CN105957673B - 一种各向同性稀土永磁粉及其制备方法 - Google Patents

一种各向同性稀土永磁粉及其制备方法 Download PDF

Info

Publication number
CN105957673B
CN105957673B CN201610143761.1A CN201610143761A CN105957673B CN 105957673 B CN105957673 B CN 105957673B CN 201610143761 A CN201610143761 A CN 201610143761A CN 105957673 B CN105957673 B CN 105957673B
Authority
CN
China
Prior art keywords
rare earth
magnetic
foundry alloy
phase
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610143761.1A
Other languages
English (en)
Other versions
CN105957673A (zh
Inventor
朱洁
卢赐福
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Beijing USTB
Original Assignee
University of Science and Technology Beijing USTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB filed Critical University of Science and Technology Beijing USTB
Priority to CN201610143761.1A priority Critical patent/CN105957673B/zh
Publication of CN105957673A publication Critical patent/CN105957673A/zh
Application granted granted Critical
Publication of CN105957673B publication Critical patent/CN105957673B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0551Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0557Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

一种各向同稀土永磁粉的制备方法,属于磁性材料领域。稀土永磁粉由母合金氮化得到,其母合金以原子百分比所表示的组成成分为:RxT100‑x‑y‑zM1yM2z,式中,R是稀土元素Sm或者Sm与其他稀土元素的组合,5≤x≤20;T是铁或者是铁和钴;M1是Si、Al、Ni、Ti、V、Cr、Zr、Hf、Nb、Ta、Mo、W中至少一种元素,0.1≤y≤10;M2是Cu、Zn中至少一种元素,0.1≤z≤10;永磁粉母合金由两类相构成,一类是由R、T、M1元素组成,具有Th2Zn17或者Th2Ni17型结构的主相,另一类是由R、M2元素组成的晶界相。制备步骤包括熔炼、熔体快淬、热处理、破碎、氮化。本发明中的磁粉具有高矫顽力、高稳定性的特点,适合在潮湿、高温等苛刻条件下使用。

