CN116768629B - 一种低成本一步法生产高纯碳化铝钛的工艺 - Google Patents

一种低成本一步法生产高纯碳化铝钛的工艺 Download PDF

Info

Publication number
CN116768629B
CN116768629B CN202310804626.7A CN202310804626A CN116768629B CN 116768629 B CN116768629 B CN 116768629B CN 202310804626 A CN202310804626 A CN 202310804626A CN 116768629 B CN116768629 B CN 116768629B
Authority
CN
China
Prior art keywords
powder
purity
aluminum
oxide powder
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310804626.7A
Other languages
English (en)
Other versions
CN116768629A (zh
Inventor
张洪涛
赵英杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liaoning Zhongse New Material Technology Co ltd
Original Assignee
Liaoning Zhongse New Material Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liaoning Zhongse New Material Technology Co ltd filed Critical Liaoning Zhongse New Material Technology Co ltd
Priority to CN202310804626.7A priority Critical patent/CN116768629B/zh
Publication of CN116768629A publication Critical patent/CN116768629A/zh
Application granted granted Critical
Publication of CN116768629B publication Critical patent/CN116768629B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5611Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on titanium carbides
    • C04B35/5618Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on titanium carbides based on titanium aluminium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

一种低成本一步法生产高纯碳化铝钛的工艺,以氧化钛粉、氧化铝粉和石墨粉为原料粉,加入粘合剂,放入混料机中混料后,用400t油压机压块,得到圆柱形块料;装入真空电阻烧结炉的石墨坩埚中,抽真空至0~3Pa开始升温,升温功率80kw/h,温度达到300℃保温2小时,保温期间真空度保持在10Pa~50Pa;继续升温,升温功率130kw/h,温度升至1450℃,开始反应,继续抽真空,真空度降至3Pa~5Pa后,保温1小时,停电随炉降温,得到高纯碳化铝钛产品。优点是:该工艺简单可控、一步完成,生产成本低,产品纯度高,可大规模工业化生产。

