CN106000132B - 一种金属有机框架zif-8/聚多巴胺杂化分子筛气体分离膜的制备方法 - Google Patents

一种金属有机框架zif-8/聚多巴胺杂化分子筛气体分离膜的制备方法 Download PDF

Info

Publication number
CN106000132B
CN106000132B CN201610438226.9A CN201610438226A CN106000132B CN 106000132 B CN106000132 B CN 106000132B CN 201610438226 A CN201610438226 A CN 201610438226A CN 106000132 B CN106000132 B CN 106000132B
Authority
CN
China
Prior art keywords
dopamine
poly
gas separation
metal organic
separation membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610438226.9A
Other languages
English (en)
Other versions
CN106000132A (zh
Inventor
邵路
姜旭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yixing Environmental Protection Industry Co ltd
Original Assignee
HIT YIXING ACADEMY OF ENVIRONMENTAL PROTECTION
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HIT YIXING ACADEMY OF ENVIRONMENTAL PROTECTION filed Critical HIT YIXING ACADEMY OF ENVIRONMENTAL PROTECTION
Priority to CN201610438226.9A priority Critical patent/CN106000132B/zh
Publication of CN106000132A publication Critical patent/CN106000132A/zh
Application granted granted Critical
Publication of CN106000132B publication Critical patent/CN106000132B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/60Polyamines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

一种金属有机框架ZIF‑8/聚多巴胺杂化分子筛气体分离膜的制备方法,它涉及一种分子筛气体分离膜的制备方法。本发明的目的是要解决现有金属有机框架分子筛膜大多由种子生长法制备,制备流程复杂,反应条件较为苛刻,难以大规模生产的问题。方法:一、制备含有Zn(NO3)2.6(H2O)和多巴胺的水溶液;二、制备2‑甲基咪唑水溶液;三、制备氧化铝支撑的杂化分子筛膜;四、将氧化铝支撑的杂化分子筛膜浸入到去离子水中,再进行晾干,再进行干燥得到金属有机框架ZIF‑8/聚多巴胺杂化分子筛气体分离膜。本发明可获得一种金属有机框ZIF‑8/聚多巴胺杂化分子筛气体分离膜。

