CN105874032B - 开采矿物油的方法 - Google Patents

开采矿物油的方法 Download PDF

Info

Publication number
CN105874032B
CN105874032B CN201480072192.5A CN201480072192A CN105874032B CN 105874032 B CN105874032 B CN 105874032B CN 201480072192 A CN201480072192 A CN 201480072192A CN 105874032 B CN105874032 B CN 105874032B
Authority
CN
China
Prior art keywords
group
copolymer
weight
monomer
methyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201480072192.5A
Other languages
English (en)
Other versions
CN105874032A (zh
Inventor
B·朗洛茨
T·齐默尔曼
R·赖兴巴赫-克林克
C·比特纳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of CN105874032A publication Critical patent/CN105874032A/zh
Application granted granted Critical
Publication of CN105874032B publication Critical patent/CN105874032B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/56Acrylamide; Methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/24Homopolymers or copolymers of amides or imides
    • C08L33/26Homopolymers or copolymers of acrylamide or methacrylamide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/58Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids
    • C09K8/588Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids characterised by the use of specific polymers
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2800/00Copolymer characterised by the proportions of the comonomers expressed
    • C08F2800/20Copolymer characterised by the proportions of the comonomers expressed as weight or mass percentages

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Processing Of Solid Wastes (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

一种从地下石油油藏中开采石油的方法,其中将包含至少一种水溶性疏水缔合共聚物的含水配制剂经由至少一个注入井注入油藏温度为20‑120℃的石油油藏中,且经由至少一个采出井从油藏中抽出原油;所述水溶性共聚物至少包含丙烯酰胺或其衍生物和含至少两种两亲性大分子单体的混合物。

Description

开采矿物油的方法
本发明涉及一种从地下矿物油油藏开采矿物油的方法,其中将包含至少一种水溶性疏水缔合共聚物的含水配制剂经由至少一个注入井注入具有20-120℃油藏温度的矿物油油藏中,并经由至少一个采出井从所述油藏中抽出原油,其中所述水溶性共聚物至少包含丙烯酰胺和/或其衍生物和含至少两种两亲性大分子单体的混合物。
在天然矿物油油藏中,矿物油存在于多孔储集岩的孔隙中,所述储集岩在朝向地表处被不透性上覆地层密封。所述孔隙可为极细的孔隙、毛细管、孔等。细孔颈可具有例如仅约1μm的直径。除矿物油(包括天然气级分)之外,油藏通常还包含具有或高或低盐含量的水。
如果矿物油油藏具有足够的自生压力,则在开始钻探油藏后,矿物油由于该自生压力而自发经由井流至地表(一次矿物油开采)。然而,即使首先存在足够的自生压力,油藏的自生压力通常在矿物油抽出期间较快地降低,因此根据油藏类型,通常仅可以此方式采出存在于油藏中的矿物油量中的少量。
因此,当一次开采降低时,一种已知方法是除用于开采矿物油的井(称为采出井)之外,在含矿物油的地层中钻入其他井。经由这些所谓的注入井,将水注入油藏中,从而保持压力或将其再次升高。水的注入驱使矿物油通过地层中的孔隙,从而由注入井逐步沿采出井的方向推进。该技术称为水驱替,其是一种称为二次采油的技术。然而,在水驱替中,总是存在如下风险:流动的水不均匀地流经地层且由此驱动油,而是由注入井流至采出井,特别是沿具有低流动阻力的路径流动,而不驱动油,因而仅存在少量(如果有的话)通过地层中的具有高流动阻力的区域的流动。这由如下事实察觉:经由采出井采出的水比例进一步提高。借助一次和二次采油,通常可采出存在于油藏中的矿物油量的约30-35%。
如果不可能或者不再可能借助一次或二次矿物油开采而实现经济可行的开采,则一种已知方法是使用三次开采矿物油的技术(也称为“提高油采收率(EOR)”)以提高油产量。三次矿物油开采包括其中使用合适的化学品,例如表面活性剂和/或聚合物作为采油助剂的方法。使用化学品进行三次采油的综述可参见例如D.G.Kessel的论文,Journal ofPetroleum Science and Engineering,2(1989)81-101。
三次矿物油开采技术包括所谓的“聚合物驱替”。聚合物驱替包括将增稠聚合物的水溶液经由注入井注入矿物油油藏中,其中所述聚合物水溶液的粘度与矿物油的粘度匹配。通过注入聚合物溶液,矿物油如在水驱替情况下那样由注入井沿采出井前进的方向被驱使通过地层中的所述孔隙,且经由采出井采出矿物油。由于聚合物配制剂具有与矿物油大致相同的粘度,因此聚合物配制剂突破至采出井而不起作用的风险降低。因此,与使用可流动的水相比,矿物油的流动要均匀得多,且可驱动地层中的额外矿物油。聚合物驱替和适于该目的的聚合物的细节公开在例如“Petroleum,Enhanced Oil Recovery,Kirk-Othmer,Encyclopedia of Chemical Technology,在线版,John Wiley&Sons,2010”中。
一种已知方法是使用疏水缔合共聚物来进行聚合物驱替。“疏水缔合共聚物”应由本领域技术人员理解为意指具有侧或端疏水基团,例如较长烷基链的水溶性聚合物。在水溶液中,该类疏水基团可彼此或与具有疏水基团的其他物质缔合。这形成缔合性网络,其导致(额外的)增稠效果。使用疏水缔合共聚物来进行三次矿物油开采的细节例如描述在Taylor,K.C.和Nasr-El-Din,H.A.的综述性论文J.Petr.Sci.Eng.1998,19,265-280中。
WO85/03510A1公开了重均分子量Mw为800 000-3百万g/mol的水溶性疏水缔合共聚物及其在三次矿物油开采中的用途。所述共聚物包含40-99.9摩尔%丙烯酰胺、0-50摩尔%丙烯酸和0.1-10摩尔%大分子单体H2C=CH-COO-(EO)5-40-R,其中EO表示亚乙氧基且R为具有8-16个碳原子的烷基。
WO2006/002936A1公开了由(甲基)丙烯酰胺、磺基改性的(甲基)丙烯酰胺如ATBS,和包含聚烷氧基的烯丙基醚或丙烯酸酯组成的水溶性共聚物。所述聚烷氧基可包含具有10-40个碳原子的端烃基。该文献进一步公开了该类共聚物作为含水建筑材料体系如水泥、石灰或石膏的添加剂的用途。
WO2010/133527A2公开了疏水缔合共聚物及其用于三次矿物油开采的用途。所述共聚物包含25-99.9重量%单烯属不饱和亲水性单体如丙烯酰胺或丙烯酸,和0.1-20重量%至少一种通式H2C=CH-R-O-(EO)10-150(AO)5-15R’的大分子单体,其中EO表示亚乙氧基,AO表示具有至少4个碳原子的亚烷氧基,R为连接基团,且R’为H或具有1-30个碳原子的烃基。WO2011/015520A1公开了一种通过在水溶液中在表面活性剂存在下聚合而制备该类疏水缔合共聚物的方法
WO2012/069477A1公开了一种从具有35-120℃,优选40-90℃油藏温度的矿物油地层中三次开采矿物油的方法,其中使用包含0.1-15重量%上述大分子单体H2C=CH-R-O-(EO)10-150(AO)5-15R’、85-99.9重量%丙烯酰胺或丙烯酰胺衍生物和具有COOH、SO3H或PO3H2基团的单烯属不饱和单体的疏水缔合共聚物。EO、AO、R和R’各自如上文所定义。所述共聚物的重均分子量Mw为1百万-3百万g/mol。特别优选包含丙烯酰胺、2-丙烯酰胺基-2-甲基丙磺酸(ATBS)和所述大分子单体的共聚物。
WO2012/069478A1公开了一种三次开采矿物油的方法,其中使用WO2012/069477A1中所述的共聚物。所用的配制剂具有至少5mPas的粘度,且以至少30 000s-1的剪切速率注入地层中。
我们的在先欧洲申请WO2014/095608A1公开了一种制备大分子单体H2C=CH-R-O-(EO)10-150(AO)5-25(EO)0-15R’的方法,其中EO表示亚乙氧基,AO表示具有至少4个碳原子的亚烷氧基,R为连接基团,R’为H或具有1-4个碳原子的烃基。在所述方法中,将醇H2C=CH-R-OH使用包含KOMe和/或NaOMe的碱性催化剂乙氧基化且烷氧基化,其中使用氧化烯进行的烷氧基化在低于或等于135℃的温度下实施,且K+离子的量不超过0.9摩尔%(基于所述醇)。这获得了具有特别低比例的交联性副产物的大分子单体。该申请进一步公开了一种可借助所述方法获得的大分子单体、包含所述大分子单体的共聚物及其在油田应用中的用途。
