CN106032323B - 一种以TiAl粉体为原料的Ti2AlC陶瓷粉体制备方法 - Google Patents

一种以TiAl粉体为原料的Ti2AlC陶瓷粉体制备方法 Download PDF

Info

Publication number
CN106032323B
CN106032323B CN201610218497.3A CN201610218497A CN106032323B CN 106032323 B CN106032323 B CN 106032323B CN 201610218497 A CN201610218497 A CN 201610218497A CN 106032323 B CN106032323 B CN 106032323B
Authority
CN
China
Prior art keywords
powder
tial
raw material
sintering
alc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610218497.3A
Other languages
English (en)
Other versions
CN106032323A (zh
Inventor
柏春光
谢曦
郑卓
崔玉友
杨锐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Metal Research of CAS
Original Assignee
Institute of Metal Research of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Metal Research of CAS filed Critical Institute of Metal Research of CAS
Priority to CN201610218497.3A priority Critical patent/CN106032323B/zh
Publication of CN106032323A publication Critical patent/CN106032323A/zh
Application granted granted Critical
Publication of CN106032323B publication Critical patent/CN106032323B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5611Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on titanium carbides
    • C04B35/5618Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on titanium carbides based on titanium aluminium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • C04B35/6455Hot isostatic pressing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/53After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone involving the removal of at least part of the materials of the treated article, e.g. etching, drying of hardened concrete
    • C04B41/5315Cleaning compositions, e.g. for removing hardened cement from ceramic tiles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/91After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics involving the removal of part of the materials of the treated articles, e.g. etching
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及陶瓷材料领域,具体为一种以TiAl粉体为原料的Ti2AlC陶瓷粉体制备方法。采用TiAl粉、TiC粉为反应原材料,原料的摩尔比为n(TiAl):n(TiC)=1:(0.8~1.0)。首先将TiAl和TiC粉末湿法球磨为浆料。将浆料进行烘干和真空干燥,干燥后的粉体再进行干磨。将干磨后的粉体成型并装入包套进行热等静压烧结或装入石墨模具进行真空热压烧结。烧结后的材料先机加工去除表面可能的污染物,然后经破碎、筛分、酸洗、干燥等工艺得到粉体。采用TiAl粉为原料减少了中间反应步骤,获得材料品质好,纯度高达99wt%,可作为表面工程、增强相、新型二元层状材料前驱体等材料使用。