Description

一种金属有机框架ZIF-8/聚多巴胺杂化分子筛气体分离膜的 制备方法
技术领域
本发明涉及一种分子筛气体分离膜的制备方法。
背景技术
膜分离作为一种高效节能的新型分离方法,未来在环境工程,化学化工以及制药等领域有着重要的应用价值。其中分子筛膜由于其优良的稳定性和高效的分离效率而被广泛研究,新兴的具有许多孔结构的金属有机框架是合成新型分子筛膜的立项材料,然而目前的金属有机框架分子筛膜大多由种子生长法制备,制备流程复杂,反应条件较为苛刻,难以大规模生产。
发明内容
本发明的目的是要解决现有金属有机框架分子筛膜大多由种子生长法制备,制备流程复杂,反应条件较为苛刻,难以大规模生产的问题,而提供一种金属有机框架ZIF-8/聚多巴胺杂化分子筛气体分离膜的制备方法。
一种金属有机框架ZIF-8/聚多巴胺杂化分子筛气体分离膜的制备方法,是按以下步骤完成的:
一、制备含有Zn(NO3)2.6(H2O)和多巴胺的水溶液:将Zn(NO3)2.6(H2O)和多巴胺溶解到去离子水中,再超声分散10min~30min,得到含有Zn(NO3)2.6(H2O)和多巴胺的水溶液;
步骤一中所述的Zn(NO3)2.6(H2O)的质量与去离子水的体积比为(0.1g~0.2g):20mL;
步骤一中所述的多巴胺的质量与去离子水的体积比为(0.015g~0.2g):20mL;
二、将2-甲基咪唑溶解到去离子水中,再超声分散10min~30min,得到2-甲基咪唑水溶液;
步骤二中所述的2-甲基咪唑的质量与去离子水的体积比为(2g~2.4g):20mL;
三、将多孔阳极氧化铝模板固定于玻璃砂芯过滤器的滤芯上,再将含有Zn(NO3)2.6(H2O)和多巴胺的水溶液与2-甲基咪唑水溶液加入到过滤器的滤芯中,再在室温下静置反应8h~24h,得到氧化铝支撑的杂化分子筛膜;
步骤三中所述的含有Zn(NO3)2.6(H2O)和多巴胺的水溶液与2-甲基咪唑水溶液的体积比为1:1;
四、将步骤三中得到的氧化铝支撑的杂化分子筛膜浸入到去离子水中24h~48h,取出后再在空气中晾干,再放入温度为60℃~80℃的真空干燥箱中干燥12h~48h,得到金属有机框架ZIF-8/聚多巴胺杂化分子筛气体分离膜。
本发明有益效果:
一、本发明使用常温一步法制备的金属有机框架ZIF-8/聚多巴胺杂化分子筛气体分离膜是目前最为简便的金属有机框架分子筛膜,并结合了多巴胺的特性,具有高效的气体分离性能;
二、本发明制备的金属有机框架ZIF-8/聚多巴胺杂化分子筛气体分离膜的方法简单,节能高效,所制备的分离膜具有优异的轻质气体分离性能,可工业化生产,广泛应用于气体分离捕集领域;
三、氢气通过本发明制备的金属有机框架ZIF-8/聚多巴胺杂化分子筛气体分离膜的渗透通量大于700×10-10molm-2s-1Pa-1
本发明可获得一种金属有机框ZIF-8/聚多巴胺杂化分子筛气体分离膜。
附图说明
图1为实施例一制备的金属有机框架ZIF-8/聚多巴胺杂化分子筛气体分离膜的表面SEM图;
图2为实施例一制备的金属有机框架ZIF-8/聚多巴胺杂化分子筛气体分离膜的截面SEM图;
图3为XRD图,图3中1为纯ZIF-8的XRD曲线,2为施例一制备的金属有机框架ZIF-8/聚多巴胺杂化分子筛气体分离膜的XRD曲线;
图4为实施例一制备的金属有机框架ZIF-8/聚多巴胺杂化分子筛气体分离膜的气体渗透通量曲线;
图5为气体通量的理想柱状图。
具体实施方式
具体实施方式一:本实施方式是一种金属有机框架ZIF-8/聚多巴胺杂化分子筛气体分离膜的制备方法是按以下步骤完成的:
一、制备含有Zn(NO3)2.6(H2O)和多巴胺的水溶液:将Zn(NO3)2.6(H2O)和多巴胺溶解到去离子水中,再超声分散10min~30min,得到含有Zn(NO3)2.6(H2O)和多巴胺的水溶液;
步骤一中所述的Zn(NO3)2.6(H2O)的质量与去离子水的体积比为(0.1g~0.2g):20mL;