我们的在先欧洲申请WO2014/095621A1公开了包含25-99.9重量%至少一种亲水性单体如丙烯酰胺和/或丙烯酸和0.1-20重量%至少一种大分子单体H2C=CH-R-O-(EO)23-26(CH2CH(R”))8.5-17.25(EO)0-15R’的疏水缔合共聚物,其中EO表示亚乙氧基,R为连接基团,R’为H或具有1-4个碳原子的烃基,R”为具有至少2个碳原子的烃基,条件是所有R”基团中的碳原子总和为25.5-34.5。该大分子单体可借助WO2014/095608A1中所述的方法获得,且聚合在不可聚合的表面活性组分存在下进行。WO2014/095621A1进一步公开了该类共聚物用于三次矿物油开采的用途,但未公开EOR方法的任何细节。由于使用具有特别低比例交联性副产物的大分子单体,因此获得了具有极低凝胶含量的共聚物。
聚合物驱替是一种工业规模的方法。所用的聚合物仅以稀释溶液的形式使用,然而每天注入的体积高且注入通常持续数月至数年。油田的平均聚合物需求极可能为5000-10 000吨聚合物/年。对经济可行的方法而言,最大的粘度效率(即粘度/摩尔)具有重大意义。即使粘度效率的小提高也可导致经济可行性的显著提高。
WO2012/069477A1的具有大分子单体H2C=CH-R-O-(EO)10-150(AO)5-15R’的缔合型共聚物的水溶液具有作为温度函数的特征粘度谱。该申请的图1a和1b各自显示了各种共聚物水溶液的粘度对温度的依赖性,尤其是两种市售非缔合型共聚物,即约50重量%丙烯酰胺和约50重量%ATBS-钠的共聚物(共聚物V3)(ATBS=2-丙烯酰胺基-2-甲基丙磺酸的钠盐)、75摩尔%丙烯酰胺和25摩尔%丙烯酸钠的共聚物(共聚物V4),和额外的约50重量%丙烯酰胺、约48重量%ATBS-钠和2重量%所述大分子单体的共聚物(共聚物V1)的粘度对温度的依赖性。在所述两种市售非缔合型共聚物的情况下,粘度随着温度的升高而降低。在所述缔合型共聚物的情况下,水溶液的粘度首先显著增大,通过在约60℃处的最大值,然后再次降低。因此,WO2012/069477A1的缔合型共聚物的水溶液在60℃的区域内具有高粘度效率,因此允许在具有约60℃油藏温度的油藏中的特别经济可行的聚合物驱替性能。
然而,存在具有甚至更高油藏温度的油藏。在该类油藏中使用所述共聚物进行聚合物驱替的情况下,粘度效率变劣。因此希望提供即使在较高油藏温度下也可以以高粘度效率使用的增稠共聚物。
非常特别需要改善丙烯酰胺-丙烯酸钠共聚物。含磺基的共聚物(例如含ATBS的共聚物)在用于盐水环境中时,非常特别地在用于高盐度环境中时具有比含丙烯酸的共聚物高得多的粘度。因此,就纯粹的技术角度而言,相对于包含丙烯酸的共聚物,优选包含ATBS的那些。然而,不利的是,ATBS单体比丙烯酸要贵得多。因此,出于经济原因,仍常常将丙烯酰胺-丙烯酸钠共聚物用于聚合物驱替中,至少在具有不过分高的盐度的油藏中。因此,希望提供具有明显改进的粘度效率的丙烯酰胺-丙烯酸钠型增稠聚合物。
因此,本发明的目的是提供改进的用于聚合物驱替的增稠聚合物。
因此,发现了一种从地下矿物油油藏开采矿物油的方法,其中将包含至少一种增稠水溶性共聚物(P)的含水配制剂经由至少一个注入井注入矿物油油藏中,并经由至少一个采出井从所述油藏中抽出原油,所述水溶性共聚物(P)至少包含:
(A)30-99.99重量%至少一种选自(甲基)丙烯酰胺、N-甲基(甲基)丙烯酰胺、N,N’-二甲基(甲基)丙烯酰胺和N-羟甲基(甲基)丙烯酰胺的不荷电的单烯属不饱和亲水性单体(A),和
(B)0.01-15重量%至少一种单烯属不饱和大分子单体(B),其除单烯属不饱和基团之外,至少包含亲水性基团和疏水性基团,
且其中至少一种大分子单体(B)为包含如下通式的大分子单体(B1)和(B2)的混合物:
(B1)H2C=C(R1)-R2-O-(R3O)a-(R4O)b-[-(R4O)c(R5O)d]-H (I),和
(B2)H2C=C(R1)-R2-O-(R3O)a-(R4O)b-H (II),
其中所述的单体量各自基于共聚物(P)中所有单体的总量,大分子单体(B1)的摩尔比例x基于(B1)和(B2)的总和为0.1-0.99,且其中基团和指数各自定义如下:
R1:H或甲基,
R2:单键或二价连接基团-OR35-,其中R35为具有1-6个碳原子的亚烷基,
R3:独立地为亚乙基-CH2CH2-、1,2-亚丙基或亚烷基R4,条件是至少90摩尔%的R3基团为亚乙基,
R4:独立地为亚烷基-CR6(R7)-CR8(R9)-,其中R6、R7、R8和R9基团各自独立地为H或具有1-8个碳原子的直链或支化烷基,条件是并非所有基团均为H且R6、R7、R8和R9基团中的碳原子总和为2-8,
R5:亚乙基-CH2CH2-,
a 10-35的数,
b 5-30的数,
c 0-2的数,
d 1-15的数,
且其中,此外:
●所述共聚物具有1*106至30*106g/mol的重均分子量MW
●所述含水配制剂中的共聚物的量为0.02-2重量%,和
●所述矿物油油藏的温度为20-120℃。
在本发明的一个实施方案中,使用额外包含含-SO3H基团的单体的共聚物。
在本发明的一个实施方案中,使用额外包含含-COOH基的单体的共聚物。
在本发明的一个实施方案中,使用额外包含含-SO3H基团和-COOH基的单体的共聚物。
令人惊讶地发现大分子单体(B1)中的短端聚(氧化乙烯/氧化烯)嵌段不会显著赋予所述共聚物在水溶液中的缔合作用,而是相反地,导致共聚物具有特别地好地适于三次采油的改进性能谱。
在本发明的第二方面中,发现了具有上述组成的水溶性共聚物(P)。
在本发明的第三方面中,发现了一种制备该共聚物(P)的方法。
就本发明而言,应特别说明如下方面:
水溶性共聚物(P)
就本发明的矿物油开采方法而言,使用至少一种增稠水溶性共聚物(P)的含水配制剂,将其经由注入井注入矿物油油藏中,并经由至少一个采出井从所述油藏中抽出原油。该类方法也称为“聚合物驱替”。
本发明的共聚物(P)或本发明所用的共聚物(P)为疏水缔合共聚物。术语“疏水缔合共聚物”原则上是本领域技术人员所已知的。这包括具有疏水性基团以及亲水性分子结构部分的水溶性共聚物。在水溶液中,所述疏水性基团可彼此或者与具有疏水性基团的其他物质基于分子间力而缔合。这得到了由分子间力连接的聚合物网络,这提高了所述共聚物的粘度提高作用。
理想地,本发明所用的共聚物应与水以任意比例混溶。然而,当所述共聚物至少在所需的使用浓度和所需的pH下具有水溶性时,对本发明而言就足够了。一般而言,在使用条件下在水中在室温下的溶解度应为至少25g/l。
根据本发明,所述水溶性疏水缔合共聚物包含30-99.99重量%至少一种不荷电的单烯属不饱和亲水性单体(A),优选丙烯酰胺,和0.01-15重量%至少一种除单烯属不饱和基团之外,包含亲水性基团和疏水性基团的单烯属不饱和两亲性大分子单体(B)。此外,当然还可存在其他烯属不饱和单体,尤其是单烯属不饱和单体。
借助其他单体,可改变所述水溶性共聚物的性质且使其与所需的最终用途匹配。本领域技术人员会根据所需的聚合物性质而适当选择其他烯属不饱和单体。
其他烯属不饱和单体尤其为亲水性单烯属不饱和单体,优选为选自包含至少一个酸性基团或其盐的亲水性阴离子单烯属不饱和单体(C)和包含至少一个铵基的亲水性阳离子单烯属不饱和单体(D)的那些。
单体(A)
根据本发明,共聚物(P)包含至少一种选自(甲基)丙烯酰胺、N-甲基(甲基)丙烯酰胺、N,N’-二甲基(甲基)丙烯酰胺或N-羟甲基(甲基)丙烯酰胺的不荷电的单烯属不饱和亲水性单体(A)。优选(甲基)丙烯酰胺,尤其是丙烯酰胺。如果使用不同单体(A)的混合物,则至少50摩尔%的单体(A)应为(甲基)丙烯酰胺,优选为丙烯酰胺。
根据本发明,单体(A)的量为30-99.99重量%,优选为30-99.9重量%,尤其为35-99.5重量%,例如为45-99.5重量%,基于共聚物(P)中的所有单体的总和。
大分子单体(B)
共聚物(P)包含至少一种除单烯属不饱和基团之外,包含亲水性基团Y和疏水性基团Z的两亲性单烯属不饱和大分子单体(B)。任选地,在单烯属基团和Y基团之间也可存在间隔基X。大分子单体B尤其可具有如下结构:H2C=C(R1)-X-Y-Z或H2C=C(R1)-Y-Z。
根据本发明,至少一种大分子单体(B)为至少包含如下通式的大分子单体(B1)和(B2)的混合物:
(B1)H2C=C(R1)-R2-O-(R3O)a-(R4O)b-[-(R4O)c(R5O)d]-H (I),和
(B2)H2C=C(R1)-R2-O-(R3O)a-(R4O)b-H (II)。
这些式(I)和(II)中的基团和指数各自如下文所定义。
R1为H或甲基,优选为H。
R2为单键或优选为二价连接基团-OR35-,其中R35为具有1-6个碳原子的直链或支化亚烷基。优选地,R6为直链1,ω-亚烷基-(CH2)k-,其中k为1-6,优选为3-6,更优选为4。
R3基团各自独立地为亚乙基-CH2CH2-、1,2-亚丙基-CH2CH(CH3)-或1,2-亚烷基R4,条件是至少90摩尔%的R3基团为亚乙基。优选至少95摩尔%的R3基团为亚乙基,最优选R3基团仅为亚乙基。因此,-(R3O)a-为基本上由亚乙氧基组成的嵌段,且可额外任选包含少量高级亚烷氧基。
指数a为10-35,优选15-30,更优选20-28,例如23-26的数。
R4基团各自独立地为亚烷基-CR6R7-CR8R9-,其中R6、R7、R8和R9基团各自独立地为H或具有1-8个碳原子,优选1-3个碳原子的直链或支化烷基,条件是并非所有的基团均为H,且R6、R7、R8和R9基团中的碳原子总和为2-8,优选为2或3。所述基团可例如为甲基、乙基或丙基。因此,-(R4O)b-为包含至少4个碳原子的亚烷氧基的嵌段。
在本发明的一个实施方案中,各R4基团中的2或3个,优选3个R6、R7、R8和R9基团为H。在一个实施方案中,各R4基团中的2或3个,优选3个R6、R7、R8和R9基团为H,其中R6、R7、R8和R9基团中的碳原子总和在每种情况下为2或3。
在本发明的一个实施方案中,R6、R7、R8和R9基团中的碳原子总和在每种情况下为2,其中至少70摩尔%,优选至少80摩尔%,更优选至少95摩尔%-CR6R7CR8R9-单元中的R6、R7和R8为H且R9为乙基。因此,在该实施方案中,-R4O-包含亚丁氧基,优选基本上衍生自1,2-氧化丁烯的亚丁氧基。
在本发明的一个实施方案中,R6、R7、R8和R9基团中的碳原子总和在每种情况下为3,其中至少70摩尔%,优选至少80摩尔%,更优选至少95摩尔%-CR6R7CR8R9-单元中的R6、R7和R8为H且R9为正丙基。因此,在该实施方案中,-R4O-包含亚戊氧基,更优选基本上衍生自1,2-氧化戊烯的亚戊氧基。