Description

一种各向同性稀土永磁粉及其制备方法
技术领域
本发明属于磁性材料领域,涉及到一种各向同稀土永磁粉的制备方法,所述磁粉主要用作制备各向同性粘结永磁。
背景技术
1982年住友特殊金属的佐川真人(Masato Sagawa)发明了烧结Nd-Fe-B永磁体,因其具有到目前为止最高的磁能积、高矫顽力、原材料较低廉且制备方法简单而得到广泛应用,是目前使用最广泛的稀土永磁。使用通用电气公司发明的快淬Nd-Fe-B磁粉制备成的粘结磁体因其具有高尺寸精度、方便制备异形磁体也得到市场的广泛认可。稀土永磁成为现代社会中重要的基础材料,在计算机、汽车、仪器、仪表、家用电器、石油化工、医疗保健、航空航天等行业中广泛应用。
Nd-Fe-B基磁体可以制备成具有高矫顽力的磁体,其矫顽力的一个重要来源是,具有由富钕相包裹、边界平滑的主相Nd2Fe14B晶粒的微观组织,这种微观组织中的主相因晶粒因边界平滑而减小了退磁场和杂散场、提高了反向畴的形核场,而晶间弱磁性相能够有效钉扎磁畴。
1990年爱尔兰三一大学Coey教授研究组和北京大学杨应昌院士研究组基于在稀土-过渡金属化合物中氮的间隙原子效应,发现Sm2Fe17Nx(简称钐铁氮)与Nd(Fe,M)12Nx(简称钕铁氮)具有优异的内禀磁性,可与钕铁硼相媲美,并且具有比钕铁硼更高的居里温度,钐铁氮和钕铁氮被认为是下一代稀土永磁的候选者。
公知Sm2Fe17N3化合物在晶粒尺寸接近单轴粒子时才能表现出高的矫顽力,为了获得晶粒细小的组织,现有的方法主要有两类,一类是直接制备出晶粒尺寸小于单畴尺寸的母合金,这类方法有:机械合金化法(MA)、氢化歧化法(HDDR)及熔体快淬法(RQ);采用这类方法的专利有CN1202537C、CN1230755A、US5288339、US5395459、CN1286602C、CN100513015C、EP1043099B1、EP1043099B1、US6334908、CN1144240C、CN1144240C、CN1230755A、US6290782、CN102248157B、CN102737801B等。另一类是,先制备出晶粒尺寸较大的母合金,然后把母合金直接破碎至单畴尺寸或者先氮化在磁粉破碎成单畴颗粒,这类方法有:粉末冶金法(PM)、还原扩散法(R/D);采用这类方法的专利有US5482572、CN1093311C、CN103785847A、CN1254338C、CN100437841C。以上工艺均是在先制备出单相的母合金基础上经过氮化获得R2Fe17N3的。
从公知的Sm-Fe二元相图可知,当Sm含量低于10.526at.%时,合金中必然形成有损于永磁矫顽力的软磁相α-Fe;而当Sm含量高于10.526at.%时,合金中会形成富Sm的SmFe2或者SmFe3相,富Sm相在氮化过程中容易分解产生α-Fe而不利于磁粉矫顽力;只有当Sm含量刚好是10.526at.%时,合金才能形成单相。
制备单一相的母合金对于制备具有高矫顽力的Sm-Fe-N基永磁是关键步骤,由于Sm原子是容易挥发的元素,这导致制备单一Sm2Fe17相的母合金极具挑战。
各向同性永磁粉具有易于成型、制备工艺简单的优势;本发明改进合金的成分使之有利于形成能够容纳多余Sm原子并且具有磁隔绝作用的弱磁性晶界相,这种改进有利于降低Sm-Fe-N基永磁粉的制备难度,并能够提高磁粉的矫顽力及方形度。
发明内容
本发明的目的是提供一种适合制备各向同性磁粉的合金成分和相应的制备工艺,这种磁粉具有良好的抗氧化性和耐蚀性。为达到以上目的,本发明改进合金的成分使之有利于形成具有磁隔绝作用的弱磁性晶界相,并制定了相应的制备工艺。这种合金的成分和工艺尤其适合制备Sm2Fe17Nx(简称钐铁氮)基的各向同性磁粉。
一种各向性同稀土永磁粉的制备方法,本发明所述的稀土永磁粉由母合金氮化得到,其母合金以原子百分比所表示的组成成分为:
RxT100-x-y-zM1yM2z
式中,R是稀土元素Sm或者Sm与其他稀土元素的组合,10.5≤x≤20;T是铁或者是铁和钴;M1是Si、Al、Ni、Ti、V、Cr、Zr、Hf、Nb、Ta、Mo、W中至少一种元素,0.1≤y≤10;M2是Cu、Zn中至少一种元素,1≤z≤10;所述永磁粉,其母合金由两类相构成,一类是由R、T、M1元素组成,具有Th2Zn17或者Th2Ni17型结构的主相,另一类是由R、M2元素组成的晶界相。
M1具有促进主相形成、抑制α-Fe析出及细化主相晶粒作用,母合金中应至少含0.1at.%元素;M1是非磁性元素,过量加入会使得磁粉的饱和磁极化强度降低,所以需要把M1的原子百分比控制在10at%以内。
M2与R结合形成熔点低于1000℃的低熔点相,分布在熔点更高的主相晶粒间,M2的比例为1-10at.%。
公知在R2Fe17化合物中,只有Sm2Fe17的氮化物具有单轴各向异性;不过,Y2Fe17N2.8、Ce2Fe17N2.8、Pr2Fe17N2.8及Nd2Fe17N2.5均具有比Sm2Fe17N2.3更高的饱和磁极化强度,用适当比例的Y、Ce、Pr、Nd代替Sm能够在保持主相是单轴各向异性的前提下提高磁粉的剩磁,所以R中30at.%的Sm可以用Ce、Pr、Nd代替。
在R2Fe17N3中,少量Co取代Fe能够提高其居里温度,过量取代则有损磁晶各向异性场,所以T中Fe需占70at.%以上。
R主要与T及M1反应形成R2Fe17,R的比例为10.5-20at.%
由化学式RxT100-x-y-zM1yM2z所表示用于制备本发明各向异性磁粉的母合金成分,可示例如:
Sm11.9 Cu4Febal
Sm13.6 Cu4 Febal
Sm13.6 Cu4Co5 Nb0.5Febal
Sm11.6Pr2 Cu4 Febal
Sm11.6Nd2 Cu4 Nb0.5Febal
Sm12.5Cu4Nb0.5 Febal
Sm11.8Cu4Nb1Febal
Sm10.8La1Cu4Zr0.5Febal
Sm10.5Cu2 Zr0.5Febal
Sm10.8Cu2 Zr0.5Fe bal
Sm11.2Cu2 Zr0.5Fe bal
Sm11.2Cu2Al 1Febal
Sm11.2Cu2ZrFebal
Sm11.8 Zn4 Zr0.5Febal
Sm13.6Zn4 Zr0.5Febal
Sm11.6Pr2 Zn4 Zr0.5Febal
Sm11.6Nd2 Zn4 Zr0.5Febal
…………………………
制造具有上述母合金成分的稀土永磁粉的制备工艺包括以下步骤:
1)以金属元素R、T、M1、M2作为原料,在氩气保护下进行感应熔炼,熔体使用速度为10-60m/s的水冷铜辊制备成厚度为10-500μm的快淬薄带(即熔体快淬);
2)对快淬薄带在700-1000℃在氩气保护下进行0-2小时的热处理;
3)将上述薄带破碎成粒度为50-2000微米的粉末;
4)对初步破碎的磁粉在350-550℃的高纯氮气2-20小时;
上述磁粉制备工艺,步骤1)的熔体快淬,铜辊的表面线速度范围是10-50m/s,所制备快淬薄带厚度在20μm-500μm之间。当辊速低于30m/s时,其显微组织具有以下特征:由R、T、M1元素组成的主相具有Th2Zn17或者Th2Ni17型结构,晶粒尺寸为10-1000nm;由M2与R元素组成的晶界相熔点低于1000℃,均匀分布在主相晶界处,厚度为1nm-20nm;当辊速高于30m/s时,薄带中含有非晶相。
上述磁粉制备工艺,步骤2)的作用是,消除步骤1)中未能反应完全的α-Fe;优化晶间相的分布,改善主相的边界微结构,减少主相晶粒上尖锐的边角;当薄带中含有非晶相时,可以通过步骤2)实现非晶晶化。
上述磁粉制备工艺,步骤3)的作用是,提高磁粉氮化的动力学性能,使得母合金均匀、完全地氮化,有利于在在步骤4)中消除未氮化完全母合金的对磁粉矫顽力的损害。
上述磁粉制备工艺,步骤4)的作用是,氮原子进入Th2Zn17或者Th2Ni17型主相,促使Th2Zn17或者Th2Ni17型Sm-Fe基化合物从易基面磁化变成易c轴磁化;氮化在安装有搅拌装置的旋转炉体中进行。
上述磁粉制备工艺,步骤4)中磁粉经氮化后,磁粉由晶粒尺寸为10-1000nm的Sm2Fe17Nx(简称钐铁氮)主相、厚度为1-20nm、由M2、R及N组成的晶界相组成,这种磁粉具有优越的综合性能,适合用于制备各向同性粘结磁体。
本发明的积极效果在于,在母合金中引入由R及M2组成的晶界相,母合金粉经氮化后,磁粉由主相Sm2Fe17Nx及晶界相构成,磁粉具有高矫顽力和方形度。晶氮化后的磁粉界相由RN及M2-N化合物构成,由于主相和晶界相均耐蚀、耐氧化,因此,本发明磁粉具有高矫顽力、高稳定性的特点,适合在潮湿、高温等苛刻条件下使用。
具体实施方式
实施例1
用纯度为99.9%的稀土Sm、纯铁、纯Zn为原料,按照按照以下5种化学式配料:(1)Sm11.32Fe87.28Al0.40Zn1.00,(2)Sm13.68Fe81.92Al0.40Zn4.00,(3)Sm15.26Fe7834Al0.40Zn6.00,(4)Sm18.42Fe71.18Al0.40Zn10.00;由于Sm容易挥发,在计算量的基础上多加10%作为补偿。将配好的原料放入感应熔炼炉中,在氩气保护下,使用感应加热合金至原料完全熔融均匀,这时候熔体的温度约为1550℃,用水冷铜模浇注成合金锭;将合金锭破碎成粒度尺寸为10-15mm的小块,置20g合金锭于石英管中,石英管底部开有直接为0.8mm的小口,在氩气保护下,以30m/s的辊速制备快淬薄带;将快淬薄带置于刚玉坩埚中,在750℃、氩气保护下进行30min热处理后空冷;将快淬薄带破碎成100μm的颗粒,使用高纯氮气在450℃下氮化磁粉10小时,通过气-固反应将主相氮化成Sm2Fe17Nx;混合磁粉与石蜡制备成震动磁强计(VSM)样品,扣除非磁性的石蜡,磁粉的磁性能如下表:
表1.各成分母合金氮化后的磁性能
母合金成分 Br(T) Hcj(kA/m) (BH)max(kJ/m3) Tc(K)
Sm11.32Fe87.28Al0.40Zn1.00 0.68 1403 90.1 743
Sm13.68Fe81.92Al0.40Zn4.00 0.67 1586 89.8 743
Sm15.26Fe7834Al0.40Zn6.00 0.61 1720 73.6 743
Sm18.42Fe71.18Al0.40Zn10.00 0.53 1934 56.2 743
Sm10.68Nd3Fe81.92Al0.40Zn4.00 0.69 1386 94.7 737
实施例2
用纯度为99.9%的稀土Sm、纯铁、纯Cu为原料,按照以下5种化学式配料:(1)Sm10.53Fe89.47,(2)Sm11.32Fe87.28Al0.40Cu1.00,(3)Sm13.68Fe81.92Al0.40Cu4.00,(4)Sm15.26Fe7834Al0.40Cu6.00,(5)Sm18.42Fe71.18Al0.40Cu10.00;由于Sm容易挥发,在计算量的基础上多加10%作为补偿。将配好原料放入感应熔炼炉中,在氩气保护下,使用感应加热合金至原料完全熔融均匀,这时候熔体的温度约为1550℃,用水冷铜模浇注成合金锭;将合金锭破碎成粒度尺寸为10-15mm的小块,置20g合金锭于石英管中,石英管底部开有直接为0.8mm的小口,在氩气保护下,以30m/s的辊速制备快淬薄带;将快淬薄带置于刚玉坩埚中,在750℃、氩气保护下进行30min热处理后空冷;将快淬薄带破碎成100μm的颗粒,使用高纯氮气在450℃下氮化磁粉10小时,通过气-固反应将主相氮化成Sm2Fe17Nx;混合磁粉与石蜡制备成震动磁强计(VSM)样品,扣除非磁性的石蜡,磁粉的磁性能如下表:
表2.各成分母合金氮化后的磁性能
母合金成分 Br(T) Hcj(kA/m) (BH)max(kJ/m3) Tc(K)
Sm10.53Fe89.47 0.71 543 96.8 743
Sm11.32Fe87.28Al0.40Cu1.00 0.68 1173 94.6 743
Sm13.68Fe81.92Al0.40Cu4.00 0.67 1696 88.3 743
Sm15.26Fe7834Al0.40Cu6.00 0.62 1860 78.5 743
Sm18.42Fe71.18Al0.40Cu10.00 0.58 2024 60.3 743

Claims (1)

1.一种各向同性稀土永磁粉的制备方法,其特征在于具体制备步骤如下:
1)以金属元素R、T、M1、M2作为原料,在氩气保护下进行感应熔炼,熔体使用速度为10-60m/s的水冷铜辊制备成厚度为10-500μm的快淬薄带,即熔体快淬;
2)对快淬薄带在700-1000℃在氩气保护下进行0-2小时的热处理;
3)将经过步骤2)热处理的薄带破碎成粒度为50-2000微米的粉末;
4)对初步破碎的磁粉在350-550℃的高纯氮气中氮化2-20小时;
其中,稀土永磁粉由母合金氮化得到,其母合金以原子百分比所表示的组成成分为:
RxT100-x-y-zM1yM2z
式中,R是稀土元素Sm或者Sm与其他稀土元素的组合,5≤x≤20;T是铁或者是铁和钴;M1是Si、Al、Ni、Ti、V、Cr、Zr、Hf、Nb、Ta、Mo、W中至少一种元素,0.1≤y≤10;M2是Cu、Zn中至少一种元素,1≤z≤10;所述永磁粉,其母合金由两类相构成,一类是由R、T、M1元素组成,具有Th2Zn17或者Th2Ni17型结构的主相,另一类是由R、M2元素组成的晶界相;
步骤1)和2)所制备的母合金,其显微组织具有以下特征:由R、T、M1元素组成的主相具有Th2Zn17或者Th2Ni17型结构,晶粒尺寸为10-1000nm;由M2与R元素组成的弱磁性晶界相熔点低于1000℃,均匀分布在主相晶界处,厚度为1nm-20nm;
步骤4)中磁粉经氮化后,磁粉由晶粒尺寸为10-1000nm的Sm2Fe17Nx主相,厚度为1-20nm,由M2、R及N组成的晶界相组成。
CN201610143761.1A 2016-03-14 2016-03-14 一种各向同性稀土永磁粉及其制备方法 Expired - Fee Related CN105957673B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610143761.1A CN105957673B (zh) 2016-03-14 2016-03-14 一种各向同性稀土永磁粉及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610143761.1A CN105957673B (zh) 2016-03-14 2016-03-14 一种各向同性稀土永磁粉及其制备方法

Publications (2)

Publication Number Publication Date
CN105957673A CN105957673A (zh) 2016-09-21
CN105957673B true CN105957673B (zh) 2017-11-28

Family

ID=56917501

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610143761.1A Expired - Fee Related CN105957673B (zh) 2016-03-14 2016-03-14 一种各向同性稀土永磁粉及其制备方法

Country Status (1)

Country Link
CN (1) CN105957673B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7056488B2 (ja) * 2018-09-21 2022-04-19 トヨタ自動車株式会社 磁性粒子及び磁性粒子成形体並びにその製造方法
CN110211793A (zh) * 2019-04-28 2019-09-06 深圳市吉胜华力科技有限公司 一种稀土永磁材料制备方法
CN110211792A (zh) * 2019-04-28 2019-09-06 深圳市吉胜华力科技有限公司 一种稀土永磁材料制备方法
CN113611470B (zh) * 2021-08-24 2022-12-16 横店集团东磁股份有限公司 一种间隙稀土永磁合金材料及其制备方法
CN114101654B (zh) * 2021-09-16 2023-06-16 华北理工大学 一种高性能SmFe12基永磁粉体及其制备方法
CN117275927B (zh) * 2023-11-20 2024-01-26 天通控股股份有限公司 一种防锈的高性能软磁金属粉末及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1144240C (zh) * 1998-03-27 2004-03-31 东芝株式会社 磁性材料
TW503409B (en) * 2000-05-29 2002-09-21 Daido Steel Co Ltd Isotropic powdery magnet material, process for preparing and resin-bonded magnet
CN103785845B (zh) * 2014-01-21 2015-08-05 北京科技大学 一种微细球形Sm-Fe-N系永磁粉的制备方法
CN105355354B (zh) * 2015-12-15 2017-12-08 北京科技大学 一种钐铁氮基各向异性稀土永磁粉及其制备方法

Also Published As

Publication number Publication date
CN105957673A (zh) 2016-09-21

Similar Documents

Publication Publication Date Title
CN105355354B (zh) 一种钐铁氮基各向异性稀土永磁粉及其制备方法
CN105957673B (zh) 一种各向同性稀土永磁粉及其制备方法
CN105609224B (zh) 一种各向异性钐铁氮永磁粉的制备方法
Rong et al. Nanocrystalline and nanocomposite permanent magnets by melt spinning technique
JP6503483B2 (ja) 高熱安定性の希土類永久磁石材料、その製造方法及びそれを含む磁石
Ni et al. Study on magnetic properties of Ce17Fe78− xZrxB6 (x= 0–2.0) alloys
JP6163258B2 (ja) 希土類永久磁石粉末、それを含む接着性磁性体及び当該接着性磁性体を応用した素子
CN103280290A (zh) 含铈低熔点稀土永磁液相合金及其永磁体制备方法
JP2011187624A (ja) 希土類系永久磁石およびその製造方法
Rehman et al. Microstructure and magnetic properties of NdFeB alloys by co-doping alnico elements
JP2013197414A (ja) 焼結体とその製造方法
Makridis et al. Structural and magnetic properties of Sm (Co0. 7Fe0. 1Ni0. 12Zr0. 04B0. 04) 7.5 melt spun isotropic and anisotropic ribbons
Huang et al. Production of anisotropic hot deformed Nd-Fe-B magnets with the addition of Pr-Cu-Al alloy based on nanocomposite ribbon
JP2013042004A (ja) α−Fe/R2TM14B系ナノコンポジット磁石の製造方法
Croat et al. The history of permanent magnets
CN106710764B (zh) 一种SmCo5基永磁薄带磁体及其制备方法
US20220076867A1 (en) Reduced critical rare earth high temperature magnet
JP3264664B1 (ja) 複数の強磁性相を有する永久磁石およびその製造方法
Saito et al. The origin of high-saturation magnetization in Co-Zr-C melt-spun ribbons
JP2015529004A (ja) 希土類永久磁石粉末、ボンド磁石及び当該ボンド磁石を応用するデバイス
Saito Magnetization process in Co-Zr-B permanent-magnet materials
JP4742228B2 (ja) 希土類磁石用合金薄帯及び製造方法、希土類磁石用合金
CN103700459A (zh) 一种提高烧结钕铁硼永磁材料矫顽力的制备方法
JP3763774B2 (ja) 鉄基希土類合金磁石用急冷合金、及び鉄基希土類合金磁石の製造方法
JPS60187662A (ja) 強磁性合金

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20171128