步骤一中所述的多巴胺的质量与去离子水的体积比为(0.015g~0.2g):20mL;
二、将2-甲基咪唑溶解到去离子水中,再超声分散10min~30min,得到2-甲基咪唑水溶液;
步骤二中所述的2-甲基咪唑的质量与去离子水的体积比为(2g~2.4g):20mL;
三、将多孔阳极氧化铝模板固定于玻璃砂芯过滤器的滤芯上,再将含有Zn(NO3)2.6(H2O)和多巴胺的水溶液与2-甲基咪唑水溶液加入到过滤器的滤芯中,再在室温下静置反应8h~24h,得到氧化铝支撑的杂化分子筛膜;
步骤三中所述的含有Zn(NO3)2.6(H2O)和多巴胺的水溶液与2-甲基咪唑水溶液的体积比为1:1;
四、将步骤三中得到的氧化铝支撑的杂化分子筛膜浸入到去离子水中24h~48h,取出后再在空气中晾干,再放入温度为60℃~80℃的真空干燥箱中干燥12h~48h,得到金属有机框架ZIF-8/聚多巴胺杂化分子筛气体分离膜。
本实施方式所述的多孔阳极氧化铝模板购买自英国Whatman公司。
本实施方式有益效果:
一、本实施方式使用常温一步法制备的金属有机框架ZIF-8/聚多巴胺杂化分子筛气体分离膜是目前最为简便的金属有机框架分子筛膜,并结合了多巴胺的特性,具有高效的气体分离性能;
二、本实施方式制备的金属有机框架ZIF-8/聚多巴胺杂化分子筛气体分离膜的方法简单,节能高效,所制备的分离膜具有优异的轻质气体分离性能,可工业化生产,广泛应用于气体分离捕集领域;
三、氢气通过本实施方式制备的金属有机框架ZIF-8/聚多巴胺杂化分子筛气体分离膜的渗透通量大于700×10-10molm-2s-1Pa-1
本实施方式可获得一种金属有机框ZIF-8/聚多巴胺杂化分子筛气体分离膜。
具体实施方式二:本实施方式与具体实施方式一不同点是:步骤一中所述的Zn(NO3)2.6(H2O)的质量与去离子水的体积比为0.11g:20mL。其他步骤与具体实施方式一相同。
具体实施方式三:本实施方式与具体实施方式一或二之一不同点是:步骤一中所述的多巴胺的质量与去离子水的体积比为(0.04g~0.1g):20mL。其他步骤与具体实施方式一或二相同。
具体实施方式四:本实施方式与具体实施方式一至三之一不同点是:步骤一中所述的多巴胺的质量与去离子水的体积比为(0.1g~0.2g):20mL。其他步骤与具体实施方式一至三相同。
具体实施方式五:本实施方式与具体实施方式一至四之一不同点是:步骤二中所述的2-甲基咪唑的质量与去离子水的体积比为2.27g:20mL。其他步骤与具体实施方式一至四相同。
具体实施方式六:本实施方式与具体实施方式一至五之一不同点是:步骤三中所述的多孔阳极氧化铝模板的直径为13mm~47mm,孔隙率为60%。其他步骤与具体实施方式一至五相同。
具体实施方式七:本实施方式与具体实施方式一至六之一不同点是:骤三中所述的多孔阳极氧化铝模板的孔径为0.02μm~0.1μm。其他步骤与具体实施方式一至六相同。
具体实施方式八:本实施方式与具体实施方式一至七之一不同点是:步骤三中所述的多孔阳极氧化铝模板的孔隙率为20%~60%。其他步骤与具体实施方式一至七相同。
具体实施方式九:本实施方式与具体实施方式一至八之一不同点是:步骤一中所述的超声分散的功率为80W~100W。其他步骤与具体实施方式一至八相同。
具体实施方式十:本实施方式与具体实施方式一至九之一不同点是:步骤二中所述的超声分散的功率为80W~100W。其他步骤与具体实施方式一至九相同。
采用以下实施例验证本发明的有益效果:
实施例一:一种金属有机框架ZIF-8/聚多巴胺杂化分子筛气体分离膜的制备方法是按以下步骤完成的:
一、制备含有Zn(NO3)2.6(H2O)和多巴胺的水溶液:将0.11g Zn(NO3)2.6(H2O)和0.08g多巴胺溶解到20mL去离子水中,再在超声功率为100W下超声分散20min,得到含有Zn(NO3)2.6(H2O)和多巴胺的水溶液;