指数b为5-30,尤其5-25,优选7-25,更优选8-20,例如8-18或者例如12-20的数。
R5为亚乙基-CH2CH2-。
在上式(I)中,-[(R4O)c(R5O)d]-为包含亚乙氧基单元-R5O-和任选的如上文所定义的亚烷氧基单元的-R4O-的氧化烯嵌段,其中-R5O-和-R4O-单元通常无规排列,但也可呈嵌段或交替排列。
指数c为0-2,优选0-1.5,例如0.1-1的数。
指数d为1-15,优选1.5-10,更优选为2-5的数。
在式(I)中,-(R3O)a-、-(R4O)b-和-[(R4O)c(R5O)d]-基团以式(I)中所示的顺序排列;在式(II)中,-(R3O)a-和-(R4O)b-基团以式(II)中所示的顺序排列。
聚烷氧基化物领域中的所属领域技术人员知晓,在烷氧基化中会得到链长分布,因此指数a、b、c和d为所有分子的平均值。因此,指数a、b、c和d不为自然数,而是有理数。
对大分子单体(B1)而言,这例如意味着即使在混合物中的值c>0的情况下也存在不具有任何R4O单元的大分子单体,而其他大分子单体(B1)具有1个或者甚至超过1个R4O单元。
根据本发明,大分子单体(B1)的摩尔比例x为0.1-0.99,尤其为0.3-0.99,优选为0.3-0.95,更优选为0.45-0.9,甚至更优选为0.5-0.9,例如为0.5-0.8,基于(B1)和(B2)的总和。
在本发明的优选实施方案中,对所存在的R4O基团的数b+c加以选择,条件是所存在的所有R6、R7、R8和R9基团的所有碳原子一起的总和为25-50,优选为28-46。换言之,在该实施方案中,亚烷氧基单元R4O中存在的碳原子越多,则R4O基团的数量就越少。
在本发明的另一实施方案中,R4中的2或3个,优选3个R6、R7、R8和R9基团为H,其中R6、R7、R8和R9基团中的碳原子总和为2或3,其中对所存在的R4O基团的数b+c加以选择,条件是所存在的所有R6、R7、R8和R9基团的所有碳原子一起的总和为25-50,优选为28-46。
在本发明的优选实施方案中,大分子单体(B)为大分子单体(B1)和(B2),其中R3表示亚乙基且R6、R7、R8和R9基团中的碳原子总和为2,其中至少70摩尔%,优选至少80摩尔%,更优选至少95摩尔%-CR6R7CR8R9-单元中的R6、R7和R8为H且R9为乙基。换言之,R4基团为亚丁基。此外,a为20-28,优选23-26的数;b为10-25,优选14-23,更优选14-20,最优选14-18的数;c为0-1.5,优选为0.5-1.5;d为1.5-10,优选1.5-5的数。在该实施方案中,大分子单体(B1)的摩尔比例x尤其为0.3-0.95,优选为0.45-0.9,基于单体(B1)和(B2)一起的总和。
在本发明的另一实施方案中,大分子单体(B)为大分子单体(B1)和(B2),其中R3表示亚乙基且R6、R7、R8和R9基团中的碳原子总和为3,其中至少70摩尔%,优选至少80摩尔%,更优选至少95摩尔%-CR6R7CR8R9-单元中的R6、R7和R8为H且R9为正丙基。换言之,R4基团为亚戊基。此外,a为20-28,优选23-26的数;b为5-16,优选8-12的数;c为0-1.5,优选为0.5-1.5;d为1.5-10,优选1.5-5的数。在该实施方案中,大分子单体(B1)的摩尔比例x尤其为0.3-0.95,优选为0.45-0.9,基于单体(B1)和(B2)一起的总和。
除大分子单体(B1)和(B2)之外,当然还可存在其他不同的包含两亲性、疏水性和亲水性基团的大分子单体。该类大分子单体原则上是本领域技术人员所已知的。这些可尤其为丙烯酰胺、丙烯酸、马来酸、乙烯基或烯丙基单元的衍生物。实例尤其包括基于通式H2C=C(R18)-COO-(CH2CH2O)l-R19的(甲基)丙烯酸的大分子单体,其中R18为H或甲基,l为5-50的数,且R19为具有8-36个碳原子的烃基。其他实例包括通式H2C=C(R18)-CO-NH-R36-N+(CH3)2R37X-的阳离子单体,其中R36为具有2-6个碳原子的亚烷基,优选为具有2-6个碳原子的1,ω-亚烷基,R3为具有8-30个碳原子的烃基,且X-为阴离子。
如果除大分子单体(B1)和(B2)之外,存在其他大分子单体(B),则(B1)和(B2)的比例应为至少50重量%,优选至少80重量%,基于所用的所有大分子单体的总和。更优选地,仅存在大分子单体(B1)和(B2)。
根据本发明,大分子单体(B)的量,优选(B1)和(B2)的总量为0.01-15重量%,优选为0.1-10重量%,更优选为0.5-8重量%,甚至更优选为0.8-5重量%,例如1-2.5重量%,基于共聚物(P)中的所有单体的总和。
大分子单体(B1)和(B2)的制备
大分子单体(B1)和(B2)可以以原则上已知的方式通过烷氧基化通式H2C=C(R1)-R2-OH(III)的单烯属不饱和醇而制备,其中R1和R2各自如上文所定义。
醇H2C=C(R1)-R2-OH(III)可在三步法中烷氧基化。
在第一步骤(S1)中,首先使用所需量的氧化乙烯,任选使用氧化乙烯与不超过10摩尔%高级氧化烯的混合物进行烷氧基化。这得到通式H2C=C(R1)-R2-O-(R3O)a-H(IV)的烷氧基化醇,其中R3如上文所定义。
在第二步骤(S2)中,使烷氧基化醇H2C=C(R1)-R2-O-(R3O)a-H(IV)与通式(V)的氧化烯反应:
其中R6、R7、R8和R9各自如开头所定义。该烷氧基化得到了通式H2C=C(R1)-R2-O-(R3O)a-(R4O)b-H(II)的已述大分子单体(B2)。
在第三步骤(S3)中,使大分子单体(B2)与氧化乙烯反应,从而得到上述包含大分子单体(B1)和(B2)的混合物。
烷氧基化的实施(包括由各种氧化烯制备嵌段共聚物)原则上是本领域技术人员所已知的。同样为本领域技术人员所已知的是烷氧基化物的分子量分布和氧化烯单元在聚醚链中的定位可通过反应条件,更特别地通过催化剂的选择而影响。
烷氧基化尤其可通过碱催化烷氧基化而进行。在第一步骤(S1)中,可将用作起始物质的醇在压力反应器中与碱金属氢氧化物,优选氢氧化钾混合,或者与碱金属醇盐,例如甲醇钠混合物。通过减压(例如<100毫巴)和/或升温(30-150℃),可移除仍存在于混合物中的水。随后,所述醇呈相应醇盐的形式。此后,用惰性气体(例如氮气)进行惰化,且在第一步骤中,在120-160℃,优选130-150℃的温度下逐步添加任选呈与少量氧化丙烯和/或高级氧化烯的混合物形式的氧化乙烯。该添加通常在5-15小时内进行,其中不存在间断(本发明不限制于此)。在添加结束后,使反应混合物再适当地反应,例如1/2-1小时。
在第二步骤(S2)中,随后逐步计量添加通式(IV)的氧化烯。第二步骤中的反应温度可保持相同或改变,发现有用的是在第二步骤中温度不超过135℃。在较高温度下,尤其是在较长反应时间的情况下,存在在烷氧基化中形成少量交联性副产物的风险。该类副产物是极其不希望的,因为它们在聚合中导致聚合物中的凝胶比例升高。由于在聚合物驱替中,聚合物必须被驱使通过具有仅数微米尺寸的孔,因此即使小的凝胶比例也会因为它们可导致地层堵塞而极具破坏性。
在第三步骤(S3)中,再次添加氧化乙烯。S3尤其在不进一步添加碱性催化剂下进行,且尤其在1*105至7*105Pa,优选1*105至5*105Pa的压力和120-140℃,更优选125-135℃的温度下进行。特别地,步骤S3中的乙氧基化实施0.5-7小时,尤其为0.5-5小时,优选为0.5-4小时的时间。
烷氧基化也可借助导致比碱催化合成更窄分子量分布的技术进行。为此,所用的催化剂可例如为DE 43 25 237A1中所述的双氢氧化物粘土。烷氧基化可更优选使用双金属氰化物催化剂(DMC催化剂)进行。合适的DMC催化剂例如公开在DE 102 43 361A1中,尤其是第[0029]-[0041]段以及其中所引用的文献中。例如,可使用Zn-Co型催化剂。为了实施该反应,可将用作起始物质的醇与催化剂混合,将该混合物如上文所述地脱水且如所述地与氧化烯反应。通常使用不超过250ppm的催化剂(基于所述混合物),且所述催化剂由于该少量而保留在产物中。
此外,烷氧基化可额外使用酸催化进行。所述酸可为布朗斯台德酸或路易斯酸。为了实施该反应,可将用作起始物质的醇与催化剂混合,可将该混合物如上文所述地脱水且如所述地与氧化烯反应。在反应结束后,可通过加入碱,例如KOH或NaOH而中和酸性催化剂,且需要的话,滤出。在使用酸不稳定的乙烯基醚作为通式(III)醇的情况下,通常避免酸催化烷氧基化。
所述三个步骤S1、S2和S3的实施提供了以已述比例包含大分子单体(B1)和(B2)的混合物。混合物的形成可解释如下:在使用式(V)的氧化烯进行的第二烷氧基化步骤(S2)后,首先获得通式H2C=C(R1)-R2-O-(R3O)a-(R4O)b-H(II)的大分子单体(B2)。在式(II)中,根据所用氧化烯的特性,所述聚氧亚烷基链具有仲(或者甚至叔)醇基团作为端基,即-CR6(R7)-CR8(R9)-OH基。在步骤(S3)中与氧化乙烯的进一步反应得到了具有端伯OH基,即-CR6(R7)-CR8(R9)-O-CH2CH2OH的分子。由于伯OH基比仲或叔OH基的反应性更高,因此伯OH基优先与其他氧化乙烯反应。因此,在步骤(II)中添加的氧化乙烯不均匀地与在步骤S2后存在的通式H2C=C(R1)-R2-O-(R3O)a-(R4O)b-H(II)的大分子单体(B2)反应。如果一部分大分子单体(B2)首先与氧化乙烯反应以获得H2C=C(R1)-R2-O-(R3O)a-(R4O)b-CH2CH2OH,则这些中间体优先与其他氧化乙烯反应。由于步骤S3中的氧化乙烯的量较少,因此该不同反应性的结果是一部分(B2)分子完全不反应,而其他则以不成比例的高程度反应。因此,如果添加p当量的氧化乙烯且混合物中的大分子单体(B1)的比例为x,则可由此计算值d=p/x。当然,d也可通过分析确定。
根据反应条件,步骤(S2)中的烷氧基化完全进行或者不完全进行,从而使得在反应混合物中可残留少量未反应的氧化烯(V)。在上文所述的在不超过135℃下进行的优选烷氧基化下,尤其可存在该情况。残留的氧化烯(V)当然可在最终乙氧基化之前以常规方式移除。然而,还可将这些残留在产物中以用于烷氧基化。已发现所述残余量的氧化烯(V)在步骤S3期间显著降低。换言之,一部分任何残留的氧化烯(V)在步骤S3期间引入端嵌段-[(R4O)c(R5O)d]-H中,这意味着其可为亚烷氧基单元R4O和亚乙氧基单元R5O的混合嵌段。如果氧化烯在步骤S2中反应完全或者然后在步骤S2中移除,则端嵌段也可为纯氧化乙烯嵌段,即c=0。