Description

一种以TiAl粉体为原料的Ti2AlC陶瓷粉体制备方法
技术领域
本发明涉及陶瓷材料领域,具体为一种以TiAl粉体为原料的Ti2AlC陶瓷粉体制备方法。
背景技术
作为一种三元层状可加工陶瓷,Ti2AlC陶瓷具有MAX相族材料的结构和特点。MAX相的结构一般可描述为:在结晶密堆的M原子钟插入纯A原子层,X 原子填入M组成的八面体间隙内。对Ti2AlC陶瓷而言M为Ti原子,A为Al原子,X为C原子。这种结构使MAX材料同时具有共价键、金属键、离子键,兼具陶瓷和金属的性质,如:导电、化学稳定性好、熔点高特点。具体到Ti2AlC陶瓷而言,具有高的力学强度,良好的抗氧化性,良好的抗化学和热腐蚀性,良好的抗热冲击性,高温下抗损伤和一定的自修护能力,同时具有传统陶瓷所不具备的可加工性。上述特点使得Ti2AlC陶瓷在最近十几年内成为研究的热点。这些热点不仅包括了Ti2AlC块体材料作为结构材料的应用,同时在表面工程领域和作为新型二元层状材料MXene的原料也备受关注,但是在新领域的应用需要纯度极高不含其它反应残留物的粉体材料。然而追求快速,大量合成该材料的粉体的方法如自蔓延反应、放电等离子烧结、微波烧结等都含有一定的反应物残留或其他 MAX相产物。以前的文献和专利中用于合成Ti2AlC材料的原料一般大于等于3 种,导致中间反应过程复杂,烧结时间长,烧结过程易产生成分挥发等。因此,获得纯度极高的MAX相粉体同时大量经济的合成一直没法同时得到满足。
发明内容
本发明的目的在于提供一种以TiAl粉体为原料的Ti2AlC陶瓷粉体制备方法,为了解决现有制备Ti2AlC粉体材料方法上存在反应原料多,反应中间复杂,反应无法精确控制,工艺复杂时间长,以及制备出的Ti2AlC粉体纯度不够,难以满足新的应用领域的需要等问题,Ti2AlC粉体材料的纯度高达99wt%,且易于工业化生产。
本发明的技术方案如下:
一种以TiAl粉体为原料的Ti2AlC陶瓷粉体制备方法,采用TiAl粉、TiC粉为反应原材料,原料的摩尔比为n(TiAl):n(TiC)=1:(0.8~1.0)。
所述的以TiAl粉体为原料的Ti2AlC陶瓷粉体制备方法,具体步骤如下:
(1)配料:所采用TiAl粉、TiC粉体原料经过湿磨、浆料烘干和干磨;
(2)成型:将配料好的粉体原料用压机和模具干压成型,并装入纯钛包套或直接装入石墨模具中施加5MPa以下压力;
(3)烧结:将装入纯钛包套的粉体进行热等静压工艺烧结,或者装入石墨模具的粉体进行热压烧结;
(4)机加工:将烧结获得的Ti2AlC块体机加工去除含杂质的表面,然后用破碎机进行破碎;
(5)磨粉:将破碎后的块体进行细磨获得微米尺度的粉体;
(6)粉体后处理:将细磨粉进行筛分、酸洗、干燥最终得到所需的粉体。
所述的以TiAl粉体为原料的Ti2AlC陶瓷粉体制备方法,在X-射线衍射表征下纯度为99wt%以上的Ti2AlC粉体,在X-射线衍射检测下TiC、钛铝化合物、其它MAX相陶瓷产物为1wt%以下。
所述的以TiAl粉体为原料的Ti2AlC陶瓷粉体制备方法,烧结过程热等静压烧结在真空或氩气气氛下,烧结压力在50~200MPa,烧结温度在500~1500℃;热压烧结气氛在真空或氩气气氛下,烧结压力在10~50MPa,烧结温度在550~ 1550℃。
所述的以TiAl粉体为原料的Ti2AlC陶瓷粉体制备方法,磨粉过程用圆盘粉碎机磨粉、雷蒙磨磨粉、气流磨磨粉或球磨磨粉。
所述的以TiAl粉体为原料的Ti2AlC陶瓷粉体制备方法,粉体后处理过程中,粉体酸洗采用质量分数1%~15%的盐酸或硫酸进行清洗,然后去离子水洗净。
本发明具有以下优点及有益效果:
1.本发明直接采用TiAl粉体为反应的原料粉体,避免在热压烧结过程中低熔点组元沸腾挥发影响成分稳定。同时,避免中间反应放热导致的烧结过程中模具或包套易被破坏和烧结过程工艺难度高的问题。
2.本发明合成制备的Ti2AlC粉体纯度达99wt%,可满足用于作为表面工程的材料、增强相材料、新型二元层状材料前驱体等。
3.本发明采用的工艺步骤都是成熟的工艺和设备体系,但原料减少为两种,且烧结难度降低,易于掌握,便于推广和大规模生产。
4.本发明通过选择不同的粉体加工设备和参数最终获得的粉体产品粒度可调,粉体能满足多种使用要求。
附图说明
图1为实施例1后获得的粉体X-射线衍射图谱,粉体中Ti2AlC含量达到 99wt%。图中,横坐标2Theta为衍射角(deg.),纵坐标Intensity为强度。
图2为实施例1后获得的Ti2AlC粉体粒度分布,粉体粒度中径在32微米左右。图中,横坐标Particle Size为粒度(微米),纵坐标Volume为体积百分含量 (%)。
图3为实施例2后获得的热喷涂Ti2AlC粉体,粉体中径在70微米左右。图中,横坐标Particle Size为粒度(微米),纵坐标Volume为体积百分含量(%)。
图4为实施例2后获得的Ti2AlC冷喷涂粉体,粉体粒度中径在25微米左右。图中,横坐标Particle Size为粒度(微米),纵坐标Volume为体积百分含量(%)。
图5为实施例4后获得的Ti2AlC粉体粒度,粉体中径在0.3微米左右。图中,横坐标Particle Size为粒度(微米),纵坐标Volume为体积百分含量(%)。
图6和图7为实施例2后获得的中径在25微米的粉体的电子扫描图像照片。
具体实施方式