二、将2.27g 2-甲基咪唑溶解到20mL去离子水中,再在超声功率为100W下超声分散20min,得到2-甲基咪唑水溶液;
三、将多孔阳极氧化铝模板固定于玻璃砂芯过滤器的滤芯上,再将含有Zn(NO3)2.6(H2O)和多巴胺的水溶液与2-甲基咪唑水溶液加入到过滤器的滤芯中,再在室温下反应12h,得到氧化铝支撑的杂化分子筛膜;
步骤三中所述的多孔阳极氧化铝模板的直径为47mm;
步骤三中所述的多孔阳极氧化铝模板的孔径为0.02μm;
步骤三中所述的多孔阳极氧化铝模板的孔隙率为60%;
步骤三中所述的含有Zn(NO3)2.6(H2O)和多巴胺的水溶液与2-甲基咪唑水溶液的体积比为1:1;
四、将步骤三中得到的氧化铝支撑的杂化分子筛膜浸入到去离子水中24h,取出后再在空气中晾干,再放入温度为60℃的真空干燥箱中干燥24h,得到金属有机框架ZIF-8/聚多巴胺杂化分子筛气体分离膜。
实施例二:一种金属有机框架ZIF-8/聚多巴胺杂化分子筛气体分离膜的制备方法是按以下步骤完成的:
一、制备含有Zn(NO3)2.6(H2O)和多巴胺的水溶液:将0.11g Zn(NO3)2.6(H2O)和0.04g多巴胺溶解到20mL去离子水中,再在超声功率为100W下超声分散20min,得到含有Zn(NO3)2.6(H2O)和多巴胺的水溶液;
二、将2.27g 2-甲基咪唑溶解到20mL去离子水中,再在超声功率为100W下超声分散20min,得到2-甲基咪唑水溶液;
三、将多孔阳极氧化铝模板固定于玻璃砂芯过滤器的滤芯上,再将含有Zn(NO3)2.6(H2O)和多巴胺的水溶液与2-甲基咪唑水溶液加入到过滤器的滤芯中,再在室温下反应12h,得到氧化铝支撑的杂化分子筛膜;
步骤三中所述的多孔阳极氧化铝模板的直径为47mm;
步骤三中所述的多孔阳极氧化铝模板的孔径为0.02μm;
步骤三中所述的多孔阳极氧化铝模板的孔隙率为60%;
步骤三中所述的含有Zn(NO3)2.6(H2O)和多巴胺的水溶液与2-甲基咪唑水溶液的体积比为1:1;
四、将步骤三中得到的氧化铝支撑的杂化分子筛膜浸入到去离子水中24h,取出后再在空气中晾干,再放入温度为60℃的真空干燥箱中干燥24h,得到金属有机框架ZIF-8/聚多巴胺杂化分子筛气体分离膜。
实施例三:一种金属有机框架ZIF-8/聚多巴胺杂化分子筛气体分离膜的制备方法是按以下步骤完成的:
一、制备含有Zn(NO3)2.6(H2O)和多巴胺的水溶液:将0.11g Zn(NO3)2.6(H2O)和0.12g多巴胺溶解到20mL去离子水中,再在超声功率为100W下超声分散20min,得到含有Zn(NO3)2.6(H2O)和多巴胺的水溶液;
二、将2.27g 2-甲基咪唑溶解到20mL去离子水中,再在超声功率为100W下超声分散20min,得到2-甲基咪唑水溶液;
三、将多孔阳极氧化铝模板固定于玻璃砂芯过滤器的滤芯上,再将含有Zn(NO3)2.6(H2O)和多巴胺的水溶液与2-甲基咪唑水溶液加入到过滤器的滤芯中,再在室温下反应12h,得到氧化铝支撑的杂化分子筛膜;
步骤三中所述的多孔阳极氧化铝模板的直径为47mm;
步骤三中所述的多孔阳极氧化铝模板的孔径为0.02μm;
步骤三中所述的多孔阳极氧化铝模板的孔隙率为60%;
步骤三中所述的含有Zn(NO3)2.6(H2O)和多巴胺的水溶液与2-甲基咪唑水溶液的体积比为1:1;
四、将步骤三中得到的氧化铝支撑的杂化分子筛膜浸入到去离子水中24h,取出后再在空气中晾干,再放入温度为60℃的真空干燥箱中干燥24h,得到金属有机框架ZIF-8/聚多巴胺杂化分子筛气体分离膜。
实施例四:一种金属有机框架ZIF-8/聚多巴胺杂化分子筛气体分离膜的制备方法是按以下步骤完成的:
一、制备含有Zn(NO3)2.6(H2O)和多巴胺的水溶液:将0.11g Zn(NO3)2.6(H2O)和0.016g多巴胺溶解到20mL去离子水中,再在超声功率为100W下超声分散20min,得到含有Zn(NO3)2.6(H2O)和多巴胺的水溶液;
二、将2.27g 2-甲基咪唑溶解到20mL去离子水中,再在超声功率为100W下超声分散20min,得到2-甲基咪唑水溶液;
三、将多孔阳极氧化铝模板固定于玻璃砂芯过滤器的滤芯上,再将含有Zn(NO3)2.6(H2O)和多巴胺的水溶液与2-甲基咪唑水溶液加入到过滤器的滤芯中,再在室温下反应12h,得到氧化铝支撑的杂化分子筛膜;
步骤三中所述的多孔阳极氧化铝模板的直径为47mm;
步骤三中所述的多孔阳极氧化铝模板的孔径为0.02μm;
步骤三中所述的多孔阳极氧化铝模板的孔隙率为60%;
步骤三中所述的含有Zn(NO3)2.6(H2O)和多巴胺的水溶液与2-甲基咪唑水溶液的体积比为1:1;
四、将步骤三中得到的氧化铝支撑的杂化分子筛膜浸入到去离子水中24h,取出后再在空气中晾干,再放入温度为60℃的真空干燥箱中干燥24h,得到金属有机框架ZIF-8/聚多巴胺杂化分子筛气体分离膜。
实施例五:一种金属有机框架ZIF-8/聚多巴胺杂化分子筛气体分离膜的制备方法是按以下步骤完成的:
一、制备含有Zn(NO3)2.6(H2O)和多巴胺的水溶液:将0.11g Zn(NO3)2.6(H2O)和0.02g多巴胺溶解到20mL去离子水中,再在超声功率为100W下超声分散20min,得到含有Zn(NO3)2.6(H2O)和多巴胺的水溶液;
二、将2.27g 2-甲基咪唑溶解到20mL去离子水中,再在超声功率为100W下超声分散20min,得到2-甲基咪唑水溶液;
三、将多孔阳极氧化铝模板固定于玻璃砂芯过滤器的滤芯上,再将含有Zn(NO3)2.6(H2O)和多巴胺的水溶液与2-甲基咪唑水溶液加入到过滤器的滤芯中,再在室温下反应12h,得到氧化铝支撑的杂化分子筛膜;
步骤三中所述的多孔阳极氧化铝模板的直径为47mm;
步骤三中所述的多孔阳极氧化铝模板的孔径为0.02μm;
步骤三中所述的多孔阳极氧化铝模板的孔隙率为60%;
步骤三中所述的含有Zn(NO3)2.6(H2O)和多巴胺的水溶液与2-甲基咪唑水溶液的体积比为1:1;
四、将步骤三中得到的氧化铝支撑的杂化分子筛膜浸入到去离子水中24h,取出后再在空气中晾干,再放入温度为60℃的真空干燥箱中干燥24h,得到金属有机框架ZIF-8/聚多巴胺杂化分子筛气体分离膜。
图1为实施例一制备的金属有机框架ZIF-8/聚多巴胺杂化分子筛气体分离膜的表面SEM图;
从图1可知,实施例一制备的金属有机框架ZIF-8/聚多巴胺杂化分子筛气体分离膜表面致密连续无缺陷。
图2为实施例一制备的金属有机框架ZIF-8/聚多巴胺杂化分子筛气体分离膜的截面SEM图;
从图2可知,实施例一制备的金属有机框架ZIF-8/聚多巴胺杂化分子筛气体分离膜厚度约为5μm。
图3为XRD图,图3中1为纯ZIF-8的XRD曲线,2为施例一制备的金属有机框架ZIF-8/聚多巴胺杂化分子筛气体分离膜的XRD曲线;
从图3可知杂化分子筛膜的XRD曲线主要的峰位与纯ZIF-8类似,多巴胺的引入不改变ZIF-8的晶体结构。
图4为实施例一制备的金属有机框架ZIF-8/聚多巴胺杂化分子筛气体分离膜的气体渗透通量曲线;
从图4可知,通过实施例一制备的金属有机框架ZIF-8/聚多巴胺杂化分子筛气体分离膜的气体的渗透通量随分子动力学半径增加而显著降低;
图5为气体通量的理想选择性柱状图。
H2/N2表示H2的渗透通量和N2的渗透通量的比值;H2/CH4表示H2的渗透通量和CH4的渗透通量的比值;H2/C3H6表示H2的渗透通量和C3H6的渗透通量的比值;H2/C3H8表示H2的渗透通量和C3H8的渗透通量的比值;
从图5可知,实施例一制备的金属有机框架ZIF-8/聚多巴胺杂化分子筛气体分离膜对H2表现出了较好的选择性。