大分子单体(B)的优选制备方法
在有利的实施方案中,大分子单体(B)可借助下文所述的优选方法制备。
在这种情况下,步骤S1在添加包含KOMe和/或NaOMe的碱性催化剂K1下进行。
步骤S2在添加碱性催化剂K2下进行,其中步骤S2反应中的钾离子浓度小于或等于0.9摩尔%,优选小于0.9摩尔%,优选为0.01-0.9摩尔%,尤其优选为0.01-0.5摩尔%,基于所用的醇H2C=C(R1)-R2-O-(R3O)a-H(IV);且其中步骤S2中的反应在低于或等于135℃,优选低于135℃,更优选低于或等于130℃,例如120-130℃的温度下进行,从而获得大分子单体(B2)。
在步骤S3中,使一部分大分子单体(B2)与氧化乙烯反应,从而形成包含大分子单体(B1)和(B2)的混合物。
下文所述的步骤S1、S2和S3中反应的优选条件(例如压力和/或温度范围)意味着各步骤完全或者部分在所述条件下实施。
优选地,步骤S1首先包括单烯属不饱和醇(III)与碱性催化剂K1的反应。为此,通常将用作起始物质的醇(III)与碱性催化剂K1在压力反应器中混合。借助通常低于100毫巴,优选30-100毫巴的减压或者通常为30-150℃的升温,可取出仍存在于所述混合物中的水和/或低沸物。随后,所述醇基本上呈相应醇盐的形式。随后,通常用惰性气体(例如氮气)对所述反应混合物进行处理。
优选地,步骤S1包括在醇(III)和碱性催化剂K1的混合物中添加氧化乙烯和任选少量的高级氧化烯。在氧化乙烯和任选的其他高级氧化烯的添加结束后,通常使反应混合物进一步反应。所述添加(包括任选的减压(压力例如从6*105Pa(绝对)暂时性地降至3*105Pa(绝对)在内且包括进一步的反应在内))通常实施2-36小时,优选5-24小时,尤其优选5-15小时,更优选5-10小时的时间。
步骤S1通常在120-160℃,优选130-150℃,更优选140-150℃的温度下进行。更特别地,步骤S1包括在120-160℃,更优选140-150℃的温度下在醇(III)和碱性催化剂K1的混合物中添加氧化乙烯和任选少量的其他氧化烯。
优选在1-7巴,优选1-6巴的压力下在醇(III)和碱性催化剂K1的混合物中添加氧化乙烯和任选少量的其他氧化烯。为了符合安全条件,步骤S1中的添加通常在1*105至4*105Pa,优选1*105至3.9*105Pa,更优选1*105至3.1*105Pa的压力下进行,或者在本发明的另一实施方式中,在3*105至6*105Pa的压力下进行。更特别地,氧化乙烯的添加和/或进一步的反应在上述压力下进行。
优选地,步骤S1包括在小于或等于36小时,优选小于或等于32小时,更优选2-32小时,尤其优选5-15小时的时间内在小于或等于5*105Pa,优选1*105至4*105Pa,尤其优选1*105至3.9*105Pa的压力下将氧化乙烯和任选少量的其他氧化烯添加至醇A1和碱性催化剂K1的混合物中。更特别地,上述时间包括氧化乙烯的添加和/或进一步的反应。
更特别地,单烯属不饱和醇(III)与氧化乙烯和任选少量的其他氧化烯的反应可在所述优选方法的步骤S1中在添加包含KOMe(甲醇钾)和/或甲醇钠(NaOMe)的碱性催化剂K1下在一个或多个乙氧基化步骤中进行。
特别优选上文所述的方法,其中步骤S1包括如下组成步骤:
●使单烯属不饱和醇(III)与碱性催化剂K1反应,
●使醇(III)与催化剂K1的混合物与一部分,尤其是0-50重量%,尤其是10-30重量%的氧化乙烯和任选少量的其他氧化烯反应,基于氧化乙烯和任选少量的其他氧化烯的总量,
●中间步骤,包括休止阶段和/或减压,和
●与剩余部分的氧化乙烯和任选少量的其他氧化烯反应。
进一步优选上文所述的方法,其中步骤S1包括如下组成步骤:
●使单烯属不饱和醇(III)与碱性催化剂K1反应,
●使醇(III)与催化剂K1的混合物与一部分,尤其是50-98重量%,尤其是80-98重量%的氧化乙烯和任选少量的其他氧化烯反应,基于氧化乙烯和任选少量的其他氧化烯的总量,
●在减压至小于100毫巴,优选30-100毫巴的压力和/或提高温度,通常为30-150℃下移除低沸物的步骤,
●使所得乙氧基化产物与碱性催化剂K1反应,且使剩余部分的氧化乙烯与乙氧基化产物和碱性催化剂K1的混合物反应。
碱性催化剂K1尤其包含10-100重量%,优选20-90重量%的KOMe和/或NaOMe。除KOMe和/或NaOMe之外,催化剂K1可包含其他碱性化合物和/或溶剂(尤其是C1-C6醇)。例如,可存在选自碱金属氢氧化物、碱土金属氢氧化物、钾的C2-C6醇盐、钠的C2-C6醇盐(优选乙醇盐)、碱土金属醇盐(尤其是C1-C6醇盐,优选甲醇盐和/或乙醇盐)的其他碱性化合物。优选地,除KOMe和/或NaOMe之外,催化剂K1包含至少一种选自氢氧化钠和氢氧化钾的其他碱性化合物。
在另一优选实施方案中,碱性催化剂K1由KOMe组成,或者由KOMe甲醇(MeOH)溶液组成。通常可使用20-50重量%的KOMe甲醇(MeOH)溶液。
在另一优选实施方案中,碱性催化剂K1由NaOMe组成,或者由NaOMe甲醇溶液组成。
在另一优选实施方案中,催化剂K1由KOMe和NaOMe的混合物组成,或者由KOMe和NaOMe的甲醇溶液组成。
有利的是以使得符合相对于所用醇(III)为2500ppm(约0.4摩尔%)KOMe上限的量使用催化剂K1,从而避免单烯属不饱和醇(III)分解。优选地,步骤S1中的钾离子浓度小于或等于0.4摩尔%,更优选为0.1-0.4摩尔%,基于所用醇A1的总量。
如果KOMe以使得浓度基于烷氧基化醇(IV)(工艺步骤S1的产物)超过0.9摩尔%的量使用,则在制备大分子单体(B)的优选方法中,在步骤S2之前完全或部分移除KOMe,从而在工艺步骤S2中获得小于0.9摩尔%的钾离子浓度。这可例如通过在步骤S1之后分离且任选纯化烷氧基化醇A2而进行。
在另一优选实施方案中,KOMe以使得钾离子的浓度在步骤S1中的反应之后基于(IV)已小于或等于0.9摩尔%的量使用。
所述优选方法的步骤S2包括使烷氧基化醇(IV)与至少一种上述通式(V)的氧化烯在将碱性催化剂K2添加至上述通式H2C=C(R1)-R2-O-(R3O)a-(R4O)b-H(II)的大分子单体(B2)下反应。
优选地,步骤S2首先包括烷氧基化醇(IV)与碱性催化剂K2的反应。为此,通常将醇A2与碱性催化剂K2在压力反应器中混合。借助通常小于10000Pa,优选3000-10 000Pa的减压和/或通常为30-150℃的升温,可取出仍存在于所述混合物中的水和/或低沸物。随后,所述醇基本上呈相应醇盐的形式。随后,通常用惰性气体(例如氮气)处理所述反应混合物。
优选地,步骤S2包括将所述至少一种氧化烯(V)添加至醇(IV)和碱性催化剂K2的上述混合物中。在氧化烯(V)添加结束后,通常使所述反应混合物进一步反应。该添加(包括任选的减压在内且包括进一步反应在内)通常实施2-36小时,优选5-30小时,尤其优选10-28小时,更优选11-24小时的时间。
在所述优选的制备方法中,步骤S2反应中的钾离子浓度小于或等于0.9摩尔%,优选小于0.9摩尔%,优选为0.01-0.9摩尔%,更优选为0.1-0.6摩尔%,基于所用的醇(IV)。
在优选实施方案中,步骤S2反应中的钾离子浓度为0.01-0.5摩尔%,基于所用的醇(IV)。
在特别优选的实施方案中,步骤S2反应中的钾离子浓度小于或等于0.9摩尔%,优选为0.1-0.5摩尔%,基于所用的醇(IV);且步骤S2中的反应在120-130℃的温度下进行。
碱性催化剂K2优选包含至少一种选自碱金属氢氧化物、碱土金属氢氧化物、碱金属醇盐(尤其是C1-C6醇盐,优选甲醇盐和/或乙醇盐)、碱土金属醇盐(尤其是C1-C6醇盐,优选甲醇盐和/或乙醇盐)的碱性化合物。优选地,催化剂K2包含至少一种碱性钠化合物,尤其是选自NaOH、NaOMe和NaOEt,更优选NaOMe或NaOH。所用的催化剂K2可为所述碱性化合物的混合物,催化剂K2优选由一种所述碱性化合物组成或者由所述碱性化合物的混合物组成。通常使用碱性化合物的水溶液。在另一优选实施方案,碱性催化剂K2由NaOMe组成,或者由NaOMe的甲醇(MeOH)溶液组成。通常可使用20-50重量%的NaOMe甲醇(MeOH)溶液。优选地,催化剂K2不含任何KOMe。
优选地,在步骤S2中使用包含至少一种碱性钠化合物,尤其是选自NaOH、NaOMe和NaOEt的碱性钠化合物的催化剂K2,其中步骤S2反应中的钠离子浓度为3.5-12摩尔%,优选为3.5-10摩尔%,更优选为3.5-7摩尔%,最优选为4-6摩尔%,基于所用的醇(IV)。
步骤S2中的反应在小于或等于135℃,优选小于或等于130℃的温度下进行。优选地,步骤S2中的反应在60-135℃,优选100-135℃,更优选120-135℃,最优选120-130℃的温度下进行。更优选地,步骤S2包括在小于或等于135℃,优选小于或等于130℃,尤其是100-135℃,优选120-130℃的温度下在醇(IV)和碱性催化剂K2的混合物中添加至少一种氧化烯(V)。
优选地,步骤S2在1*105至6*105Pa,优选1*105至3.1*105Pa的压力下进行。为了符合安全条件,如果R6、R7、R8和R9基团中的所有碳原子总和为2,则步骤S2中的反应优选在小于或等于3.1*105Pa(优选1*105至3.1*105Pa)的压力下进行;如果R6、R7、R8和R9基团中的所有碳原子总和大于2,则在小于或等于2.1巴(优选1-2.1巴)的压力下进行。更特别地,氧化烯(V)的添加和/或进一步的反应在上述压力下进行。在另一优选实施方案中,步骤S2在3-6巴的绝对压力下进行。在另一优选实施方式中,步骤S2可在0.2*105至3.1*105Pa的压力下进行。
优选地,步骤S2包括在1*105至3.1*105Pa的压力下在醇(IV)和碱性催化剂K2的混合物中添加至少一种氧化烯(V)。
在一个实施方案中,R6、R7、R8和R9基团中的所有碳原子总和为2,且步骤S2包括在1*105至3.1*105Pa的压力下在醇(IV)和碱性催化剂K2的混合物中添加所述至少一种氧化烯(V)。
在另一实施方案中,R6、R7、R8和R9基团中的所有碳原子总和大于3,优选为3,且步骤S2包括在1*105至2.1*105Pa的压力下在醇(IV)和碱性催化剂K2的混合物中添加所述至少一种氧化烯(V)。
更优选地,步骤S2在1*105至3.1*105Pa压力(优选在上述压力下)和120-130℃的温度下进行。
优选地,步骤S2包括经小于或等于36小时,优选小于或等于32小时,更优选2-32小时,最优选11-24小时的时间在小于或等于3.1*105Pa的压力下(优选在上述压力下)将至少一种氧化烯(V)添加(包括进一步的反应时间)至醇(IV)和碱性催化剂K2的混合物中。
步骤S3尤其在不进一步添加碱性催化剂下进行。步骤S3尤其在1*105至7*105Pa,优选1*105至6*105Pa,最优选3*105至6*105Pa的绝对压力和60-140℃,优选120-140℃,更优选120-135℃的温度下进行。步骤S3中的乙氧基化尤其进行0.5-7小时,尤其是1-5小时,优选1-4小时的时间。
优选地,步骤S3包括在不进一步后处理和/或减压下将氧化乙烯添加至步骤S2之后的包含通式(II)的大分子单体(B2)的反应混合物中。在氧化乙烯添加结束之后,通常使所述反应混合物进一步反应。该添加(包括任选的减压在内且包括进一步的反应在内)通常进行0.5-10小时,尤其是2-10小时,最优选4-8小时的时间。
实施步骤S3的结果通常是在步骤S2之后仍存在于反应混合物中的氧化烯(V)被至少部分贫化,且因此被至少部分移除。当然可在步骤S2之后通过在步骤S2之后减压和/或升温而移除未贫化的氧化烯(V)。
单体(C)
除单体(A)和(B)之外,水溶性共聚物(P)可任选包含其他亲水性单烯属不饱和单体。
在本发明的一个实施方案中,除单体(A)和(B)之外,水溶性共聚物(P)包含至少一种含至少一个酸性基团或其盐的亲水性阴离子单烯属不饱和单体(C)。
更优选地,任选使用的亲水性单体(C)可与水以任意比例混溶。一般而言,单体(C)在室温下在水中的溶解度应为至少50g/l,优选至少150g/l,更优选至少250g/l。
所述酸性基团优选为至少一种选自如下组的酸性基团:-COOH、-SO3H或-PO3H2或其盐。优选含COOH基和/或-SO3H基团的单体。
含COOH基的单体的实例包括丙烯酸、甲基丙烯酸、巴豆酸、衣康酸、马来酸和富马酸。优选丙烯酸。
含磺基的单体的实例包括乙烯基磺酸、烯丙基磺酸、2-丙烯酰胺基-2-甲基丙磺酸、2-甲基丙烯酰胺基-2-甲基丙磺酸、2-丙烯酰胺基丁磺酸、3-丙烯酰胺基-3-甲基丁磺酸和2-丙烯酰胺基-2,4,4-三甲基戊磺酸。优选乙烯基磺酸、烯丙基磺酸或2-丙烯酰胺基-2-甲基丙磺酸,特别优选2-丙烯酰胺基-2-甲基丙磺酸。
含膦酸基团的单体的实例包括乙烯基膦酸、烯丙基膦酸、N-(甲基)丙烯酰胺基烷基膦酸和(甲基)丙烯酰氧基烷基膦酸,优选乙烯基膦酸。
所述酸性基团当然可完全或部分中和,这意味着它们可作为盐存在。所述酸性基团的合适抗衡离子尤其包括碱金属离子如Li+、Na+或K+,和铵离子NH4 +以及具有有机基团的铵离子。
具有有机基团的铵离子的实例包括通式[NHR20R21R22]+(VI)的铵离子,其中R20、R21和R22基团各自独立地为H或具有1-12个,优选1-6个碳原子的脂族和/或芳族烃基,其中所述烃基可被OH基和/或不相邻的碳原子可被O或N代替,条件是至少一个R20、R21和R22基团不为H。此外,铵离子也可具有通式[R20R21HN-R23-NHR20R21]2+(VII),其中R20和R21各自如上文所定义,且R23为具有1-6个碳原子的亚烷基,优选为具有2-6个碳原子的1,ω-亚烷基。具有有机基团的铵离子的实例包括[NH(CH3)3]+、[NH2(CH3)2]+、[NH3(CH3)]+、[NH(C2H5)3]+、[NH2(C2H5)2]+、[NH3(C2H5)]+、[NH3(CH2CH2OH)]+、[H3N-CH2CH2-NH3]2+和[H(H3C)2N-CH2CH2CH2NH3]2+
盐可通过在聚合之前用合适的碱完全或部分中和呈酸形式的单体(C)而获得。当然也可使用呈酸形式的单体(C)进行聚合,且在聚合后完全或部分中和所得水溶性共聚物(P)中的酸基。
单体(C)的量(若存在的话)为至多69.99重量%,优选为0.1-69.99重量%,尤其为5-64.9重量%,基于水溶性共聚物(P)中的所有单体的总和。
单体(D)
在本发明的另一实施方案中,除单体(A)和(B)和任选的单体(C)之外,水溶性共聚物(P)包含至少一种含至少一个铵基的亲水性阳离子单烯属不饱和单体(D)。
更优选地,任选使用的亲水性单体(D)可与水以任意比例混溶。一般而言,单体(D)在室温下在水中的溶解度应为至少50g/l,优选至少150g/l,更优选至少250g/l。
具有铵基的阳离子单体(D)的实例尤其包括N-(ω-氨基烷基)(甲基)丙烯酰胺和(甲基)丙烯酸ω-氨基烷基酯的铵衍生物。
更特别地,具有铵基的单体(D)可为通式H2C=C(R10)-CO-NR11-R12-NR13 3 +X-(VIII)和/或H2C=C(R10)-COO-R12-NR13 3 +X-(IX)的化合物。在这些式中,R10为H或甲基,R11为H或C1-C4烷基,优选为H或甲基,且R10优选为直链C1-C4亚烷基,例如1,2-亚乙基-CH2-CH2-或1,3-亚丙基-CH2-CH2-CH2-。R13基团各自独立地为C1-C4烷基,优选为甲基或通式-R14-SO3H的基团,其中R14优选为直链C1-C4亚烷基或苯基,条件是通常不超过1个R13取代基为具有磺基的取代基。更优选地,3个R13取代基为甲基,这意味着所述单体具有1个-N(CH3)3 +基团。上式中的X-为单价阴离子,例如Cl-。当然,X-也可为合适分数的多价阴离子,然而这不是优选的。
优选的通式(VI)或(VII)的单体(D)实例包括3-三甲铵丙基(甲基)丙烯酰胺和(甲基)丙烯酸2-三甲铵乙基酯的盐,例如相应的氯化物如3-三甲铵丙基丙烯酰胺氯化物(DIMAPAQUAT)和甲基丙烯酸2-三甲铵乙基酯氯化物(MADAME-QUAT)。
单体(D)的量(若存在的话)为至多69.99重量%,优选为0.1-69.99重量%,尤其为5-64.9重量%,基于水溶性共聚物(P)中的所有单体的总和。
单体(E)
除单体(A)、(B)、(C)和(D)之外,水溶性共聚物(P)可额外包含其他单烯属不饱和单体(E),优选亲水性单体(E)。
更优选地,任选使用的亲水性单体(E)可与水以任意比例混溶。一般而言,单体(E)在室温下在水中的溶解度应为至少25g/l,优选至少50g/l,更优选至少100g/l。
该类单烯属不饱和单体的实例包括含羟基和/或醚基的单体,例如(甲基)丙烯酸羟乙酯、(甲基)丙烯酸羟丙酯、烯丙基醇、羟基乙烯基乙基醚、羟基乙烯基丙基醚、羟基乙烯基丁基醚和式H2C=C(R15)-COO-(-CH2-CH(R16)-O-)b-R17(X)或H2C=C(R15)-O-(-CH2-CH(R16)-O-)b-R17(XI)的化合物,其中R15为H或甲基,b为2-200,优选2-100的数。R16基团各自独立地为H、甲基或乙基,优选为H或甲基,条件是至少50摩尔%的R13基团为H。更优选地,至少75摩尔%,更优选至少90摩尔%的R16基团为H,最优选它们仅为H。R17基团为H、甲基或乙基,优选为H或甲基。单体(E)的其他实例包括N-乙烯基衍生物,例如N-乙烯基甲酰胺、N-乙烯基乙酰胺、N-乙烯基吡咯烷酮和N-乙烯基己内酰胺,和乙烯基酯,例如甲酸乙烯酯或乙酸乙烯酯。N-乙烯基衍生物可在聚合后水解,从而获得乙烯基胺单元,且乙烯基酯可水解成乙烯醇单元。
如果存在该类其他单体(E),则它们的量应不超过15重量%,优选10重量%,更优选5重量%,基于所有单体的总和,最优选不存在其他单体(E)。
共聚物(P)的制备
本发明的共聚物可通过原则上为本领域技术人员所已知的方法通过在水溶液中自由基聚合单体(A)、(B)以及任选的(C)、(D)和(E)而制备,例如通过溶液聚合、凝胶聚合或反相乳液聚合。这些聚合技术原则上是本领域技术人员所已知的。
对聚合而言,可与合适的自由基聚合引发剂一起使用且聚合水溶液或单体。聚合可以以热和/或光化学方式进行。当然可使用其他添加剂和助剂来进行聚合,例如消泡剂或配位剂。
在本发明的优选实施方案中,所用的共聚物在存在至少一种不可聚合的表面活性化合物(T)下制备。不可聚合的表面活性化合物(T)优选为至少一种非离子表面活性剂,然而阴离子和阳离子表面活性剂也是合适的,条件是它们不参与聚合反应。所述化合物可尤其为表面活性剂,优选为通式R18-Y的非离子表面活性剂,其中R18为具有8-32个,优选10-20个,更优选12-18个碳原子的烃基,Y为亲水性基团,优选为非离子亲水性基团,尤其为聚烷氧基。
所述非离子表面活性剂优选为乙氧基化的长链脂族醇,其可任选包含芳族部分。实例包括:C12C14脂肪醇乙氧基化物、C16C18脂肪醇乙氧基化物、C13羰基合成醇乙氧基化物、C10羰基合成醇乙氧基化物、C13C15羰基合成醇乙氧基化物、C10格尔伯特醇乙氧基化物和烷基酚乙氧基化物。特别有用的实例为具有5-20个亚乙氧基单元,优选为8-18个亚乙氧基单的化合物。任选地,也可存在少量高级亚烷氧基单元,尤其是亚丙氧基和/或亚丁氧基单元,然而亚乙氧基单元的量应通常为至少80摩尔%,基于所有亚烷氧基单元。
尤其合适的为选自如下组的表面活性剂:乙氧基化烷基酚、乙氧基化饱和异-C13醇和/或乙氧基化C10格尔伯特醇,其中在各亚烷氧基中存在5-20个亚乙氧基单元,优选8-18个亚乙氧基单元。
在聚合期间添加不可聚合的界面活性化合物(T)导致共聚物(P)在聚合物驱替中的性能明显提高。更特别地,增稠效果得以提高,且此外共聚物的凝胶含量得以降低。该效果可解释如下(其意图绝非是将本发明限制于该解释)。在不存在表面活性剂下聚合的情况下,大分子单体(B)在含水反应介质中形成胶束。在聚合中,这导致在聚合物中以嵌段形式引入疏水缔合区域。如果此时在共聚物制备期间存在额外的表面活性化合物,则形成混合胶束。这些混合胶束包含可聚合和不可聚合的组分。因此,此时大分子单体(B)以较短嵌段的形式引入。同时,每个聚合物链中的这些较短嵌段的数量较大。因此,在存在表面活性剂下制得的共聚物的结构不同于在不存在表面活性剂下制得的那些。
不可聚合的界面活性化合物(T)通常可以以0.1-5重量%的量使用,基于所用的所有单体的量。所用的不可聚合的界面活性化合物(T)与单体(B)的重量比通常为4:1-1:4,优选为2:1-1:2,更优选为1.5:1-1:1.5,例如约1:1。
在优选实施方案中,自由基聚合通过在水相中凝胶聚合,优选绝热凝胶聚合而进行。
对凝胶聚合而言,首先提供包含单体(A)、(B)和任选(C)、(D)和/或(E)以及水或含水溶剂混合物的溶液。合适的含水溶剂混合物包含水和水溶混性有机溶剂,其中水的比例通常为至少60重量%,优选为至少85重量%,更优选为至少95重量%。在本发明的一个实施方案中,仅使用水作为溶剂。应提及的水溶混性有机溶剂尤其为醇,例如甲醇、乙醇或丙醇。所有单体一起的浓度通常为10-60重量%,优选为20-50重量%,例如25-45重量%,基于单体水溶液。