在具体实施过程中,本发明提供的Ti2AlC粉体采用TiAl粉、TiC粉体为原料,其中TiAl粉采用化学成分为Ti50Al50的粉体,TiAl粉纯度99wt%,TiC粉体纯度99.8wt%,原料的摩尔比为n(TiAl):n(TiC)=1:(0.9~1.0)。首先将TiAl 粉和TiC粉搅拌混合均匀,将搅拌混合均匀的粉末加入酒精(无水乙醇)进行湿法球磨20~40分钟,形成混合更加均匀的原料浆料。将浆料进行烘干、真空干燥或鼓风干燥,将干燥后获得的粉体用球磨设备进行干磨5~15分钟。将干磨后的粉体成型,并装入钛合金包套中进行热等静压烧结或装入石墨模具中进行真空热压烧结。烧结后的材料先机加工去除表面可能的污染物,然后进行破碎、筛分、酸洗、干燥等工艺得到粉体。
下面结合附图和实施例对本发明作进一步详细说明,但不限定本发明。
实施例1
原料粉末按摩尔比n(TiAl):n(TiC)=1:0.9配料,原料共计4公斤,混合均匀,加入无水乙醇3L,装入10L的振动球磨装置,振动频率50Hz,振幅5mm,球磨时间30分钟。将球磨后的浆料倒出,放入鼓风干燥箱内低温干燥,待酒精含量降至85wt%以下时,加热烘干。烘干后的粉体再放入振动球磨机用相同参数干磨10分钟,得到混合均匀的粉体原料。将原料装入直径为150mm的石墨模具放入热压烧结炉,先施加5MPa压力,当真空度达到10-3Pa时开始升温再次加压,升温至1400℃,压力30MPa,保温保压2小时然后随炉冷却。将获得的块体用车床车去外表3mm,用液压机压碎,将压碎后的块体用颚式破碎机破碎为不大于 10mm的小块。将进行10次破碎工艺获得40公斤Ti2AlC小块用小型雷蒙磨机进行细磨获得粒度中径在32微米的粉体,粒度分布如图2所示。然后对粉体用质量分数为10%的盐酸进行酸洗,再用去离子水洗净,然后进行真空干燥。最终获得纯度为99wt%,成分如图1所示,中径在32微米的Ti2AlC粉体。
实施例2
原料粉末按摩尔比n(TiAl):n(TiC)=1:0.95配料,原料共计4公斤,混合均匀,加入无水乙醇3L,装入10L的搅拌球磨装置,搅拌转速250r/min,球磨时间30分钟。将球磨后的浆料倒出,放入鼓风干燥箱内低温干燥,待酒精含量降至 90wt%以下时,加热烘干。烘干后的粉体再放入搅拌球磨机用相同参数干磨10分钟,得到混合均匀的粉体原料。将配料好的粉体原料用液压机和不锈钢模具干压成型。将10次配料和成型和块体装入直径为100mm、长200mm的纯钛包套中,将这批包套放入大型热等静压烧结炉,先抽真空后通入氩气保护,升温至1350℃压力100MPa,保温保压4小时然后随炉冷却。将获得的块体用车床车去外表3mm,用液压机压碎,将压碎后的块体用颚式破碎机破碎为不大于10mm的小块。破碎获得的小块用小型圆盘粉碎磨机进行细磨获得粒度中径在50微米的粉体,然后对粉体用质量分数为8%的盐酸进行酸洗,再用去离子水洗净,然后进行真空干燥和筛分。最终获得纯度为99wt%的Ti2AlC粉体,筛分后粒度分布如图3所示中径为70微米的粉体可用于超音速火焰喷涂,粒度分布如图4中径为25微米的粉体,电子扫描照片见图6和图7,该粉体可用作冷喷涂粉体。
实施例3
原料粉末按摩尔比n(TiAl):n(TiC)=1:0.925配料,原料共计4公斤,混合均匀,加入无水乙醇3L,装入10L的振动球磨装置,振动频率50Hz,振幅5mm,球磨时间30分钟。将球磨后的浆料倒出,放入鼓风干燥箱内低温干燥,待酒精含量降至90wt%以下时,加热烘干。烘干后的粉体再放入振动球磨机用相同参数干磨10分钟,得到混合均匀的粉体原料。将原料装入直径为120mm的石墨模具放入热压烧结炉,先施加5MPa压力,当真空度达到10-3Pa时通入氩气并开始升温再次加压,升温至1400℃,压力15MPa并保温保压2小时然后随炉冷却。升温至1400℃保温2小时然后随炉冷却。将获得的块体用车床车去外表3mm,用液压机压碎,将压碎后的块体用颚式破碎机破碎为不大于10mm的小块。破碎获得的小块用小型圆盘粉碎磨机进行细磨获得粒度中径在50微米的粉体,然后用气流磨进行进一步粉碎,获得粒度中径在2~3微米的细小粉体。对粉体用质量分数为 10%的盐酸进行酸洗,再用去离子水洗净,然后用滤膜进行真空抽滤。抽滤后再进行烘干,最终获得纯度为99wt%的Ti2AlC中径粒度在2~3微米的粉体。
实施例4
原料粉末按摩尔比n(TiAl):n(TiC)=1:0.96配料,原料共计4公斤,混合均匀,加入无水乙醇3L,装入10L的搅拌球磨装置,搅拌转速250r/min,球磨时间30分钟。将球磨后的浆料倒出,放入鼓风干燥箱内低温干燥,待酒精含量降至 90wt%以下时,加热烘干。烘干后的粉体再放入搅拌球磨机用相同参数干磨10分钟,得到混合均匀的粉体原料。将配料好的粉体原料用液压机和不锈钢模具干压成型。成型得到原料装入直径为38mm长80mm的纯钛包套中,将这批包套放入小型热等静压烧结炉,先抽真空后通入氩气保护,升温至1350℃压力150MPa,保温保压4小时然后随炉冷却。将获得的块体用车床车去外表3mm,用高速钻床破碎为小块和粉末。破碎获得的小块及粉末用小型圆盘粉碎机进行细磨获得粒度中径在50微米的粉体,然后将粉体装入大型行星球磨装置细磨。然后对粉体用质量分数为12%的盐酸进行酸洗,再用去离子水洗净,然后用滤膜进行真空抽滤,抽滤后再进行烘干。最终获得纯度为99wt%,粒度分布如图5所示中径为0.3微米的Ti2AlC粉体。
实施例结果表明,本发明制备的粉体材料纯度极高,组织致密,反应原材料减少为两种,采用TiAl粉为原料减少了中间反应步骤,获得材料品质好,纯度高达99wt%以上。

Claims (4)

1.一种以TiAl粉体为原料的Ti2AlC陶瓷粉体制备方法,其特征在于,采用TiAl粉、TiC粉为反应原材料,原料的摩尔比为n(TiAl):n(TiC)=1:(0.8~1.0),具体步骤如下:
(1)配料:首先将TiAl粉和TiC粉搅拌混合均匀,将搅拌混合均匀的粉末加入酒精进行湿法球磨20~40分钟,形成混合更加均匀的原料浆料;将浆料进行烘干、真空干燥或鼓风干燥,将干燥后获得的粉体用球磨设备进行干磨5~15分钟;
(2)成型:将配料好的粉体原料用压机和模具干压成型,并装入纯钛包套或直接装入石墨模具中施加5MPa以下压力;
(3)烧结:将装入纯钛包套的粉体进行热等静压工艺烧结,或者装入石墨模具的粉体进行热压烧结;
(4)机加工:将烧结获得的Ti2AlC块体机加工去除含杂质的表面,然后用破碎机进行破碎;
(5)磨粉:将破碎后的块体进行细磨获得微米尺度的粉体;
(6)粉体后处理:将细磨粉进行筛分、酸洗、干燥最终得到所需的粉体;
在X-射线衍射表征下纯度为99wt%以上的Ti2AlC粉体,在X-射线衍射检测下TiC、钛铝化合物、其它MAX相陶瓷产物为1wt%以下。
2.根据权利要求1所述的以TiAl粉体为原料的Ti2AlC陶瓷粉体制备方法,其特征在于,烧结过程热等静压烧结在真空或氩气气氛下,烧结压力在50~200MPa,烧结温度在500~1500℃;热压烧结气氛在真空或氩气气氛下,烧结压力在10~50MPa,烧结温度在550~1550℃。
3.根据权利要求1所述的以TiAl粉体为原料的Ti2AlC陶瓷粉体制备方法,其特征在于,磨粉过程用圆盘粉碎机磨粉、雷蒙磨磨粉、气流磨磨粉或球磨磨粉。
4.根据权利要求1所述的以TiAl粉体为原料的Ti2AlC陶瓷粉体制备方法,其特征在于,粉体后处理过程中,粉体酸洗采用质量分数1%~15%的盐酸或硫酸进行清洗,然后去离子水洗净。
CN201610218497.3A 2016-04-06 2016-04-06 一种以TiAl粉体为原料的Ti2AlC陶瓷粉体制备方法 Active CN106032323B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610218497.3A CN106032323B (zh) 2016-04-06 2016-04-06 一种以TiAl粉体为原料的Ti2AlC陶瓷粉体制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610218497.3A CN106032323B (zh) 2016-04-06 2016-04-06 一种以TiAl粉体为原料的Ti2AlC陶瓷粉体制备方法