Description

一种低成本一步法生产高纯碳化铝钛的工艺
技术领域
本发明涉及一种低成本一步法生产高纯碳化铝钛的工艺。
背景技术
碳化铝钛属于MAX相陶瓷材料,它具有独特的层状结构,兼具陶瓷和金属的优良性能,具有高导热、韧性好、中子吸收截面小、抗氧化和抗热震性等优点,在核反应堆、装甲防护、微波吸收材料、航空航天、电接触材料等多个领域有着广阔的应用前景,受到了研究者们的广泛关注。
传统合成Ti3AlC2或Ti2AlC方法包括热等静压法、原位热压烧结和热压烧结。而这些方法的缺点是烧结时间长,生产效率低,成本高。CN 113044842 A公开了“一种高纯碳化铝钛的生产工艺”,该工艺以高纯石墨粉、铝粉和钛粉为主要原料,通过石墨粉与铝粉先烧制成碳铝合金,再通过自蔓延反应由钛粉和碳铝合金第二步合成,获得高纯碳化铝钛。通过自蔓延工艺具有生产周期短、产量高、节能的优点,但该工艺为避免生产过程中出现杂相,需分两步完成,工艺相对繁琐。
发明内容
本发明要解决的技术问题是提供了一种低成本一步法生产高纯碳化铝钛的工艺,该工艺简单可控、一步完成,生产成本低,产品纯度高,可大规模工业化生产。
本发明的技术方案是:
一种低成本一步法生产高纯碳化铝钛的工艺,其具体步骤如下:
(1)混料
以氧化钛粉、氧化铝粉和石墨粉为原料粉,加入粘合剂,放入混料机中混料4小时~6小时,得到混合料;
(2)压块
将混合料用400t油压机压块,得到圆柱形块料;
(3)真空反应
将圆柱形块料装入真空电阻烧结炉的石墨坩埚中,抽真空至0~3Pa开始升温,升温功率80kw/h,温度达到300℃保温2小时,排出物料潮气,保温期间真空度保持在10Pa~50Pa;继续升温,升温功率130kw/h,温度升至1450℃,开始反应,继续抽真空,真空度降至3-5Pa后,保温1小时,停电随炉降温,得到高纯碳化铝钛产品;
所述氧化钛粉、氧化铝粉、石墨粉摩尔比6:1:(19~23)时,最终碳化铝钛产品为Ti3AlC2
所述氧化钛粉、氧化铝粉、石墨粉摩尔比4:1:(13~17)时,最终碳化铝钛产品为Ti2AlC。
进一步的,氧化钛粉纯度为99.8%,氧化铝的纯度为99.9%,石墨粉纯度为99.99.%。
进一步的,氧化钛粉细度为800目,氧化铝粉细度为1000目,石墨粉细度为800目。
进一步的,加入的粘合剂为羧甲基纤维素,每1kg原料粉加入羧甲基纤维素3g。
进一步的,步骤(2)压块时,每块圆柱形块料重量为0.5kg。
进一步的,步骤(1)混料时,每次混料量为4kg~6kg。
采用如上所述的技术方案,具有如下有益效果:
以氧化钛、氧化铝和石墨粉为原料,经压块后真空烧制完成,一步完成,实现了低成本,通过调整氧化钛、氧化铝的用量获得碳化铝钛产品Ti3AlC2和Ti2AlC,工艺条件简单、可控,且产品纯度在99.60%以上,产品纯度高,适合大规模工业化生产。
附图说明
图1是本发明生产的Ti3AlC2的电镜图像;
图2是本发明生产的Ti3AlC2的X射线衍射图谱;
图3是本发明生产的Ti2AlC的电镜图像;
图4是本发明生产的Ti2AlC的X射线衍射图谱。
具体实施方式
通过下面的实施例可以更详细的解释本发明,本发明并不局限于下面的实施例。
实施例1
氧化钛粉纯度为99.8%,粒度为800目,
氧化铝粉纯度为99.9%,粒度为1000目,
石墨粉纯度为99.99%,粒度为800目;
(1)混料
将氧化钛粉19.17kg、氧化铝粉4.08kg和石墨粉10.09kg,加入粘合剂100g,放入20L的混料机中,每次装料5kg,混料4小时,得到混合料;
(2)压块
将混合料按照每份0.5kg用400t油压机压块,得到圆柱形块料;
(3)真空反应
将圆柱形块料装入真空电阻烧结炉的石墨坩埚中,抽真空至3Pa开始升温,升温功率80kw/h,温度达到300℃保温2小时,排出物料潮气,保温期间真空度保持在10Pa~50Pa;继续升温,升温功率130kw/h,温度升至1450℃开始保温,观察炉内压表、真空度表,待数值起伏较大时,真空泵加速运转排出产生的大量气体,真空度降至5Pa后,继续保温1小时,停电随炉降温,得到高纯Ti3AlC2,产品纯度为99.60%。该Ti3AlC2电镜图如图1所示,其X射线衍射图谱如图2所示,由图2可以看出其与碳化铝钛(Ti3AlC2)标准卡片基本一致,该方法生产的样品无明显杂项,合金化程度100%。
实施例2
氧化钛粉纯度为99.8%,粒度为800目,
氧化铝粉纯度为99.9%,粒度为1000目,
石墨粉纯度为99.99%,粒度为800目;
(1)混料
将氧化钛粉19.17kg、氧化铝粉4.08kg和石墨粉9.13kg,加入粘合剂97g,放入20L的混料机中,每次装料4kg,混料5小时,得到混合料;
(2)压块
将混合料按照每份0.5kg用400t油压机压块,得到圆柱形块料;
(3)真空反应
将圆柱形块料装入真空电阻烧结炉的石墨坩埚中,抽真空至3Pa开始升温,升温功率80kw/h,温度达到300℃保温2小时,排出物料潮气,保温期间真空度保持在10Pa~50Pa;继续升温,升温功率130kw/h,温度升至1450℃开始保温,观察炉内压表、真空度表,待数值起伏较大时,真空泵加速运转排出产生的大量气体,真空度降至4Pa后,继续保温1小时,停电随炉降温,得到高纯Ti3AlC2,产品纯度为99.64%。该Ti3AlC2的X射线衍射图谱如图2所示,由图2可以看出其与碳化铝钛(Ti3AlC2)标准卡片基本一致,该方法生产的样品无明显杂项,合金化程度100%。
实施例3
氧化钛粉纯度为99.8%,粒度为800目,
氧化铝粉纯度为99.9%,粒度为1000目,
石墨粉纯度为99.99%,粒度为800目;
(1)混料
将氧化钛粉19.17kg、氧化铝粉4.08kg和石墨粉11.15kg,加入粘合剂103g,放入20L的混料机中,每次装料6kg,混料6小时,得到混合料;
(2)压块
将混合料按照每份0.5kg用400t油压机压块,得到圆柱形块料;
(3)真空反应
将圆柱形块料装入真空电阻烧结炉的石墨坩埚中,抽真空至3Pa开始升温,升温功率80kw/h,温度达到300℃保温2小时,排出物料潮气,保温期间真空度保持在10Pa~50Pa;继续升温,升温功率130kw/h,温度升至1450℃开始保温,观察炉内压表、真空度表,待数值起伏较大时,真空泵加速运转排出产生的大量气体,真空度降至3Pa后,继续保温1小时,停电随炉降温,得到高纯Ti3AlC2,产品纯度为99.63%。该Ti3AlC2的X射线衍射图谱如图2所示,由图2可以看出其与碳化铝钛(Ti3AlC2)标准卡片基本一致,该方法生产的样品无明显杂项,合金化程度100%。
实施例4
氧化钛粉纯度为99.8%,粒度为800目,
氧化铝粉纯度为99.9%,粒度为1000目,
石墨粉纯度为99.99%,粒度为800目;
(1)混料
将氧化钛粉12.78kg,氧化铝粉4.08kg和石墨粉7.21kg,加入粘合剂72g,放入20L的混料机中,每次装料5kg,混料4小时,得到混合料;
(2)压块
将混合料按照每份0.5kg用400t油压机压块,得到圆柱形块料;
(3)真空反应
将圆柱形块料装入真空电阻烧结炉的石墨坩埚中,抽真空至3Pa开始升温,升温功率80kw/h,温度达到300℃保温2小时,排出物料潮气,保温期间真空度保持在10Pa~50Pa;继续升温,升温功率130kw/h,温度升至1450℃开始保温,观察炉内压表、真空度表,待数值起伏较大时,真空泵加速运转排出产生的大量气体,真空度降至5Pa后,继续保温1小时,停电随炉降温,得到高纯Ti2AlC,产品纯度为99.65%。该Ti2AlC电镜图如图3所示,其X射线衍射图谱如图4所示,由图4可以看出其与碳化铝钛(Ti2AlC)标准卡片基本一致,该方法生产的样品无明显杂项,合金化程度100%。
实施例5
氧化钛粉纯度为99.8%,粒度为800目,
氧化铝粉纯度为99.9%,粒度为1000目,
石墨粉纯度为99.99%,粒度为800目;
(1)混料
将氧化钛粉12.78kg,氧化铝粉4.08kg和石墨粉6.25kg,加入粘合剂69g,放入20L的混料机中,每次装料4kg,混料5小时,得到混合料;
(2)压块
将混合料按照每份0.5kg用400t油压机压块,得到圆柱形块料;
(3)真空反应
将圆柱形块料装入真空电阻烧结炉的石墨坩埚中,抽真空至3Pa开始升温,升温功率80kw/h,温度达到300℃保温2小时,排出物料潮气,保温期间真空度保持在10Pa~50Pa;继续升温,升温功率130kw/h,温度升至1450℃开始保温,观察炉内压表、真空度表,待数值起伏较大时,真空泵加速运转排出产生的大量气体,真空度降至4Pa后,继续保温1小时,停电随炉降温,得到高纯Ti2AlC,产品纯度为99.68%;该Ti2AlC的X射线衍射图谱如图4所示,由图4可以看出其与碳化铝钛(Ti2AlC)标准卡片基本一致,该方法生产的样品无明显杂项,合金化程度100%。
实施例6
氧化钛粉纯度为99.8%,粒度为800目,
氧化铝粉纯度为99.9%,粒度为1000目,
石墨粉纯度为99.99%,粒度为800目;
(1)混料
将氧化钛粉12.78kg,氧化铝粉4.08kg和石墨粉8.17kg,加入粘合剂75g,放入20L的混料机中,每次装料6kg,混料6小时,得到混合料;
(2)压块
将混合料按照每份0.5kg用400t油压机压块,得到圆柱形块料;
(3)真空反应
将圆柱形块料装入真空电阻烧结炉的石墨坩埚中,抽真空至3Pa开始升温,升温功率80kw/h,温度达到300℃保温2小时,排出物料潮气,保温期间真空度保持在10Pa~50Pa;继续升温,升温功率130kw/h,温度升至1450℃开始保温,观察炉内压表、真空度表,待数值起伏较大时,真空泵加速运转排出产生的大量气体,真空度降至3Pa后,继续保温1小时,停电随炉降温,得到高纯Ti2AlC,产品纯度为99.67%;该Ti2AlC的X射线衍射图谱如图4所示,由图4可以看出其与碳化铝钛(Ti2AlC)标准卡片基本一致,该方法生产的样品无明显杂项,合金化程度100%。
以上仅为本发明的具体实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (6)

1.一种低成本一步法生产高纯碳化铝钛的工艺,其特征是:
具体步骤如下:
(1)混料
以氧化钛粉、氧化铝粉和石墨粉为原料粉,加入粘合剂,放入混料机中混料4小时~6小时,得到混合料;
(2)压块
将混合料用400t油压机压块,得到圆柱形块料;
(3)真空反应
将圆柱形块料装入真空电阻烧结炉的石墨坩埚中,抽真空至0~3Pa开始升温,升温功率80kw/h,温度达到300℃保温2小时,保温期间真空度保持在10Pa~50Pa;继续升温,升温功率130kw/h,温度升至1450℃,开始反应,继续抽真空,真空度降至3Pa~5Pa后,保温1小时,停电随炉降温,得到高纯碳化铝钛产品;
所述氧化钛粉、氧化铝粉、石墨粉摩尔比6:1:(19~23)时,最终碳化铝钛产品为Ti3AlC2
所述氧化钛粉、氧化铝粉、石墨粉摩尔比4:1:(13~17)时,最终碳化铝钛产品为Ti2AlC。
2.根据权利要求1所述的低成本一步法生产高纯碳化铝钛的工艺,其特征是:氧化钛粉纯度为99.8%,氧化铝粉纯度为99.9%,石墨粉纯度为99.99%。
3.根据权利要求2所述的低成本一步法生产高纯碳化铝钛的工艺,其特征是:氧化钛粉细度为800目,氧化铝粉细度为1000目,石墨粉细度为800目。
4.根据权利要求1所述的低成本一步法生产高纯碳化铝钛的工艺,其特征是:加入的粘合剂为羧甲基纤维素,每1kg原料粉加入羧甲基纤维素3g。
5.根据权利要求1所述的低成本一步法生产高纯碳化铝钛的工艺,其特征是:步骤(2)压块时,每块圆柱形块料重量为0.5kg。
6.根据权利要求1所述的低成本一步法生产高纯碳化铝钛的工艺,其特征是:步骤(1)混料时,每次混料量为4kg~6kg。
CN202310804626.7A 2023-07-03 2023-07-03 一种低成本一步法生产高纯碳化铝钛的工艺 Active CN116768629B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310804626.7A CN116768629B (zh) 2023-07-03 2023-07-03 一种低成本一步法生产高纯碳化铝钛的工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310804626.7A CN116768629B (zh) 2023-07-03 2023-07-03 一种低成本一步法生产高纯碳化铝钛的工艺

Publications (2)

Publication Number Publication Date
CN116768629A CN116768629A (zh) 2023-09-19
CN116768629B true CN116768629B (zh) 2023-12-26

Family

ID=88006177

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310804626.7A Active CN116768629B (zh) 2023-07-03 2023-07-03 一种低成本一步法生产高纯碳化铝钛的工艺

Country Status (1)

Country Link
CN (1) CN116768629B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117904699B (zh) * 2024-03-20 2024-07-30 中国科学院宁波材料技术与工程研究所 一种钛三铝碳二max相单晶材料的制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5882561A (en) * 1996-11-22 1999-03-16 Drexel University Process for making a dense ceramic workpiece
WO2001046083A1 (en) * 1999-12-22 2001-06-28 Drexel University Process for forming 312 phase materials and process for sintering the same
CN101033141A (zh) * 2007-02-09 2007-09-12 上海大学 低温无压烧结制备致密Ti3AlC2陶瓷的方法
CN105801121A (zh) * 2016-03-15 2016-07-27 中南大学 一种三元化合物基柔性多孔陶瓷复合材料的制备方法
CN106032324A (zh) * 2016-04-06 2016-10-19 中国科学院金属研究所 一种合成主相为Ti2AlC的球状MAX相粉体材料的方法
CN106882965A (zh) * 2017-03-10 2017-06-23 东南大学 一种常压制备高纯钛二铝碳粉体材料的方法
CN111533558A (zh) * 2020-02-25 2020-08-14 南京明昌新材料科技有限公司 一种纯Ti3AlC2粉末、块体或多孔体及其制备方法与应用
CN113044842A (zh) * 2021-01-12 2021-06-29 辽宁中色新材科技有限公司 一种高纯碳化铝钛的生产工艺

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5882561A (en) * 1996-11-22 1999-03-16 Drexel University Process for making a dense ceramic workpiece
WO2001046083A1 (en) * 1999-12-22 2001-06-28 Drexel University Process for forming 312 phase materials and process for sintering the same
CN101033141A (zh) * 2007-02-09 2007-09-12 上海大学 低温无压烧结制备致密Ti3AlC2陶瓷的方法
CN105801121A (zh) * 2016-03-15 2016-07-27 中南大学 一种三元化合物基柔性多孔陶瓷复合材料的制备方法
CN106032324A (zh) * 2016-04-06 2016-10-19 中国科学院金属研究所 一种合成主相为Ti2AlC的球状MAX相粉体材料的方法
CN106882965A (zh) * 2017-03-10 2017-06-23 东南大学 一种常压制备高纯钛二铝碳粉体材料的方法
CN111533558A (zh) * 2020-02-25 2020-08-14 南京明昌新材料科技有限公司 一种纯Ti3AlC2粉末、块体或多孔体及其制备方法与应用
CN113044842A (zh) * 2021-01-12 2021-06-29 辽宁中色新材科技有限公司 一种高纯碳化铝钛的生产工艺

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Ti_3AlC_2材料的制备及其高温抗氧化性能研究;赵卓玲;冯小明;艾桃桃;;硅酸盐通报(第01期);65-68 *
燃烧合成Ti_3AlC_2及其热稳定性;朱春城;钱旭坤;赫晓东;线恒泽;;稀有金属材料与工程(第S2期);86-89 *

Also Published As

Publication number Publication date
CN116768629A (zh) 2023-09-19

Similar Documents

Publication Publication Date Title
CN110257684B (zh) 一种FeCrCoMnNi高熵合金基复合材料的制备工艺
CN116768629B (zh) 一种低成本一步法生产高纯碳化铝钛的工艺
CN111646799B (zh) 一种燃烧法制备Tin+1ACn材料的方法
CN114455952B (zh) 一种AlON粉体及其直接氮化法高气压合成方法和应用
CN106882965A (zh) 一种常压制备高纯钛二铝碳粉体材料的方法
CN109136713A (zh) 一种制备高强度高韧性WC-Co硬质合金的方法
CN106431416A (zh) 热爆合成碳化锆、二硼化锆复相陶瓷粉末及其制备方法
CN103553619A (zh) 碳化钛和碳化钒复合材料及其生产方法和应用
CN101704678A (zh) 二硼化钛-碳化钛复相陶瓷微粉的自蔓延高温合成制备方法
CN113044842B (zh) 一种高纯碳化铝钛的生产工艺
CN1259279C (zh) 一种以铝为添加剂的钛硅碳块体材料及其制备方法
CN100450970C (zh) 高纯度碳化铝钛陶瓷粉体的常压合成方法
CN1478757A (zh) 一种用放电等离子烧结制备高纯块体钛铝碳材料的方法
CN115780812A (zh) 一种TiB2增强Mo2NiB2基复合材料的制备方法
CN102392149B (zh) 一种微波烧结制备纳米稀土改性钢结硬质合金的方法
CN110343932B (zh) 一种具有高强度的WVTaZrSc难熔高熵合金及其制备方法
RU2393060C1 (ru) Способ получения композиционного материала
CN109112331B (zh) 一种原位合成高性能Fe3Al-TiC复合材料的方法及其应用
CN113336553A (zh) 一种微波烧结合成V2AlC块体材料及其制备方法和应用
JP2012087042A (ja) 二硼化チタン系焼結体及びその製造方法
CN116924811B (zh) 一步法生产高纯六硼化硅的工艺
CN102212732A (zh) 一种铜增强三硅化五钛基复合材料及其制备方法
CN112876252B (zh) 高温烧结和自蔓延热结合的两步法生产碳化硅钛的工艺
CN113604722B (zh) 一种原位合成Fe-FeAl2O4复合材料的制备方法
CN115475947B (zh) 一种表面{100}晶面立方体过渡金属碳化物颗粒的制备方法及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant