CN106957175A - 一种常压制备高纯钛二铝碳粉体材料的方法 - Google Patents

一种常压制备高纯钛二铝碳粉体材料的方法 Download PDF

Info

Publication number
CN106957175A
CN106957175A CN201710159575.1A CN201710159575A CN106957175A CN 106957175 A CN106957175 A CN 106957175A CN 201710159575 A CN201710159575 A CN 201710159575A CN 106957175 A CN106957175 A CN 106957175A
Authority
CN
China
Prior art keywords
powder
titanium
aluminium
tic
toner body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201710159575.1A
Other languages
English (en)
Inventor
孙正明
丁健翔
郑伟
鲁菁琳
田无边
张培根
张亚梅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201710159575.1A priority Critical patent/CN106957175A/zh
Publication of CN106957175A publication Critical patent/CN106957175A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5611Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on titanium carbides
    • C04B35/5618Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on titanium carbides based on titanium aluminium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/65Reaction sintering of free metal- or free silicon-containing compositions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Powder Metallurgy (AREA)
  • Developing Agents For Electrophotography (AREA)

Abstract

本发明公开了一种常压制备高纯钛二铝碳粉体材料的方法,该方法包括以下步骤:1)按摩尔比TiC:Ti:Al=(0.6~1.2):(0.9~1.5):(1~1.5)称取原料TiC粉、Ti粉、Al粉;2)将原料混合得到混合粉料;3)将混合粉料置于烧结炉中,在保护性气氛或真空保护下加热到1200~1600℃,之后保持30~180min,冷却后得到钛二铝碳粉体材料。该方法原料易得,配比简单,所用设备和制备工艺简单,合成钛二铝碳粉体时间短,纯度高,无钛三铝碳和TiC杂相存在,适合大规模生产应用。

Description

一种常压制备高纯钛二铝碳粉体材料的方法
技术领域
本发明涉及一种常压制备高纯钛二铝碳粉体材料的方法,属于金属性陶瓷粉体材料制备领域。
背景技术
近年来,一种新型三元层状化合物,MAX相(M代表过渡金属元素;A代表主族元素;X代表碳或氮),受到了全世界科学工作者的广泛关注。其既具有类似金属优良的导电、导热及加工性能,又具有类似陶瓷的高熔点、高热稳定性、良好的耐腐蚀性能和抗氧化性能。钛二铝碳(Ti2AlC)是MAX家族211相中的典型成员,发现于上个世纪六十年代(W.Jeitschko等.J.Less-Common Met.,1963,7(2),133-138)。它具有较低的密度(4.11g/cm3)、较低的显微硬度(4.5GPa)、较高的电导率(0.36μΩ·m)、较高的热导率(8.2×10-6·K-1)、较高的杨氏模量(277GPa)和剪切模量(144GPa)(Z.M.Sun等.Int.Mater.Rev.,2011,56(3),143-166),这些优良性能使MAX成为一种非常有潜力的材料,未来能够广泛应用于能源、电子和机械等领域,因此制备高纯度的钛二铝碳粉末具有十分重要的意义。
近几十年来,大多数的研究工作主要集中在钛二铝碳粉体和块体材料的制备。W.Jeitschko等人将TiC、Ti、Al和C粉封装在真空石英管中,电弧熔融后在1200℃退火170~500h制备出钛二铝碳粉体(W.Jeitschko等.Monatash Chem.,1963,94(2),672-677)。H.Nowotny等人将TiC、Ti、Al和C粉放置于氧化铝坩埚内,在氢气氛保护下,1530℃温度烧结20h得到钛二铝碳粉体(H.Nowotny等.J.Solid State Chem.,1980,32,213-219)。以上两种方法工艺复杂,耗时过长,仅作为实验室研究小规模合成。文献报道了研究人员利用热压(HP)或者热等静压(HIP)烧结技术制备钛二铝碳。B.C.Mei等人以TiC、Ti、Al为原料,利用HP烧结在1400℃得到了钛二铝碳块体,但是产物中含有Ti3AlC2杂相(B.C.Mei等.Mater.Sci.Tech-Lond.,2005,13(4),361-364)。J.F.Zhu等人将Ti、Al、C原料高能球磨后,利用HP烧结合成了钛二铝碳块体(J.F.Zhu等.Mat.Sci.Eng.A,2008,490(1-2),62-65)。M.W.Barsoum等人以Ti、C和Al4C3粉为原料,在40MPa、1600℃下热压4h或者300℃下热压30h,合成了纯度达96wt.%以上的钛二铝碳块体(M.W.Barsoum等.Pro.Solid.Sta.Chem.,2000,28,201-206)。Y.C.Zhou等人以Ti、Al和C粉为原料,在30MPa、1400℃下热压1h,合成了钛二铝碳块体(Y.C.Zhou等.Z.Metallkd.,2002,93(1),66-67)。J.F.Zhu等人先用机械合金化将Ti、Al、C粉球磨成TiAl、TiC及含少量Ti,Al的混合粉体,再在真空或气氛中热压制备出钛二铝碳块体(J.F.Zhu等.专利,2006,CN1958514A)。C.G.Bo等人以TiAl、TiC为原料,在真空热压或等静压条件下制备出纯度高达99wt.%的钛二铝碳块体(C.G.Bo等.专利,2016,CN106032323A)。但是以HP或者HIP制备的钛二铝碳粉体需要研磨成细粉,工艺复杂,且热压设备成本过高,限制了其大规模生产和应用。此外,C.G.Bo等人把TiH2、Al和TiC等原料与有机溶剂在超声波机分散后,采用喷雾干燥法造粒制备出球形原料,最后在真空中烧结得到钛二铝碳块体,经过研磨和筛分得到多孔钛二铝碳球形粉体,但是物相结果中发现存在大量的Ti3AlC2和Al2O3杂相,且制备工艺过于繁杂,成本过高,难以应用(C.G.Bo等.专利,2016,CN201610218497.3)。还有研究人员利用等离子放电烧结技术(SPS)来制备钛二铝碳:B.C.Mei等人以Ti、Al、C粉为原料,在30MPa、1100℃条件下通过SPS保温1h得到较纯的钛二铝碳块体,相对致密度达99.8%(B.C.Mei等.Mater.Lett.,2005,59(1),131-134);J.F.Zhang等人以Ti粉、Al粉和碳粉为原料,利用SPS烧结10~15min得到主相为钛二铝碳块体,研磨后得到钛二铝碳粉体,但是在最后的物相结果中发现有杂相的存在(J.F.Zhang等.专利,2016,CN201610060019.4)。R.Shrinivas等人利用化学气相沉积(CVD)技术在TiAl粉上原位生长出碳纳米管(CNTS)的混合物,最后利用SPS技术制备出单相的钛二铝碳块体(R.Shrinivas等.J.Alloy.Compd.,2010,490(1-2),155-159);F.Yang等人球磨Ti和Al粉得到TiAl,再将TiAl粉与石墨粉混合后1100℃SPS烧结得到钛二铝碳块体(F.Yang等.专利,2011,CN102139370A)。SPS制备钛二铝碳块体虽热具有速度快、样品致密度高的优点,但是最后块体需要大量时间研磨成粉末,且成本高、工艺复杂和难以产业化。近年来,燃烧法即自蔓延(SHS)技术被广泛应用于制备钛二铝碳:J.M.Guo等人以Ti、Al、C粉为原料,燃烧制备了钛二铝碳粉体,但是产物中含有少量的Ti3AlC2和TiC杂相(J.M.Guo等.Acta.Metall.Sin.,2003,39(3),315-319);C.L.Yeh等人在Ti、Al、C原料中添加TiC和Al4C3,再利用SHS技术成功将产物中钛二铝碳纯度从85wt.%提高到90wt.%(C.L.Yeh等.J.Alloy.Compd.,2009,470(1-2),424-428);B.C.Mei等人以Ti、TiC、Al和C粉作为原料,在微波烧结炉中点燃,制备出晶粒细小的钛二铝碳粉体(B.C.Mei等.专利,2007,CN101037201A);J.M.Guo等人以Ti,Al,C粉为原料,Ti和C粉作为引燃剂,用电阻丝点燃反应物,得到钛二铝碳粉体(J.M.Guo等.专利,2009,CN101531531A)。虽然燃烧合成法可以直接制备出钛二铝碳粉体,但是产物纯度较低,往往含有大量的Ti3AlC2和TiC等杂相,且工艺复杂,限制了其在实际生产中的推广应用。Z.W.Liu等人将混合均匀的Ti、Al、C粉冷压成型后放入炉中加热到700~800℃左右,使用功率为1~1.5kW超声辅助热爆烧结获得钛二铝碳块体,但是产物物相结果显示有很多TiC和Ti3AlC2杂相残留(Z.W.Liu等.专利,2015,CN201510743014.7);Y.Liu等人以Ti、Al和TiC粉为原料,也同样通过热爆反应制备出钛二铝碳块体,研磨后经过酸洗获得较纯的钛二铝碳粉体,但是该方法设备昂贵、过程复杂,产物经过酸洗还是存在大量TiC杂相(Y.Liu等.专利,2015,CN201510658890.X)。
因此,从工业化生产的角度出发,不能使用HP、HIP、SPS、SHS以及热爆等高成本工艺复杂的烧结设备,应该采用常压烧结技术,在较短的时间内生产出纯度较高的钛二铝碳粉末,降低生产成本,提高效率。
发明内容
技术问题:本发明的目是提供一种常压制备高纯钛二铝碳粉体材料的方法,该方法成本低廉、工艺简单和易产业化,制备的钛二铝碳粉体纯度高。该方法改变传统的较为复杂制备工艺,直接使用TiC、Ti、Al粉混合的方式,以常压烧结技术替代昂贵的真空、热压、热等静压、自蔓延、微波和SPS等烧结技术,在1200~1600℃范围内合成高纯度的高纯钛二铝碳粉体,解决现有制备技术中存在的过程复杂、制备时间长、设备昂贵以及产物纯度低等问题。
技术方案:本发明提供了一种常压制备高纯钛二铝碳粉体材料的方法,该方法包括以下步骤:
1)按摩尔比TiC:Ti:Al=(0.6~1.2):(0.9~1.5):(1~1.5)称取原料TiC粉、Ti粉、Al粉;
2)将步骤1)中称取的原料混合均匀,得到混合粉料;
3)将步骤2)得到的混合粉料置于烧结炉中,在保护性气氛或真空保护下加热到1200~1600℃,之后保持30~180min,冷却后得到高纯度的钛二铝碳粉体材料。
其中:
步骤2)中所述原料混合均匀是指将称取的原料在混粉机中混合5~25h,得到混合粉料。
步骤3)中所述的保护性气氛为Ar气。
步骤3)中所述的烧结炉为普通烧结炉,所述加热到1200~1600℃的升温速率为4~12℃/min。
有益效果:本发明与现有技术相比,具有以下优点:
1)直接使用TiC、Ti、Al粉作为初始原料,所有原料简单易得;
2)工艺简单,直接将初始原料混合即可,不需要经过高能机械球磨和冷压等成型过程,生产效率高,节约成本;
3)在常压下普通烧结炉中,保护性气氛或真空保护下,1200~1600℃范围短时间内直接合成高纯钛二铝碳,设备简单、成本低廉,适合大规模生产;
4)产物纯度高,在XRD图谱中无明显TiC和Ti3AlC2等杂质相存在;
5)该技术制备出的高纯钛二铝碳粉末具有典型的层片状结构。
附图说明
图1是本发明常压烧结制备出的钛二铝碳粉体的X-ray衍射(XRD)图谱;
图2是本发明常压烧结制备出的钛二铝碳粉体的扫描电镜(SEM)图片。
具体实施方式
下面结合实例对本发明进行详细的描述:
实施例1:
按照TiC:Ti:Al=0.6:0.9:1的摩尔比配料,称取TiC粉10.26克、Ti粉12.31克、Al粉7.71克,放入塑料瓶中,以ZrO2球为介质,在混粉机上混合5h,将混合后的粉末放入普通管式炉中,Ar气氛或真空保护,以4℃/min的升温速率升温至1200℃,保温30min,冷却后即可制的高纯度钛二铝碳粉体。
实施例2:
按照TiC:Ti:Al=0.6:0.9:1.5的摩尔比配料,称取TiC粉10.26克、Ti粉12.31克、Al粉11.56克,放入塑料瓶中,以ZrO2球为介质,在混粉机上混合6h,将混合后的粉末放入普通管式炉中,Ar气氛或真空保护,以5℃/min的升温速率升温至1250℃,保温40min,冷却后即可制的高纯度钛二铝碳粉体。
实施例3:
按照TiC:Ti:Al=0.6:1.5:1的摩尔比配料,称取TiC粉10.26克、Ti粉20.51克、Al粉7.71克,放入塑料瓶中,以ZrO2球为介质,在混粉机上混合7h,将混合后的粉末放入普通管式炉中,Ar气氛或真空保护,以6℃/min的升温速率升温至1300℃,保温50min,冷却后即可制的高纯度钛二铝碳粉体。
实施例4:
按照TiC:Ti:Al=0.6:1.5:1.5的摩尔比配料,称取TiC粉10.26克、Ti粉20.51克、Al粉11.56克,放入塑料瓶中,以ZrO2球为介质,在混粉机上混合8h,将混合后的粉末放入普通管式炉中,Ar气氛或真空保护,以7℃/min的升温速率升温至1320℃,保温55min,冷却后即可制的高纯度钛二铝碳粉体。
实施例5:
按照TiC:Ti:Al=0.8:1.1:1.1的摩尔比配料,称取TiC粉13.68克、Ti粉15.04克、Al粉8.48克,放入塑料瓶中,以ZrO2球为介质,在混粉机上混合12h,将混合后的粉末放入普通管式炉中,Ar气氛或真空保护,以8℃/min的升温速率升温至1350℃,保温60min,冷却后即可制的高纯度钛二铝碳粉体。
实施例6:
按照TiC:Ti:Al=1.0:1.3:1.3的摩尔比配料,称取TiC粉17.11克、Ti粉17.78克、Al粉10.02克,放入塑料瓶中,以ZrO2球为介质,在混粉机上混合18h,将混合后的粉末放入普通管式炉中,Ar气氛或真空保护,以10℃/min的升温速率升温至1450℃,保温120min,冷却后即可制的高纯度钛二铝碳粉体。
实施例7:
按照TiC:Ti:Al=1.2:1.5:1.5的摩尔比配料,称取TiC粉20.53克、Ti粉20.51克、Al粉11.56克,放入塑料瓶中,以ZrO2球为介质,在混粉机上混合25h,将混合后的粉末放入普通管式炉中,Ar气氛或真空保护,以12℃/min的升温速率升温至1600℃,保温180min,冷却后即可制的高纯度钛二铝碳粉体。
实施例8:
按照TiC:Ti:Al=1.2:1.5:1的摩尔比配料,称取TiC粉20.53克、Ti粉20.51克、Al粉7.71克,放入塑料瓶中,以ZrO2球为介质,在混粉机上混合20h,将混合后的粉末放入普通管式炉中,Ar气氛或真空保护,以11℃/min的升温速率升温至1550℃,保温160min,冷却后即可制的高纯度钛二铝碳粉体。
实施例9:
按照TiC:Ti:Al=1.2:0.9:1.5的摩尔比配料,称取TiC粉20.53克、Ti粉12.31克、Al粉11.56克,放入塑料瓶中,以ZrO2球为介质,在混粉机上混合16h,将混合后的粉末放入普通管式炉中,Ar气氛或真空保护,以11℃/min的升温速率升温至1500℃,保温140min,冷却后即可制的高纯度钛二铝碳粉体。
所制备的钛二铝碳粉体的XRD图谱如图1所示。由图可见,产物纯度高,在XRD结果中无明显Ti3AlC2和TiC杂相存在。钛二铝碳粉体的形貌如图2所示,由图可见,钛二铝碳颗粒呈现典型的层片状结构,颗粒尺寸在10μm范围内。

Claims (4)

1.一种常压制备高纯钛二铝碳粉体材料的方法,其特征在于:该方法包括以下步骤:
1)按摩尔比TiC:Ti:Al=(0.6~1.2):(0.9~1.5):(1~1.5)称取原料TiC粉、Ti粉、Al粉;
2)将步骤1)中称取的原料混合均匀,得到混合粉料;
3)将步骤2)得到的混合粉料置于烧结炉中,在保护性气氛或真空保护下加热到1200~1600℃,之后保持30~180min,冷却后得到高纯钛二铝碳粉体材料。
2.根据权利要求1所述一种常压制备高纯钛二铝碳粉体材料的方法,其特征在于:步骤2)中所述原料混合均匀是指将称取的原料在混粉机中混合5~25h,得到混合粉料。
3.根据权利要求1所述一种常压制备高纯钛二铝碳粉体材料的方法,其特征在于:步骤3)中所述的保护性气氛为Ar气。
4.根据权利要求1所述一种常压制备高纯钛二铝碳粉体材料的方法,其特征在于:步骤3)中所述的烧结炉为普通烧结炉,所述加热到1200~1600℃的升温速率为4~12℃/min。
CN201710159575.1A 2017-03-17 2017-03-17 一种常压制备高纯钛二铝碳粉体材料的方法 Withdrawn CN106957175A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710159575.1A CN106957175A (zh) 2017-03-17 2017-03-17 一种常压制备高纯钛二铝碳粉体材料的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710159575.1A CN106957175A (zh) 2017-03-17 2017-03-17 一种常压制备高纯钛二铝碳粉体材料的方法

Publications (1)

Publication Number Publication Date
CN106957175A true CN106957175A (zh) 2017-07-18

Family

ID=59471357

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710159575.1A Withdrawn CN106957175A (zh) 2017-03-17 2017-03-17 一种常压制备高纯钛二铝碳粉体材料的方法

Country Status (1)

Country Link
CN (1) CN106957175A (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1724467A (zh) * 2005-06-15 2006-01-25 北京交通大学 一种碳化锡钛陶瓷粉体的常压合成方法
CN1958514A (zh) * 2006-10-30 2007-05-09 陕西科技大学 一种Ti2AlC陶瓷材料的制备方法
CN101531531A (zh) * 2009-04-03 2009-09-16 红河学院 一种制备高性能Ti2AlC陶瓷粉体的方法
CN102992767A (zh) * 2012-11-19 2013-03-27 西安理工大学 一种高纯Ti3AlC2块体材料的制备方法
CN105777127A (zh) * 2016-02-29 2016-07-20 东南大学 一种高纯度Ti2SnC粉体的制备方法
CN106032323A (zh) * 2016-04-06 2016-10-19 中国科学院金属研究所 一种以TiAl粉体为原料的Ti2AlC陶瓷粉体制备方法
CN106882965A (zh) * 2017-03-10 2017-06-23 东南大学 一种常压制备高纯钛二铝碳粉体材料的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1724467A (zh) * 2005-06-15 2006-01-25 北京交通大学 一种碳化锡钛陶瓷粉体的常压合成方法
CN1958514A (zh) * 2006-10-30 2007-05-09 陕西科技大学 一种Ti2AlC陶瓷材料的制备方法
CN101531531A (zh) * 2009-04-03 2009-09-16 红河学院 一种制备高性能Ti2AlC陶瓷粉体的方法
CN102992767A (zh) * 2012-11-19 2013-03-27 西安理工大学 一种高纯Ti3AlC2块体材料的制备方法
CN105777127A (zh) * 2016-02-29 2016-07-20 东南大学 一种高纯度Ti2SnC粉体的制备方法
CN106032323A (zh) * 2016-04-06 2016-10-19 中国科学院金属研究所 一种以TiAl粉体为原料的Ti2AlC陶瓷粉体制备方法
CN106882965A (zh) * 2017-03-10 2017-06-23 东南大学 一种常压制备高纯钛二铝碳粉体材料的方法

Similar Documents

Publication Publication Date Title
CN106882965A (zh) 一种常压制备高纯钛二铝碳粉体材料的方法
Zhou et al. Preparation of Ti3AlC2 and Ti2AlC by self-propagating high-temperature synthesis
Zhang et al. Application of pulse discharge sintering (PDS) technique to rapid synthesis of Ti3SiC2 from Ti/Si/C powders
Zhang et al. Rapid fabrication of Ti3SiC2–SiC nanocomposite using the spark plasma sintering-reactive synthesis (SPS-RS) method
CN107512912A (zh) 高纯度MoAlB陶瓷粉体及致密块体的制备方法
CN100467636C (zh) 陶瓷增强金属基多孔复合材料的制备方法
Gao et al. Preparation and performance of MAX phase Ti3AlC2 by in-situ reaction of Ti-Al-C system
CN107555998A (zh) 高纯度Fe2AlB2陶瓷粉体及致密块体的制备方法
CN101693973B (zh) 一种微波烧结制备Nd-Mg-Ni储氢合金的方法及其装置
CN102251162B (zh) 一种高性能纳米氧化镧掺杂钼-硅-硼合金的制备方法
CN105859301A (zh) 一种氮化硅陶瓷及其制备方法
CN106747446A (zh) 一种微波混合加热合成Al4SiC4粉体的新方法
Yang et al. Low-temperature synthesis of high-purity Ti3AlC2 by MA-SPS technique
CN106431416A (zh) 热爆合成碳化锆、二硼化锆复相陶瓷粉末及其制备方法
CN102153347A (zh) 一种快速合成Ti3SiC2亚微米粉体的方法
CN101265109A (zh) 一种h相氮化铝钛陶瓷粉体的常压合成方法
Yang et al. Synthesis of Ti3AlC2 by spark plasma sintering of mechanically milled 3Ti/xAl/2C powder mixtures
Su et al. Green synthesis, formation mechanism and oxidation of Ti3SiC2 powder from bamboo charcoal, Ti and Si
Zhang et al. Low temperature synthesis of Ti3 SiC2 from Ti/SiC/C powders
CN116768629B (zh) 一种低成本一步法生产高纯碳化铝钛的工艺
JP5308296B2 (ja) チタンシリコンカーバイドセラミックスの製造方法
CN106957175A (zh) 一种常压制备高纯钛二铝碳粉体材料的方法
CN100450970C (zh) 高纯度碳化铝钛陶瓷粉体的常压合成方法
JP4362582B2 (ja) 金属性セラミック焼結体チタンシリコンカーバイドの製造方法
CN100590075C (zh) 碳氮化钛纳米粉的多重激活制备法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20170718