Publications (2)

Publication Number Publication Date
CN106032323A CN106032323A (zh) 2016-10-19
CN106032323B true CN106032323B (zh) 2019-02-19

Family

ID=57149267

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610218497.3A Active CN106032323B (zh) 2016-04-06 2016-04-06 一种以TiAl粉体为原料的Ti2AlC陶瓷粉体制备方法

Country Status (1)

Country Link
CN (1) CN106032323B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106699180A (zh) * 2016-12-15 2017-05-24 湖北工业大学 热等静压法制备Ti2SbP块体材料的方法
CN106957175A (zh) * 2017-03-17 2017-07-18 东南大学 一种常压制备高纯钛二铝碳粉体材料的方法
CN109180187B (zh) * 2018-08-31 2021-05-18 中国科学院金属研究所 高度取向纳米max相陶瓷和max相原位自生氧化物纳米复相陶瓷的制备方法
CN111204721B (zh) * 2020-02-09 2023-04-25 四川大学 MnAlCxNn-1-x相粉末的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1958514A (zh) * 2006-10-30 2007-05-09 陕西科技大学 一种Ti2AlC陶瓷材料的制备方法
CN103601498A (zh) * 2013-10-21 2014-02-26 陕西科技大学 一种Ti3AlC2 陶瓷粉料的制备方法
CN105218100A (zh) * 2015-10-12 2016-01-06 陕西科技大学 一种低温制备Ti2AlC陶瓷材料的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1958514A (zh) * 2006-10-30 2007-05-09 陕西科技大学 一种Ti2AlC陶瓷材料的制备方法
CN103601498A (zh) * 2013-10-21 2014-02-26 陕西科技大学 一种Ti3AlC2 陶瓷粉料的制备方法
CN105218100A (zh) * 2015-10-12 2016-01-06 陕西科技大学 一种低温制备Ti2AlC陶瓷材料的方法

Also Published As

Publication number Publication date
CN106032323A (zh) 2016-10-19

Similar Documents

Publication Publication Date Title
CN106032323B (zh) 一种以TiAl粉体为原料的Ti2AlC陶瓷粉体制备方法
CN101862226B (zh) 氧化锆陶瓷义齿坯体的制作方法
CN107935596A (zh) 一种利用熔盐法低温烧结制备MAX相陶瓷Ti3AlC2粉体的方法
CN101391871A (zh) 一种制备高纯石英砂的方法
CN105272269B (zh) 一种氮化硅/六方氮化硼纳米复相陶瓷的制备方法
JPH0231031B2 (zh)
CN101434488B (zh) 一种以磷酸盐为烧结助剂的氮化硅基复合陶瓷及制备方法
CN110407213B (zh) 一种(Ta, Nb, Ti, V)C高熵碳化物纳米粉体及其制备方法
CN106882965A (zh) 一种常压制备高纯钛二铝碳粉体材料的方法
JP2011051856A (ja) 高純度窒化ケイ素微粉末の製造方法
CN104744051B (zh) 一种氮化硅坩埚的制作方法
CN105924176A (zh) 碳化硼基复相陶瓷及其放电等离子烧结制备方法
CN113480318B (zh) 一种高热导氮化硅陶瓷及其制备方法
CN106906388A (zh) 一种高硅铝合金的制备方法
CN106747468A (zh) 用于气雾化钛及钛合金粉末的导液管材料及其制备方法
CN104446496B (zh) 一种AlON粉体的制备方法及由其制备的透明陶瓷
CN108620586A (zh) 3d打印高致密度钛-硼化钛的复合材料及其制备方法
KR102001397B1 (ko) 절삭공정 부산물을 이용한 알루미늄-실리콘 카바이드의 제조방법
CN114920560A (zh) 一种LaB6粉体及其烧结体的制备方法
CN103663482B (zh) LaB6的制备方法
RU2458168C1 (ru) Способ получения порошковой композиции на основе карбосилицида титана для ионно-плазменных покрытий
CN107805071A (zh) 一种低玻璃润湿性钛三铝碳二/莫来石复合陶瓷的制备方法
CN108017393A (zh) 一种常压烧结六方氮化硼陶瓷制备方法
RU2750784C1 (ru) Способ получения порошкового композиционного материала
LU501912B1 (en) Low-cost titanium alloy indirect additive manufacturing method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant