二维层状材料纳米片层与聚合物溶液共混,制备得到杂化质子交换膜。得益于NafionTM的修饰,二维层状材料纳米片在质子交换膜中分散性良好。复合膜对的甲醇渗透率相较于商品化Nafion117膜有一个数量级的降低,同时其质子传导率与商品化Nafion117膜相当。本发明方法操作简便,易于批量化、规模化生产,具有良好的工业化生产基础和广阔的应用前景。
发明内容
本发明的目的在于提供一种性能优异的NafionTM修饰的二维层状材料纳米片-聚合物杂化质子交换膜及其制备方法。
本发明提供的NafionTM修饰的二维层状材料纳米片—聚合物杂化质子交换膜的制备方法,具体步骤为:
(1)将0.01~50 g二维层状材料粉末以及0.1~50 mL市售NafionTM聚合物溶液分散在200~500 mL水中,超声5~50 h;超声后的水溶液通过3000~50000 rpm离心10~60 min,收集上清液,得到NafionTM修饰的二维层状材料纳米片层水相分散液;将上述纳米片层分散液冷冻干燥,得到NafionTM修饰的二维层状材料纳米片;
(2)将上述制备的NafionTM修饰的二维层状材料纳米片加入聚合物溶液中,超声0.5~24 h,得到分散液,静置5~240 min;然后倒入模具,缓慢升温至80 ~ 200℃(优选升温至100~ 150℃),干燥,除去溶剂后成膜;将膜从模具中取出,先后用双氧水溶液和酸在一定温度下浸泡,得到NafionTM修饰的二维层状材料纳米片-聚合物杂化质子交换膜。
本发明中,所述的二维层状材料为石墨、过渡金属二硫属化合物、氮化硼中的一种或几种。
本发明中,步骤(2)中所述的聚合物溶液为全氟磺酸树脂、磺化聚醚醚酮、磺化聚苯并咪唑或磺化聚酰亚胺的一种,或其中几种混合的均相溶液。
本发明中,步骤(2)中所述NafionTM修饰的二维层状材料纳米片和聚合物溶液的配比为0.1-10 mg: 4-5 ml,优选两者配比为1-5 mg: 4-5 ml。
本发明中,所述的缓慢升温的升温速率小于0.5℃/min,一般为0.2-0.5℃/min。
本发明中,所述的经双氧水溶液和酸在一定温度下浸泡,双氧水的浓度为1~10wt%,酸为1~4 mol/L的盐酸、硫酸或磷酸的一种或几种的混合物,温度为30 ~90℃。
与传统工艺相比,本发明首先利用通过聚合物NafionTM协助水相超声剥离二维层状材料粉末,非常简便地得到了二维层状材料纳米片。同时由于表面有NafionTM的修饰,该二维层状材料纳米片在聚合物基体中具有良好的分散性。通过将二维层状材料纳米片与聚合物溶液共混,制备得到杂化质子交换膜。二维层状材料纳米片对于甲醇起到了很好的阻隔作用,杂化质子交换膜的甲醇渗透率相较于商品化Nafion117膜有一个数量级的降低,同时其质子传导率与商品化Nafion117膜相当,最终得到了高选择性的质子交换膜。本发明方法操作简便,易于批量化、规模化生产,具有良好的工业化生产基础和广阔的应用前景。
具体实施方式
以下通过实施例进一步详细说明本发明NafionTM修饰的二维层状材料纳米片—聚合物杂化质子交换膜的制备及性能。然而,该实施例仅仅是作为提供说明而不是限定本发明。
实施例1:
(1)NafionTM修饰的氮化硼纳米片的制备:将0.25g氮化硼粉末以及5 mL 的市售5 wt%NafionTM 溶液分散在40 mL水中,超声12h,超声后的水溶液3000 rpm离心15 min,收集上清液,即得到NafionTM非共价作用修饰的氮化硼纳米片层水相分散液。所制备的纳米片水相分散液经过24 h冷冻干燥后得到NafionTM修饰的氮化硼纳米片层;
(2)NafionTM修饰的氮化硼纳米片-聚合物杂化质子交换膜的制备:将1 mg制得的NafionTM修饰的氮化硼纳米片与4 ml市售的NafionTM溶液混合,超声20 min;将所得混合液经旋蒸除去大部分溶剂后加入4 ml N,N-二甲基甲酰胺,并继续旋蒸20min;静置1.5h后,将上述NafionTM铸模液倒入2cm×5cm大小的模具中,并置于真空烘箱中,从70℃开始经2 h后缓慢升温至100℃以除去溶剂;抽真空并将该真空烘箱温度定在120℃并保持16 h,接着将膜从模具中取出,将该膜先用3 wt%的H2O2溶液于70℃浸泡2h,随后用1 M H2SO4在80℃下经1 h将膜转化为H+型,最后即可得到NafionTM修饰的氮化硼纳米片—NafionTM基杂化质子交换膜。
该质子交换膜的甲醇渗透率在 “40℃”情况下测试。
由此可以看到,通过新工艺制备得到的NafionTM修饰的氮化硼纳米片—NafionTM基杂化质子交换膜的甲醇渗透率,相较于商品化Nafion117膜有极大降低。
该质子交换膜的质子传导性能在“100℃-40 %RH湿度”情况下测试。
由此可以看到,通过新工艺制备得到的NafionTM修饰的氮化硼纳米片—NafionTM基杂化质子交换膜在高温低湿条件下的质子传导率,与商品化Nafion117膜相当。
实施例2:
(1)NafionTM修饰的氮化硼纳米片的制备:将0.25g氮化硼粉末以及5 mL 的市售5 wt%NafionTM 溶液分散在40 mL水中,超声12h,超声后的水溶液3000 rpm离心15 min,收集上清液,即得到NafionTM非共价作用修饰的氮化硼纳米片层水相分散液。所制备的纳米片水相分散液经过24 h冷冻干燥后得到NafionTM修饰的氮化硼纳米片层;
(2)NafionTM修饰的氮化硼纳米片-聚合物杂化质子交换膜的制备:将5 mg制得的NafionTM修饰的氮化硼纳米片与4 ml市售的NafionTM溶液混合,超声20 min;将所得混合液经旋蒸除去大部分溶剂后加入4 ml N,N-二甲基甲酰胺,并继续旋蒸20min;静置1.5h后,将上述NafionTM铸模液倒入2cm×5cm大小的模具中,并置于真空烘箱中,从70℃开始经2 h后缓慢升温至120℃以除去溶剂;抽真空并将该真空烘箱温度定在120℃并保持16 h,接着将膜从模具中取出,将该膜先用3 wt%的H2O2溶液于70℃浸泡2h,随后用1 M H2SO4在80℃下经1 h将膜转化为H+型,最后即可得到NafionTM修饰的氮化硼纳米片—NafionTM基杂化质子交换膜。
实施例3:
(1)NafionTM修饰的氮化硼纳米片的制备:将0.25g氮化硼粉末以及8 mL 的市售5 wt%NafionTM 溶液分散在40 mL水中,超声12h,超声后的水溶液3000 rpm离心15 min,收集上清液,即得到NafionTM非共价作用修饰的氮化硼纳米片层水相分散液。所制备的纳米片水相分散液经过24 h冷冻干燥后得到NafionTM修饰的氮化硼纳米片层;
(2)NafionTM修饰的氮化硼纳米片-聚合物杂化质子交换膜的制备:将1 mg制得的NafionTM修饰的氮化硼纳米片与4 ml市售的NafionTM溶液混合,超声20 min;将所得混合液经旋蒸除去大部分溶剂后加入4 ml N,N-二甲基甲酰胺,并继续旋蒸20min;静置1.5h后,将上述NafionTM铸模液倒入2cm×5cm大小的模具中,并置于真空烘箱中,从70℃开始经2 h后缓慢升温至120℃以除去溶剂;抽真空并将该真空烘箱温度定在120℃并保持16 h,接着将膜从模具中取出,将该膜先用3 wt%的H2O2溶液于70℃浸泡2h,随后用1 M H2SO4在80℃下经1 h将膜转化为H+型,最后即可得到NafionTM修饰的氮化硼纳米片—NafionTM基杂化质子交换膜。
实施例4:
(1)NafionTM修饰的氮化硼纳米片的制备:将0.25g氮化硼粉末以及8 mL 的市售5 wt%NafionTM 溶液分散在40 mL水中,超声12h,超声后的水溶液3000 rpm离心15 min,收集上清液,即得到NafionTM非共价作用修饰的氮化硼纳米片层水相分散液。所制备的纳米片水相分散液经过24 h冷冻干燥后得到NafionTM修饰的氮化硼纳米片层;
(2)NafionTM修饰的氮化硼纳米片-聚合物杂化质子交换膜的制备:将2 mg制得的NafionTM修饰的氮化硼纳米片与4 ml市售的NafionTM溶液混合,超声20 min;将所得混合液经旋蒸除去大部分溶剂后加入4 ml N,N-二甲基甲酰胺,并继续旋蒸20min;静置1.5h后,将上述NafionTM铸模液倒入2cm×5cm大小的模具中,并置于真空烘箱中,从70℃开始经2 h后缓慢升温至120℃以除去溶剂;抽真空并将该真空烘箱温度定在120℃并保持16 h,接着将膜从模具中取出,将该膜先用3 wt%的H2O2溶液于70℃浸泡2h,随后用1 M H2SO4在80℃下经1 h将膜转化为H+型,最后即可得到NafionTM修饰的氮化硼纳米片—NafionTM基杂化质子交换膜。
实施例5:
(1)NafionTM修饰的二硫化钨纳米片的制备:将0.5g二硫化钨粉末以及10 mL 的市售5wt% NafionTM 溶液分散在100 mL水中,超声12h,超声后的水溶液3000 rpm离心15 min,收集上清液,即得到NafionTM非共价作用修饰的二硫化钨纳米片层水相分散液。所制备的纳米片水相分散液经过24 h冷冻干燥后得到NafionTM修饰的二硫化钨纳米片层;
(2)NafionTM修饰的二硫化钨纳米片-聚合物杂化质子交换膜的制备:将1 mg制得的NafionTM修饰的二硫化钨纳米片与4 ml 浓度为5 wt%的磺化聚酰亚胺溶液混合,超声20min;将所得混合液经旋蒸除去大部分溶剂后加入4 ml N,N-二甲基甲酰胺,并继续旋蒸20min;静置1.5h后,将上述NafionTM铸模液倒入2cm×5cm大小的模具中,并置于真空烘箱中,从70℃开始经2 h后缓慢升温至150℃以除去溶剂;抽真空并将该真空烘箱温度定在120℃并保持16 h,接着将膜从模具中取出,将该膜先用3 wt%的H2O2溶液于70℃浸泡2h,随后用1 M H2SO4在80℃下经1 h将膜转化为H+型,最后即可得到NafionTM修饰的二硫化钨纳米片—磺化聚酰亚胺基杂化质子交换膜。
实施例6:
(1)NafionTM修饰的二硫化钼纳米片的制备:将0.5g二硫化钼粉末以及10 mL 的市售5wt% NafionTM 溶液分散在100 mL水中,超声12h,超声后的水溶液3000 rpm离心15 min,收集上清液,即得到NafionTM非共价作用修饰的二硫化钼纳米片层水相分散液。所制备的纳米片水相分散液经过24 h冷冻干燥后得到NafionTM修饰的二硫化钼纳米片层;
(2)NafionTM修饰的二硫化钼纳米片-聚合物杂化质子交换膜的制备:将2 mg制得的NafionTM修饰的二硫化钼纳米片与4 ml浓度为5 wt%的磺化聚醚醚酮溶液混合,超声20min;将所得混合液经旋蒸除去大部分溶剂后加入4 ml N,N-二甲基甲酰胺,并继续旋蒸20min;静置1.5h后,将上述NafionTM铸模液倒入2cm×5cm大小的模具中,并置于真空烘箱中,从70℃开始经2 h后缓慢升温至120℃以除去溶剂;抽真空并将该真空烘箱温度定在120℃并保持16 h,接着将膜从模具中取出,将该膜先用3 wt%的H2O2溶液于70℃浸泡2h,随后用1 M H2SO4在80℃下经1 h将膜转化为H+型,最后即可得到NafionTM修饰的二硫化钼纳米片—磺化聚醚醚酮基杂化质子交换膜。

Claims (7)

1.一种NafionTM修饰的二维层状材料纳米片-聚合物杂化质子交换膜的制备方法,其特征在于,具体步骤为:
(1)将0.01~50 g二维层状材料粉末以及0.1~50 mL市售NafionTM聚合物溶液分散在200~500 mL水中,超声5~50 h;超声后的水溶液通过3000~50000 rpm离心10~60 min,收集上清液,得到NafionTM修饰的二维层状材料纳米片层水相分散液;将上述纳米片层分散液冷冻干燥,得到NafionTM修饰的二维层状材料纳米片;
(2)NafionTM修饰的二维层状材料纳米片-聚合物杂化质子交换膜的制备:将上述制备的NafionTM修饰的二维层状材料纳米片加入聚合物溶液中,超声0.5~24 h,得到分散液,静置5~240 min;然后倒入模具,缓慢升温至80 ~ 200℃,干燥,除去溶剂后成膜;将膜从模具中取出,先后用双氧水溶液和酸浸泡,得到NafionTM修饰的二维层状材料纳米片-聚合物杂化质子交换膜。
2.根据权利要求1所述的制备方法,其特征在于所述的二维层状材料为石墨、过渡金属二硫属化合物、氮化硼中的一种或几种。
3.根据权利要求1所述的制备方法,其特征在于步骤(2)中所述的聚合物溶液为全氟磺酸树脂、磺化聚醚醚酮、磺化聚苯并咪唑、磺化聚酰亚胺中的一种,或其中几种混合的均相溶液。
4. 根据权利要求1所述的制备方法,其特征在于步骤(2)中所述的NafionTM修饰的二维层状材料纳米片和聚合物溶液的配比为0.1-10 mg: 4-5 ml。
5.根据权利要求1所述的制备方法,其特征在于步骤(2)中所述的缓慢升温的升温速率小于0.5℃/min。
6. 根据权利要求1所述的制备方法,其特征在于步骤(2)中所述双氧水的浓度为1~10wt%,酸为1~4 mol/L的盐酸、硫酸、磷酸中的一种,或其中几种的混合物,浸泡温度为30 ~90℃。
7.一种由权利要求1-6之一方法所制备得到的NafionTM修饰的二维层状材料纳米片-聚合物杂化质子交换膜。
CN201610536414.5A 2016-07-10 2016-07-10 NafionTM修饰的二维层状材料纳米片-聚合物杂化质子交换膜及其制备方法 Expired - Fee Related CN106046404B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610536414.5A CN106046404B (zh) 2016-07-10 2016-07-10 NafionTM修饰的二维层状材料纳米片-聚合物杂化质子交换膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610536414.5A CN106046404B (zh) 2016-07-10 2016-07-10 NafionTM修饰的二维层状材料纳米片-聚合物杂化质子交换膜及其制备方法