Claims (10)

1.一种金属有机框架ZIF-8/聚多巴胺杂化分子筛气体分离膜的制备方法,其特征在于一种金属有机框架ZIF-8/聚多巴胺杂化分子筛气体分离膜的制备方法是按以下步骤完成的:
一、制备含有Zn(NO3)2·6(H2O)和多巴胺的水溶液:将Zn(NO3)2·6(H2O)和多巴胺溶解到去离子水中,再超声分散10min~30min,得到含有Zn(NO3)2·6(H2O)和多巴胺的水溶液;
步骤一中所述的Zn(NO3)2·6(H2O)的质量与去离子水的体积比为(0.1g~0.2g):20mL;
步骤一中所述的多巴胺的质量与去离子水的体积比为(0.015g~0.2g):20mL;
二、将2-甲基咪唑溶解到去离子水中,再超声分散10min~30min,得到2-甲基咪唑水溶液;
步骤二中所述的2-甲基咪唑的质量与去离子水的体积比为(2g~2.4g):20mL;
三、将多孔阳极氧化铝模板固定于玻璃砂芯过滤器的滤芯上,再将含有Zn(NO3)2·6(H2O)和多巴胺的水溶液与2-甲基咪唑水溶液加入到过滤器的滤芯中,再在室温下静置反应8h~24h,得到氧化铝支撑的杂化分子筛膜;
步骤三中所述的含有Zn(NO3)2·6(H2O)和多巴胺的水溶液与2-甲基咪唑水溶液的体积比为1:1;
四、将步骤三中得到的氧化铝支撑的杂化分子筛膜浸入到去离子水中24h~48h,取出后再在空气中晾干,再放入温度为60℃~80℃的真空干燥箱中干燥12h~48h,得到金属有机框架ZIF-8/聚多巴胺杂化分子筛气体分离膜。
2.根据权利要求1所述的一种金属有机框架ZIF-8/聚多巴胺杂化分子筛气体分离膜的制备方法,其特征在于步骤一中所述的Zn(NO3)2·6(H2O)的质量与去离子水的体积比为0.11g:20mL。
3.根据权利要求1所述的一种金属有机框架ZIF-8/聚多巴胺杂化分子筛气体分离膜的制备方法,其特征在于步骤一中所述的多巴胺的质量与去离子水的体积比为(0.04g~0.1g):20mL。
4.根据权利要求1所述的一种金属有机框架ZIF-8/聚多巴胺杂化分子筛气体分离膜的制备方法,其特征在于步骤一中所述的多巴胺的质量与去离子水的体积比为(0.1g~0.2g):20mL。
5.根据权利要求1所述的一种金属有机框架ZIF-8/聚多巴胺杂化分子筛气体分离膜的制备方法,其特征在于步骤二中所述的2-甲基咪唑的质量与去离子水的体积比为2.27g:20mL。
6.根据权利要求1所述的一种金属有机框架ZIF-8/聚多巴胺杂化分子筛气体分离膜的制备方法,其特征在于步骤三中所述的多孔阳极氧化铝模板的直径为13mm~47mm,孔隙率为60%。
7.根据权利要求1所述的一种金属有机框架ZIF-8/聚多巴胺杂化分子筛气体分离膜的制备方法,其特征在于步骤三中所述的多孔阳极氧化铝模板的孔径为0.02μm~0.1μm。
8.根据权利要求1所述的一种金属有机框架ZIF-8/聚多巴胺杂化分子筛气体分离膜的制备方法,其特征在于步骤三中所述的多孔阳极氧化铝模板的孔隙率为20%~60%。
9.根据权利要求1所述的一种金属有机框架ZIF-8/聚多巴胺杂化分子筛气体分离膜的制备方法,其特征在于步骤一中所述的超声分散的功率为80W~100W。
10.根据权利要求1所述的一种金属有机框架ZIF-8/聚多巴胺杂化分子筛气体分离膜的制备方法,其特征在于步骤二中所述的超声分散的功率为80W~100W。
CN201610438226.9A 2016-06-17 2016-06-17 一种金属有机框架zif-8/聚多巴胺杂化分子筛气体分离膜的制备方法 Active CN106000132B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610438226.9A CN106000132B (zh) 2016-06-17 2016-06-17 一种金属有机框架zif-8/聚多巴胺杂化分子筛气体分离膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610438226.9A CN106000132B (zh) 2016-06-17 2016-06-17 一种金属有机框架zif-8/聚多巴胺杂化分子筛气体分离膜的制备方法

Publications (2)

Publication Number Publication Date
CN106000132A CN106000132A (zh) 2016-10-12
CN106000132B true CN106000132B (zh) 2018-09-14

Family

ID=57087894

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610438226.9A Active CN106000132B (zh) 2016-06-17 2016-06-17 一种金属有机框架zif-8/聚多巴胺杂化分子筛气体分离膜的制备方法

Country Status (1)

Country Link
CN (1) CN106000132B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108178120A (zh) * 2017-12-27 2018-06-19 温州大学 阳极氧化铝膜表面纳米阵列的形貌及在纳米限域空间里控制其形貌生长的方法、应用
CN109847586B (zh) * 2018-12-20 2021-05-14 时代沃顿科技有限公司 高通量反渗透膜及其制备方法和用途
CN109985247A (zh) * 2019-04-03 2019-07-09 河南科技学院 一种用于药物释放的杂化金属有机骨架化合物的制备方法
CN114682224B (zh) * 2020-12-31 2024-02-09 中国石油化工股份有限公司 一种含氯苯有机废气吸附剂及其制备方法和应用
CN113209833B (zh) * 2021-04-25 2022-03-18 湖南万脉医疗科技有限公司 一种耐腐蚀混合基质分子筛膜及其制备方法
CN114259888B (zh) * 2021-12-21 2023-03-10 中国科学院过程工程研究所 一种分子筛-金属有机框架复合膜及其制备方法与应用
CN115920679B (zh) * 2022-12-27 2023-07-18 威海智洁环保技术有限公司 一种MOFs过渡层修饰的耐溶剂纳滤膜的制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010012660A1 (en) * 2008-07-31 2010-02-04 Shell Internationale Research Maatschappij B.V. Process for producing alcohol
CN104108722A (zh) * 2013-04-18 2014-10-22 中国科学院大连化学物理研究所 一种多孔氧化铝载体支撑的zif-8膜的制备方法
CN104415670A (zh) * 2013-08-23 2015-03-18 中国科学院宁波材料技术与工程研究所 一种金属有机框架膜及其制备方法和应用
CN104772046A (zh) * 2015-04-09 2015-07-15 中国科学院宁波材料技术与工程研究所 沸石咪唑类金属有机框架zif-8膜制备及在海水淡化中的应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010012660A1 (en) * 2008-07-31 2010-02-04 Shell Internationale Research Maatschappij B.V. Process for producing alcohol
CN104108722A (zh) * 2013-04-18 2014-10-22 中国科学院大连化学物理研究所 一种多孔氧化铝载体支撑的zif-8膜的制备方法
CN104415670A (zh) * 2013-08-23 2015-03-18 中国科学院宁波材料技术与工程研究所 一种金属有机框架膜及其制备方法和应用
CN104772046A (zh) * 2015-04-09 2015-07-15 中国科学院宁波材料技术与工程研究所 沸石咪唑类金属有机框架zif-8膜制备及在海水淡化中的应用