Publications (2)

Publication Number Publication Date
CN106046404A true CN106046404A (zh) 2016-10-26
CN106046404B CN106046404B (zh) 2020-03-20

Family

ID=57186183

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610536414.5A Expired - Fee Related CN106046404B (zh) 2016-07-10 2016-07-10 NafionTM修饰的二维层状材料纳米片-聚合物杂化质子交换膜及其制备方法

Country Status (1)

Country Link
CN (1) CN106046404B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106532091A (zh) * 2016-11-15 2017-03-22 复旦大学 NafionTM修饰的碳量子点‑聚合物杂化质子交换膜及其制备方法
CN107513175A (zh) * 2017-07-31 2017-12-26 复旦大学 表面具有变性蛋白质修饰层的复合聚合物质子交换膜及其制备方法
CN108039505A (zh) * 2017-11-14 2018-05-15 复旦大学 二维氮化硼纳米复合物基杂化质子交换膜及其制备方法
CN109873189A (zh) * 2019-03-22 2019-06-11 四川东为氢源科技有限公司 质子交换膜及其制备方法
CN110176617A (zh) * 2019-06-05 2019-08-27 山东大学 一种提高nafion膜阻醇选择性的方法
CN110556558A (zh) * 2019-09-12 2019-12-10 四川东为氢源科技有限公司 多层复合质子交换膜及其制备方法
CN114539579A (zh) * 2022-03-04 2022-05-27 中山大学 一种三聚氰胺-三聚氰酸超分子纳米片表面改性的质子交换膜及其制备方法与应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103474681A (zh) * 2013-09-16 2013-12-25 复旦大学 磺化的氧化石墨烯-二氧化硅复合物/聚合物杂化质子交换膜及其制备方法
CN104103794A (zh) * 2014-08-05 2014-10-15 厦门大学 一种复合质子交换膜的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103474681A (zh) * 2013-09-16 2013-12-25 复旦大学 磺化的氧化石墨烯-二氧化硅复合物/聚合物杂化质子交换膜及其制备方法
CN104103794A (zh) * 2014-08-05 2014-10-15 厦门大学 一种复合质子交换膜的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MERT AKEL ET.AL: "Nano Hexagonal Boron Nitride–Nafion Composite", 《POLYMER COMPOSITES》 *
ZHANLI CHAI ET.AL: "Nafion–Carbon Nanocomposite Membranes Prepared", 《ADVANCED FUNCTIONSL MATERIALS》 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106532091A (zh) * 2016-11-15 2017-03-22 复旦大学 NafionTM修饰的碳量子点‑聚合物杂化质子交换膜及其制备方法
CN106532091B (zh) * 2016-11-15 2019-07-23 复旦大学 NafionTM修饰的碳量子点-聚合物杂化质子交换膜及其制备方法
CN107513175A (zh) * 2017-07-31 2017-12-26 复旦大学 表面具有变性蛋白质修饰层的复合聚合物质子交换膜及其制备方法
CN108039505A (zh) * 2017-11-14 2018-05-15 复旦大学 二维氮化硼纳米复合物基杂化质子交换膜及其制备方法
CN109873189A (zh) * 2019-03-22 2019-06-11 四川东为氢源科技有限公司 质子交换膜及其制备方法
CN109873189B (zh) * 2019-03-22 2020-08-11 四川东为氢源科技有限公司 质子交换膜及其制备方法
CN110176617A (zh) * 2019-06-05 2019-08-27 山东大学 一种提高nafion膜阻醇选择性的方法
CN110176617B (zh) * 2019-06-05 2021-03-30 山东大学 一种提高nafion膜阻醇选择性的方法
CN110556558A (zh) * 2019-09-12 2019-12-10 四川东为氢源科技有限公司 多层复合质子交换膜及其制备方法
CN110556558B (zh) * 2019-09-12 2020-06-05 四川东为氢源科技有限公司 多层复合质子交换膜及其制备方法
CN114539579A (zh) * 2022-03-04 2022-05-27 中山大学 一种三聚氰胺-三聚氰酸超分子纳米片表面改性的质子交换膜及其制备方法与应用
CN114539579B (zh) * 2022-03-04 2023-09-08 中山大学 一种三聚氰胺-三聚氰酸超分子纳米片表面改性的质子交换膜及其制备方法与应用

Also Published As

Publication number Publication date
CN106046404B (zh) 2020-03-20

Similar Documents

Publication Publication Date Title
CN106046404A (zh) NafionTM修饰的二维层状材料纳米片‑聚合物杂化质子交换膜及其制备方法
Wang et al. Novel sulfonated poly (ether ether ketone)/oxidized g-C3N4 composite membrane for vanadium redox flow battery applications
Zeng et al. A promising SPEEK/MCM composite membrane for highly efficient vanadium redox flow battery
Yu et al. CNT@ polydopamine embedded mixed matrix membranes for high-rate and long-life vanadium flow batteries
CN104277232B (zh) β‑环糊精改性介孔硅球‑聚合物杂化质子交换膜及其制备方法
Dong et al. Influence of alkaline 2D carbon nitride nanosheets as fillers for anchoring HPW and improving conductivity of SPEEK nanocomposite membranes
CN104659395B (zh) 一种质子交换膜燃料电池用有机‑无机复合质子交换膜及其制备方法
Zhang et al. Novel covalently cross-linked poly (etheretherketone) ionomer membranes
CN105778133A (zh) 碳纳米管/氧化石墨烯纳米带-聚合物杂化质子交换膜及其制备方法
Liu et al. High performance acid-base composite membranes from sulfonated polysulfone containing graphitic carbon nitride nanosheets for vanadium redox flow battery
CN106543461A (zh) Mof‑so3h@go改性的聚合物杂化质子交换膜及其制备方法
CN106532091B (zh) NafionTM修饰的碳量子点-聚合物杂化质子交换膜及其制备方法
CN103408796A (zh) 一种用于甲醇燃料电池聚合物复合膜的制备方法
WO2023197787A1 (zh) 一种导电聚苯胺/氧化石墨烯修饰的Nafion复合质子交换膜及其应用
CN103012824A (zh) 氧化石墨烯-聚合物杂化质子交换膜及其制备方法
ul Imaan et al. In-situ preparation of PSSA functionalized ZWP/sulfonated PVDF composite electrolyte as proton exchange membrane for DMFC applications
CN107383404A (zh) 一种含氟支化磺化聚酰亚胺质子导电膜的制备方法
Xue et al. Enhancement of proton/methanol selectivity via the in-situ cross-linking of sulfonated poly (p-phenylene-co-aryl ether ketone) and graphene oxide (GO) nanosheets
CN110350223A (zh) 纳米插层内选择SPEEK/GO/TiO2复合离子选择膜的制备方法
CN102838777B (zh) 一种speek/pani/pma复合质子交换膜的回收方法
CN101931070A (zh) 一种适用于钒电池的有机无机复合质子交换膜的制备方法
CN106543460B (zh) CNT@Fe3O4@C改性的聚合物杂化质子交换膜及其制备方法
CN103474681A (zh) 磺化的氧化石墨烯-二氧化硅复合物/聚合物杂化质子交换膜及其制备方法
CN100499238C (zh) 一种有机-无机复合型质子交换膜及其制备方法
CN103996865A (zh) 高阻醇聚合物电解质膜及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200320