Also Published As

Publication number Publication date
CN106000132A (zh) 2016-10-12

Similar Documents

Publication Publication Date Title
CN106000132B (zh) 一种金属有机框架zif-8/聚多巴胺杂化分子筛气体分离膜的制备方法
Wang et al. Unidirectional diffusion synthesis of covalent organic frameworks (COFs) on polymeric substrates for dye separation
Ying et al. A GO-assisted method for the preparation of ultrathin covalent organic framework membranes for gas separation
CN106621864B (zh) MOFs-交联聚乙二醇二丙烯酸酯混合基质膜及制备和应用
CN107158964B (zh) 一种基于金属有机骨架纳米片和氧化石墨烯的复合膜材料、制备方法及在气体分离上的应用
CN106390768B (zh) 一种沸石咪唑酯骨架/聚酰胺复合膜及其制备方法
Li et al. Preparation of continuous NH2–MIL-53 membrane on ammoniated polyvinylidene fluoride hollow fiber for efficient H2 purification
CN104174299B (zh) 基于超薄支撑层的高通量正渗透膜及其制备方法
KR102201876B1 (ko) 메탄 선택적 작용기가 도입된 유무기 복합 다공체를 포함하는 메탄 선택성 복합 분리막, 이의 용도 및 이의 제조방법
CN103657436B (zh) 一种高强度的中空纤维分子筛膜及其制备方法
US20170266623A1 (en) Method for preparing tubular graphene composite membrane
CN104415670A (zh) 一种金属有机框架膜及其制备方法和应用
CN113041855B (zh) 一种二维多孔MXene膜及其制备方法和应用
CN108816058B (zh) 一种大黄素分子印迹二氧化钛纳米粒子复合膜及其制备方法与应用
CN109553103B (zh) 一种二维自交联MXene膜及其制备方法
CN101920170A (zh) 一种高通量的分子筛透醇膜及其制备方法
CN113713634A (zh) 金属有机框架和共价有机框架复合膜及制备和应用
CN102500250A (zh) 高分子-无机杂化膜及制备方法和应用
CN104693474A (zh) 三维多孔材料的制备方法
CN107297156A (zh) 一种基于界面聚合的复合正渗透膜的制备方法
Wu et al. Research progress on the substrate for metal–organic framework (MOF) membrane growth for separation
CN113019137B (zh) MXene@COF复合膜的制备及其应用
CN113385055A (zh) 一种基于复合材料UiO-66@HNT的混合基质膜的制备方法
CN110951075B (zh) 一种氢键共价有机聚合物材料hcop-6的合成方法
CN111440354A (zh) 一种贯通多级孔结构双酚a分子印迹复合膜的制备方法及应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20230811

Address after: 214200 Nanyue village, Xinjie street, Yixing City, Wuxi City, Jiangsu Province

Patentee after: Yixing Environmental Protection Industry Co.,Ltd.

Address before: 9-12 / F, environmental protection technology building, No. 501, Lvyuan Road, Yixing, Wuxi City, Jiangsu Province, 214205

Patentee before: HIT YIXING ACADEMY OF ENVIRONMENTAL PROTECTION

TR01 Transfer of patent right