在聚合之前,可将酸性单体完全或部分中和。这可例如使用碱金属氢氧化物或者使用氨或胺进行。聚合应尤其在5-7.5,优选5-7的pH下,例如在pH 6下进行。单体水溶液可进一步包含各种添加剂,例如消泡剂或配位剂。
为了实施凝胶聚合,将单体水溶液冷却至低于+10℃,优选-5℃至+5℃的温度。在冷却之前、之中或之后,将该混合物惰化。在冷却后,添加至少一种可溶于单体溶液中的自由基聚合引发剂。所述引发剂可优选为水溶性的,然而即使不具有良好水溶性的引发剂也可溶于单体溶液中。所述引发剂可为热引发剂或光引发剂。
在一个实施方案中,聚合在低于+10℃的温度下使用热聚合引发剂引发。为此,使用即使该低温下也可引发聚合的热聚合引发剂。本领域技术人员知晓该类聚合引发剂。实例包括具有10小时的合适低温半衰期的氧化还原引发剂或偶氮引发剂。由于加入的聚合引发剂,聚合在低温下缓慢地开始。由于反应所释放出的热量,混合物被加热且聚合加速。混合物的温度通常升至80-90℃。聚合通常提供了固体聚合物凝胶。
在凝胶聚合的另一实施方案中,反应可使用氧化还原引发剂体系与至少一种仅在较高温度下分解的热引发剂的混合物实施。这可例如为在40-70℃温度范围内分解的水溶性偶氮引发剂。此时,聚合首先在所述的低于+10℃,优选为-5℃至+5℃低温下由于所述氧化还原引发剂体系而开始。由于反应所释放出的热量,混合物被加热,其结果是仅在较高温度下才分解成自由基的引发剂开始分解。
在另一实施方案中,聚合可使用光化学引发剂与热引发剂的组合进行。在这种情况下,聚合在低温下以光化学方式引发,且反应释放出的热量最终额外触发热引发剂。
所述凝胶聚合通常在不搅拌下进行。这可优选间歇进行,例如在GB1,054,028所述的初反应器中进行。为此,特别有利地可使用锥形反应器,例如如US5,633,329或US7,619,046B2所述。
图8显示了可用于实施凝胶聚合的锥形反应器。其为垂直管式反应器(1),其具有直径D1和位于下端的收窄锥形(2),其中锥形收窄末端处的直径为D2。D1/D2之比通常为2:1-25:1,优选为2:1-20:1,例如为3:1-10:1。圆柱段(1)中的壁与锥形收窄区域(2)中的壁之间的角度α大于120°且小于180°,尤其为135-175°,优选为150-175°,例如为155-170°。反应器圆柱段(1)的高度与直径D1之比可为4-40。所述反应器的容积由本领域技术人员根据所需的生产能力选择,且可为1-100m3,例如5-50m3,本发明无意限制于此。
所述反应器的内表面优选提供有涂层以减少反应混合物与反应器壁的粘附,例如涂覆有Teflon涂层。所述反应器可任选被用于冷却或加热反应混合物的壳环绕。
在下端处,所述反应器具有关闭装置(3)。所述反应器进一步包括至少一个进料口(4)。经由该进料口(4),可将单体水溶液和/或气体和/或其他组分通入反应器中。气体可尤其为惰性气体如氮气、氩气或CO2。惰性气体可用于吹扫反应器以进行惰化。当然也可存在用于不同组分的不同进料口,例如用于反应水溶液和气体的独立进料口。所述至少一个进料口(4)可优选安装在反应器的顶部或者反应器上部的侧面,然而其他设置当然也是可能的。
所述反应器当然可包括其他组件,例如其他进料口(例如用于压缩空气或溶剂),或凝胶排出装置,例如设置在反应器内部中的可运动滑座(ram),例如如GB1,054,028所述。
图9显示了全锥形反应器。其具有与刚才所述的部分锥形反应器类似的结构,但不具有任何圆柱段,该锥形反应器上端的直径为d1,且下端直径为d2。d1/d2之比通常为1.1:1-25:1,尤其为2:1-25:1,优选为2.1-10:1,例如为3.1-10:1。上部直径d1与反应器壁的角度β为大于45°且小于90°,优选为60-89°,例如为70-88°。对于其他部分,参见上文描述。
在全锥形或部分锥形反应器中的凝胶聚合可优选在绝热条件或至少基本上绝热的条件下进行。在该程序的情况下,所述反应器不具有任何冷却或加热。本领域技术人员知晓—根据反应器的内部温度和/或环境温度—当然可释放出一定量的热量或者经由反应器壁吸收一定量的热量,但该效应随着反应器尺寸的增大而自然起较小的作用。
为了进行聚合,将上述含水单体混合物在位于锥形反应器外部的合适混合和冷却装置中混合,且冷却至低于+10℃,优选-5℃至+5℃。这可例如在以合适方式(例如借助循环冷却)冷却的混合槽中进行。在单体混合物冷却后,已经可以加入在该低温下不形成任何自由基的引发剂,例如上文所述的至少一种仅在40-70℃下引发聚合的偶氮引发剂。然而,该类引发剂也可仅在后续时刻加入。
最后,将冷却的混合物经由进料口(4)或其他进料口转移至所述全锥形或部分锥形反应器中。在该填充之前和/或之中,应当用惰性气体吹扫反应器。
为了进行聚合,通常将单体溶液惰化,即脱除所存在的任何氧气。这可例如通过用惰性气体如氮气、氩气或二氧化碳吹扫单体溶液而进行。该吹扫可在混合和冷却单体水溶液期间在用于惰化的独立装置,例如WO03/066190A1所述的装置中,或者在反应器本身中就已进行。优选在反应器上游进行惰化。
仅在紧临聚合之前,才将即使在低温下也可引发聚合的聚合引发剂分开溶解并添加至单体水溶液中。这可例如通过在用单体水溶液填充反应器期间将引发剂溶液注入反应器中,或者优选注入进料口(4)中或者注入将混合和冷却装置与反应器连接的管中而进行。对引发剂溶液与单体水溶液的充分混合而言,可将合适的混合单元,尤其是静态混合器集成至单体进料口中。当然可以以此方式将所有引发剂添加至单体溶液中。
由于所添加的聚合引发剂,聚合在低于+10℃的温度下开始。释放出的反应热将混合物加热,并加速聚合。混合物的温度通常升至80-90℃。聚合通常获得了固体聚合物凝胶。
为了将聚合物凝胶从反应器中取出,打开关闭装置(3)。一般而言,获得的聚合物凝胶是固体且在无额外措施下不会从反应器中流出。如果所用反应器具有机械辅助装置,例如如GB1,054,028所述设置在反应器内部的可运动滑座,则可使用该辅助装置将聚合物凝胶排出。
优选地,从全锥形或部分锥形反应器中排出聚合物凝胶可使用气体进行。为此,在该管式反应器的顶部将气体经由进料口(4)或其他进料口注入。为此,可使用任何不可与聚合物凝胶反应的气体。有利地,为此可经由进料口(4)注入惰性气体如氮气、二氧化碳或氩气,因为该进料业已存在。也可使用其他气体,例如压缩空气。或者,还可在反应器的顶部注入惰性液体,尤其是聚合物的沉淀剂。气体或液体的压力由本领域技术人员适当选择,且可例如为2*105-65*105Pa,尤其为4*105-25*105Pa。更特别地,压力以使得聚合物凝胶从反应器中均匀排出的方式选择。
优选将所得聚合物凝胶粉碎并干燥。干燥应优选在低于100℃的温度下进行。为了避免粘结,可对该步骤使用合适的隔离剂。所述疏水缔合共聚物以颗粒或粉末形式获得。
由于所得聚合物粉末或颗粒在应用场所应用期间通常以水溶液形式应用,因此必须在现场将该聚合物溶解在水中。这可导致不希望地形成所述具有高分子量的聚合物的团块。为了避免该现象,可早在合成期间在本发明聚合物中添加促进或改善干燥聚合物在水中的溶解的助剂。该助剂可例如为尿素。
凝胶聚合也可为连续的。为此,可使用例如具有用于容纳待聚合混合物的传送带的聚合装置。所述传送带可装备有用于加热和/或用UV辐射辐照的设备。在该方法中,借助合适的装置将所述混合物倾至该带的一端,所述混合物在沿带方向传送期间聚合,且可在该带的另一端取下固体凝胶。
所得共聚物通常具有1*106-30*106g/mol,优选6*106-25*106g/mol,例如8*106-20*106g/mol的重均分子量Mw
优选的共聚物(P)
在本发明的优选实施方案中,所述水溶性共聚物包含:
●30-99.99重量%,优选35-99.9重量%,更优选45-99.5重量%的至少一种单体(A),
●0.01-15重量%,优选0.1-15重量%,更优选0.5-8重量%的至少一种大分子单体(B),
●0-69.99重量%,优选0-64.9重量%,更优选0-54.5重量%的至少一种单体(C),
●0-69.99重量%,优选0-64.9重量%,更优选0-54.5重量%的至少一种单体(D),和
●0-15重量%,优选0-10重量%,更优选0-5重量%的至少一种单体(E),在每种情况下基于所有单体的总量,条件是单体(A)-(E)的总量为100重量%。
换言之,除单体(A)、(B)以及任选的(C)、(D)和(E)之外,不存在其他单体。在该实施方案中,优选不存在单体(E)。
单体(A)-(E)(包括优选的单体(A)-(E))已加以描述了。
在本发明的另一优选实施方案中,共聚物(P)为选自共聚物(P1)、共聚物(P2)、共聚物(P3)和共聚物(P4)的共聚物,优选为选自共聚物(P1)、(P2)和(P3)的共聚物。下文将描述共聚物(P1)、(P2)、(P3)和(P4)。
共聚物(P1)
在本发明的优选实施方案中,水溶性共聚物(P)为水溶性共聚物(P1)。
共聚物(P1)包含(甲基)丙烯酰胺,优选丙烯酰胺作为单体(A)。
水溶性共聚物(P1)包含已述的大分子单体(B1)和(B2)的混合物作为大分子单体(B),其中大分子单体(B1)的摩尔比例尤其为0.3-0.95,优选为0.45-0.9,更优选为0.5-0.9,例如为0.5-0.8,基于(B1)和(B2)的总和。
此外,在共聚物(P1)中,大分子单体(B1)和(B2)的式(I)和(II)中的基团和指数各自定义如下:
R1:H或甲基,
R2:二价连接基团-OR35-,其中R35为具有1-6个,优选3-6个,更优选4个碳原子的直链1,ω-亚烷基,
R3:亚乙基-CH2CH2-,
R4:独立地为亚烷基-CR6(R7)-CR8(R9)-,其中R6、R7、R8和R9的碳原子的总和在每种情况下为为2,且其中在至少70摩尔%,优选至少80摩尔%,更优选至少95摩尔%的-CR6(R7)CR8(R9)-单元中,R6、R7和R8各自为H且R9为乙基,
R5:亚乙基-CH2CH2-,
a 20-28,优选23-26的数,
b 10-25,优选14-23,更优选14-20,最优选14-18的数,
c 0-2,优选0-1.5的数,和
d 1.5-10,优选1.5-5的数。
除单体(A)和(B)之外,共聚物(P1)进一步包含至少一种含-SO3H基或其盐的单体(C)。该单体的实例已加以描述了。优选乙烯基磺酸、烯丙基磺酸或2-丙烯酰胺基-2-甲基丙磺酸;更优选地,单体(C)为2-丙烯酰胺基-2-甲基丙磺酸。
在共聚物(P1)中,单体(A)的量通常为40-60重量%,优选为45-55重量%;单体(B)的量为0.1-5重量%,优选为0.5-3重量%,例如为0.8-2.5重量%;单体(C)的量为40-60重量%,优选为45-55重量%;在每种情况下基于水溶性共聚物(P1)中所有单体的总和。优选地,水溶性共聚物(P1)中的单体(A)、(B)和(C)的总量为100重量%。
共聚物(P1)通常具有1*106-30*106g/mol,优选2*106-16*106g/mol的重均分子量Mw
共聚物(P2)
在本发明的另一优选实施方案中,共聚物(P)为共聚物(P2)。
共聚物(P2)包含(甲基)丙烯酰胺,优选丙烯酰胺作为单体(A)。
水溶性共聚物(P2)包含已述的大分子单体(B1)和(B2)的混合物作为大分子单体(B),其中大分子单体(B1)的摩尔比例尤其为0.3-0.95,优选为0.45-0.9,更优选为0.5-0.9,例如为0.5-0.8,基于(B1)和(B2)的总和。
此外,在共聚物(P2)中,大分子单体(B1)和(B2)的式(I)和(II)中的基团和指数各自如已对共聚物(P1)所定义,包括所述的优选范围。
除单体(A)和(B)之外,共聚物(P2)进一步包含至少一种含COOH基或其盐的单体(C)。该单体的实例已加以描述了且包括丙烯酸、甲基丙烯酸、巴豆酸、衣康酸、马来酸和富马酸。优选(甲基)丙烯酸,特别优选丙烯酸。
在共聚物(P2)中,单体(A)的量通常为50-85重量%,优选为55-80重量%;单体(B)的量为0.1-10重量%,优选为0.5-8重量%,例如为0.8-5重量%;单体(C)的量为5-45重量%,优选为10-40重量%,例如为15-30重量%;在每种情况下基于水溶性共聚物(P2)中所有单体的总和。优选地,水溶性共聚物(P2)中的单体(A)、(B)和(C)的总量为100重量%。
共聚物(P2)通常具有1*106-30*106g/mol,优选4*106-22*106g/mol的重均分子量Mw
共聚物(P3)
在本发明的另一优选实施方案中,共聚物(P)为共聚物(P3)。
共聚物(P3)包含(甲基)丙烯酰胺,优选丙烯酰胺作为单体(A)。
水溶性共聚物(P3)包含已述的大分子单体(B1)和(B2)的混合物作为大分子单体(B),其中大分子单体(B1)的摩尔比例尤其为0.3-0.95,优选为0.45-0.9,更优选为0.5-0.9,例如为0.5-0.8,基于(B1)和(B2)的总和。
此外,在共聚物(P3)中,大分子单体(B1)和(B2)的式(I)和(II)中的基团和指数各自如已对共聚物(P1)所定义,包括所述的优选范围。
除单体(A)和(B)之外,共聚物(P3)进一步包含至少两种单体(C),即至少一种含COOH基或其盐的单体(C1)和至少一种含SO3H基或其盐的单体(C2)。
单体(C1)的实例已加以提及且包括丙烯酸、甲基丙烯酸、巴豆酸、衣康酸、马来酸和富马酸。优选(甲基)丙烯酸,特别优选丙烯酸。
单体(C2)的实例已加以描述。优选乙烯基磺酸、烯丙基磺酸或2-丙烯酰胺基-2-甲基丙磺酸,更优选单体(C2)为2-丙烯酰胺基-2-甲基丙磺酸。
在共聚物(P3)中,单体(A)的量通常为30-85重量%,优选为40-80重量%;单体(B)的量为0.5-10重量%,优选为0.8-5重量%;单体(C)的量为5-40重量%,优选为5-30重量%;在每种情况下基于水溶性共聚物(P)中所有单体的总和。优选地,水溶性共聚物(P2)中的单体(A)、(B)和(C)的总量为100重量%。
共聚物(P3)通常具有1*106-30*106g/mol,优选2*106-20*106g/mol的重均分子量Mw
共聚物(P4)
在本发明的另一优选实施方案中,共聚物(P)为共聚物(P4)。
共聚物(P4)包含(甲基)丙烯酰胺,优选丙烯酰胺作为单体(A)。
水溶性共聚物(P4)包含已述的大分子单体(B1)和(B2)的混合物作为大分子单体(B),其中大分子单体(B1)的摩尔比例尤其为0.3-0.95,优选为0.45-0.9,更优选为0.5-0.9,例如为0.5-0.8,基于(B1)和(B2)的总和。
此外,在共聚物(P4)的情况下,大分子单体(B1)和(B2)的式(I)和(II)中的基团和指数各自如已对共聚物(P1)所定义,包括所述的优选范围。
共聚物(P4)基本上仅包含单体(A)和(B)。此外,可存在少量的其他单体,尤其是选自单体(C)、单体(D)和单体(E)的其他单体。在一个实施方案中,共聚物P4由单体(A)和(B)组成。
在共聚物(P4)中,单体(A)的量通常为80-99.9重量%,优选为90-99.5重量%,例如为97-99.5重量%;单体(B)的量为0.1-5重量%,优选为0.5-3重量%;在每种情况下基于水溶性共聚物(P4)中所有单体的总和。优选地,水溶性共聚物(P4)中的单体(A)和(B)的总量为100重量%。
共聚物(P4)通常具有1*106-30*106g/mol的重均分子量Mw
开采矿物油的方法
为了实施本发明的方法,在矿物油油藏中钻出至少一个采出井和至少一个注入井。一般而言,油藏具有多个注入井和多个采出井。将所述水溶性共聚物(P)的含水配制剂经由至少一个注入井注入矿物油油藏中,并经由至少一个采出井从所述油藏中抽出矿物油。由于注入的含水配制剂所产生的压力(称为“聚合物驱替”),矿物油沿采出井的方向流动且经由采出井采出。就此而言,术语“矿物油”当然不仅仅意指单相油;相反,该术语还涵盖通常的原油-水乳液。
根据本发明,其中使用本发明方法的矿物油油藏的油藏温度为20-120℃,尤其为35-120℃,优选为40-100℃,更优选为45-90℃,例如为50-80℃。
本领域技术人员知晓矿物油油藏也可具有特定的温度分布。所述油藏温度基于被聚合物驱替所覆盖的注入井和采出井之间的油藏区域。确定矿物油油藏的温度分布的方式原则上是本领域技术人员所已知的。该温度分布通常由在地层中特定点处的测量温度且结合模拟计算而确定,其还考虑在地层中引入的热量和从地层中移除的热量。
在矿物油油藏具有10mD(9.87*10-15m2)至4D(3.95*10-12m2),优选100mD(9.87*10- 14m2)至2D(1.97*10-12m2),更优选200mD(1.97*10-13m2)至1D(9.87*10-13m2)的平均孔隙率的情况下,尤其可使用本发明的方法。矿物油地层的渗透率由本领域技术人员以单位“达西”(简称为“D”或“mD”(毫达西),1D=9.86923*10-13m2)报告,且可由液相在矿物油地层中的流动速率作为所施加压差的函数确定。流动速率可在使用从地层中取出的钻芯进行的岩心驱替实验中测定。其细节可参见例如K.Weggen,G.Pusch,H.Rischmüller,“Oil and Gas”,第37页及随后各页,UllmanN’s Encyclopedia of Industrial Chemistry,在线版,Wiley-VCH,Weinheim 2010。本领域技术人员知晓矿物油油藏中的渗透率并非必然是均匀的;相反,其可通常具有特定分布,因此所述的矿物油油藏的渗透率是平均渗透率。
所述方法使用除水之外至少包含所述共聚物(P)的含水配制剂实施。当然还可使用各种疏水缔合共聚物的混合物。
所述配制剂可在淡水或者在含盐水中配制。当然可包括各种盐的混合物。例如,可使用海水来配制所述配制剂,或者可使用采出的地层水(其以此方式再次利用)。在海上采油平台的情况下,所述配制剂通常在海水中配制。在陆地采油装置中,可有利地首先将所述聚合物溶解在淡水中,且可用地层水将所得溶液稀释至所需的使用浓度。
所述盐可尤其为碱金属盐和碱土金属盐。典型阳离子的实例包括Na+、K+、Mg2+和Ca2 +,典型阴离子的实例包括氯离子、溴离子、碳酸氢根、硫酸根和硼酸根。
如果所述配制剂包含盐,则通常存在至少一种或超过一种碱金属离子,尤其是至少Na+。此外,还可存在碱土金属离子,此时碱金属离子/碱土金属离子的重量比通常≥2,优选≥3。所存在的阴离子通常为至少一种或超过一种卤素离子,尤其是至少Cl-。一般而言,Cl-的量为至少50重量%,优选至少80重量%,基于所有阴离子的总和。
所述含水配制剂中的所有盐的总量可为至多350 000ppm(重量份),例如为2000-350 000ppm,尤其为5000-250 000ppm,基于所述配制剂中所有组分的总和。如果使用海水来配制所述配制剂,则盐含量可为2000-40000ppm;如果使用地层水,则盐含量可为100000-250 000ppm,例如为100 000-200 000ppm。碱土金属离子的量可优选为1000-53000ppm。
所述含水配制剂当然可包含其他组分。其他组分的实例包括生物杀伤剂、稳定剂、自由基清除剂、引发剂、表面活性剂、共溶剂、碱和配位剂。
例如,可使用表面活性剂和/或碱来辅助共聚物(P)的采油效果。优选表面活性剂的实例在下文进一步公开。表面活性剂还可用于提高所用聚合物的粘度。例如,可使用WO2012/069438A1所公开的表面活性剂。
可使用添加剂来例如防止不希望的副作用,例如不希望的盐沉淀,或者稳定所用的共聚物(P)。在聚合物驱替期间注入地层中的聚合物配制剂仅非常逐步地沿采出井的方向流动,这意味着它们在地层中长时间保持在地层条件下。所述聚合物的降解导致粘度降低。这必须通过使用较大量的聚合物而加以考虑,或者必须接受该方法效率恶化这一事实。在任何情况下,该方法的经济可行性变劣。大量机理可造成聚合物的降解。借助合适的添加剂,可根据条件防止或至少延缓聚合物的降解。
在本发明的一个实施方案中,所用的含水配制剂包含至少一种氧清除剂。氧清除剂与可能存在于所述含水配制剂中的氧气反应,由此防止氧气侵袭所述聚合物。氧清除剂的实例包括亚硫酸盐,例如Na2SO3,亚硫酸氢盐或连二亚硫酸盐。
在本发明的另一实施方案中,所用的含水配制剂包含至少一种自由基清除剂。自由基清除剂可用于抵消自由基所造成的聚合物降解。该类化合物可与自由基形成稳定的化合物。自由基清除剂原则上是本领域技术人员所已知的。例如,它们可为选自如下组的稳定剂:硫化合物、位阻胺、N-氧化物、亚硝基化合物、芳族羟基化合物或酮。硫化合物的实例包括硫脲、取代的硫脲,例如N,N’-二甲基硫脲、N,N’-二乙基硫脲、N,N’-二苯基硫脲;硫氰酸盐,例如硫氰酸铵或硫氰酸钾;二硫化四甲基秋兰姆;和硫醇,例如2-巯基苯并噻唑或2-巯基苯并咪唑或其盐,例如钠盐;二甲基二硫代氨基甲酸钠;2,2’-二硫代双(苯并噻唑)、4,4’-硫代双(6-叔丁基间甲酚)。其他实例包括双氰胺、胍、氨腈、对甲氧基苯酚、2,6-二叔丁基-4-甲基苯酚、丁基羟基苯甲醚、8-羟基喹啉、2,5-二叔戊基氢醌、5-羟基-1,4-萘醌、2,5-二叔戊基氢醌、双甲酮、3,4.5-三羟基苯甲酸丙酯、N-亚硝基苯基羟胺铵、4-羟基-2,2,6,6-四甲氧基哌啶、N-(1,3-二甲基丁基)-N'-苯基对苯二胺和1,2,2,6,6-五甲基-4-哌啶醇。优选位阻胺,例如1,2,2,6,6-五甲基-4-哌啶醇和硫化合物、巯基化合物,尤其是2-巯基苯并噻唑或2-巯基苯并咪唑或其盐,例如钠盐,特别优选2-巯基苯并噻唑或其盐。
在本发明的另一实施方案中,所用的含水配制剂包含至少一种牺牲试剂。牺牲试剂可与自由基反应,由此使得它们无害化。实例尤其包括醇。醇可被自由基氧化,例如氧化成酮。实例包括一元醇和多元醇,例如1-丙醇、2-丙醇、丙二醇、甘油、丁二醇或季戊四醇。
在本发明的另一实施方案中,所用的含水配制剂包含至少一种配位剂。当然可使用各种配位剂的混合物。配位剂通常为可尤其与二价和更高价态金属离子,例如Mg2+或Ca2+配位的阴离子化合物。以此方式,可例如防止任何不希望的沉淀。此外,可借助所存在的酸性基团,尤其是COOH基防止所存在的任何多价金属离子交联聚合物。所述配位剂可尤其为羧酸或膦酸衍生物。配位剂的实例包括乙二胺四乙酸(EDTA)、乙二胺琥珀酸(EDDS)、二亚乙基三胺五亚甲基膦酸(DTPMP)、甲基甘氨酸二乙酸(MGDA)和次氮基乙酸(NTA)。当然还可包括各自的相应盐,例如相应的钠盐。
作为上述螯合剂的替代物或者除此之外,还可使用聚丙烯酸盐。
在本发明的另一实施方案中,所述配制剂包含至少一种有机共溶剂。优选可与水完全混溶的溶剂,然而也可使用仅可与水部分混溶的溶剂。一般而言,溶解度应为至少50g/l,优选至少100g/l。实例包括脂族C4-C8醇,优选C4-C6醇,为了获得足够的水溶性,其可被1-5个,优选1-3个亚乙氧基单元取代。其他实例包括具有2-8个碳原子的脂族二醇,其还可任选具有其他取代基。例如,所述共溶剂可为选自如下组中的至少一种:2-丁醇、2-甲基-1-丙醇、丁基乙二醇、丁基二甘醇和丁基三甘醇。
所述含水配制剂中的共聚物浓度是固定的,从而使得该含水配制剂具有最终应用所需的粘度。所述配制剂的粘度应通常为至少5mPas,优选至少10mPas(在25℃和7s-1的剪切速率下测定)。
一般而言,所述配制剂中的共聚物(P)浓度为0.02-2重量%,基于所述含水配制剂中所有组分的总和。该量优选为0.05-0.5重量%,更优选为0.1-0.3重量%,例如为0.1-0.2重量%。
在另一实施方案中,所用配制剂中的共聚物(P)浓度不大于0.05重量%,尤其是0.01-0.05重量%,优选0.02-0.05重量%。
如果共聚物(P)呈粉末或颗粒形式,则必须将所述共聚物溶解在用于注入的含水介质中。颗粒可具有例如0.1-3mm的平均粒度。本领域技术人员知晓在高分子量聚合物溶解期间,应避免过高的剪切应力以避免聚合物降解。用于溶解聚合物和将所述水溶液注入地下地层中的装置和方法原则上是本领域技术人员所已知的。
所述含水配制剂可通过首先装入水,将呈粉末或颗粒形式的共聚物分散在水中并与水混合而制备。
在本发明的另一实施方案中,所述共聚物颗粒或粉末可通过两步法溶解。这包括在第一溶解步骤中将聚合物颗粒或粉末溶解在含水介质中以获得浓缩物。该浓缩物可具有例如1-3重量%的浓度。这可例如在合适的溶解槽中进行。在第二步骤中,将所述浓缩物稀释至使用浓度。这可通过将所述浓缩物与注入流体一起直接注入管线中而实现。为了快速混合,可在注入点上方设置混合器,尤其是静态混合器。该方法由WO2012/140092A1所公开。
在本发明的另一实施方案中,溶解可通过在第一步骤中用水相润湿聚合物颗粒而进行。这导致聚合物在水相中溶胀。所述聚合物的浓度可例如为约2-10重量%,基于水相和聚合物的总量。随后,可借助合适的粉碎装置将该溶胀的聚合物粉碎,例如粉碎至0.05-0.2mm的尺寸,并与其他水混合。这得到可具有例如1-3重量%聚合物浓度的聚合物分散体。可将所述聚合物分散体完全溶解在其他溶解槽中。在一种变型中,可省略溶解槽,且可将所述所述聚合物分散体与注入流体一起直接注入管线中,在其中所述聚合物在达到注入场所的途中完全溶解。当注入流体在管线中输送一定距离时,例如从油田的中央溶解站输送至各注入井时,后者是尤其有利的。用于所述方法的合适装置例如公开在WO2008/071808A1和WO2008/081048A1中。
如果共聚物(P)已呈溶液或反相乳液的形式,则将其任选与其他组分混合并稀释至使用浓度。该稀释也可在两步中进行,包括首先制备浓缩物,然后将其进一步稀释。适于该目的的装置例如由EP2283915A1公开。
含水配制剂的注入可借助常规装置进行。可借助常规泵将所述配制剂注入一个或多个注入井中。所述注入井通常内衬有渗碳钢管,且所述钢管已在所需点处开孔。所述配制剂经由所述开孔从注入井进入矿物油地层中。由泵施加的压力以原则上已知的方式固定该配制剂的流动速率,因此还固定借此使所述含水配制剂进入地层中的剪切应力。进入地层时的剪切应力可由本领域技术人员以原则上已知的方式基于Hagen-Poiseuille定律使用流体在进入地层时通过的面积、平均孔半径和体积流动速率确定。地层的平均渗透率可如所述的那样以原则上已知的方式确定。当然,注入地层中的含水共聚物配制剂的体积流动速率越大,则剪切应力就越大。
注入速率可由本领域技术人员根据地层中的条件固定。含水聚合物配制剂进入地层时的剪切速率优选为至少30000s-1,优选为至少60000s-1,更优选为至少90000s-1
在本发明的方法中,从采出井中抽出的通常不是单相油,而是原油/水乳液。此处,术语“原油/水乳液”应包括油包水乳液和水包油乳液二者。油-水乳液可包含例如0.1-99重量%的水。所述水可为油藏盐水。然而,随着聚合物注入时间的延长,采出的水还可包含注入的共聚物。
为了在精炼厂中进一步处理原油,必须将采出的原油/水乳液分离。为此,可以以本身已知的方式添加破乳剂。
用于破碎原油乳液的装置和方法是本领域技术人员所已知的。所述乳液通常在现场(即仍在油田处)破乳。这可为安装在采出井处的装置或对油田的数个采出井进行原油乳液破乳的中央装置。
输送已在新采出的原油乳液的温度下以使得该乳液可在到达处理装置的途中就已破乳的速率进行。然后,该破乳的乳液在任选加热的分离器中且可借助电场分离成纯油和水或盐水。所述分离器可包括仅在重力影响下分离的装置,即例如沉降槽,或者其他分离器,例如旋液分离器。
在分离后,可将原油相输送至精炼厂以进一步处理。移除的水相可优选再次用于注入。
如果采出的油-水乳液的水相包含一定比例的注入共聚物,则相分离可延迟或者在极端情况下甚至可被阻止。因此,通常希望使所述聚合物至少部分降解。这可通过在水相中添加氧化剂而实现。合适的氧化剂的实例包括过氧化氢、过硫酸盐、次氯酸盐或亚氯酸盐。
优选共聚物(P)的用途
用于本发明方法的共聚物(P)的特性由包括油藏温度和盐度在内的因素决定。本领域技术人员会根据条件作出合适的选择。
在本发明的一个实施方案中,将共聚物(P1)用于本发明的方法中。共聚物(P1)还尤其适于较高的盐含量和较高的地层温度。因此,当使用地层水来配制含水配制剂,它们是尤其合适的。当然,还可使用海水和/或淡水。包含共聚物(P1)的含水配制剂的盐度可例如为2000-350 000ppm,尤其为5000-250 000ppm,例如为100 000-200 000ppm。碱土金属离子的量可优选为1000-53 000ppm。油藏温度可尤其为50-120℃,优选为50-100℃,例如为50-90℃。共聚物(P1)在所述含水配制剂中的有利浓度为至少0.1重量%,例如为0.15-0.5重量%。当然还可在其他条件下使用共聚物(P1),尤其是低于50℃的油藏温度下和当使用淡水时。
在本发明的另一优选实施方案中,将共聚物(P2)用于本发明的方法中。共聚物(P2)特别适于不过高的盐浓度。因此,当使用海水来配制所述含水配制剂时,它们是尤其合适的。当然,还可使用淡水。包含共聚物(P2)的含水配制剂的盐度可例如为2000-100000ppm,尤其为2000-60 000ppm,例如为30 000-40 000ppm。油藏温度可尤其为35-90℃,更优选为35-80℃,例如为40-80℃。所述共聚物在含水配制剂中的有利浓度为至少0.1重量%,例如为0.15-0.5重量%。当然还可在其他条件下使用共聚物(P2),尤其是低于35℃的油藏温度下和当使用淡水时。
在本发明的另一优选实施方案中,将共聚物(P3)用于本发明的方法中。共聚物(P3)尤其适于中等盐含量和中等地层温度。包含共聚物(P3)的含水配制剂的盐度可例如为5000-150 000ppm,尤其为5000-100 000ppm,例如为30 000-80 000ppm。油藏温度可尤其为40-100℃,优选为45-90℃,例如为45-85℃。共聚物(P3)在所述含水配制剂中的有利浓度为至少0.1重量%,例如为0.15-0.5重量%。当然还可在其他条件下使用共聚物(P3),尤其是低于50℃的油藏温度下和当使用淡水时。
碱-聚合物驱替
在本发明的一个实施方案中,本发明的方法为碱-聚合物驱替操作。
对碱-聚合物驱替而言,使用除水之外,至少包含所述的共聚物(P),例如共聚物(P1)、(P2)或(P3),和至少一种碱的含水配制剂。所述含水配制剂的pH通常为至少8,优选至少9,尤其为9-13,优选为10-12,例如为10.5-11。
原则上可使用可获得所需pH的任何类型的碱,本领域技术人会做出适当的选择。合适碱的实例包括碱金属氢氧化物,例如NaOH或KOH,或碱金属碳酸盐,例如Na2CO3。此外,所述碱可为碱式盐,例如羧酸、磷酸的碱金属盐,或者尤其是包含呈碱形式的酸性基团的配位剂,例如EDTANa4
碱的添加具有可使得额外矿物油流动的效果。矿物油通常还包含各种羧酸,例如环烷酸,其被所述碱性配制剂转化成相应的盐。所述盐起天然表面活性剂的作用,因此辅助所述采油方法。
就所述方法和所用含水配制剂的其他细节而言,参考上文描述。用于碱-聚合物驱替的配制剂可为上文所述的配制剂(包括优选实施方案),条件是所述配制剂额外包含至少一种碱且具有上述pH。
在本发明的一个实施方案中,用于碱-聚合物驱替的配制剂额外包含至少一种配位剂。以此方式,当所述碱性含水配制剂与相应金属离子接触时和/或用于所述方法的含水配制剂包含相应的盐时,可有利地防止微溶性盐,尤其是Ca和Mg盐沉淀。配位剂的量由本领域技术人员选择。其可例如为0.1-4重量%,基于所述含水配制剂所有组分的总和。
碱-表面活性剂-聚合物驱替
在本发明的另一实施方案中,本发明的方法为碱-表面活性剂-聚合物驱替操作。
对碱-表面活性剂-聚合物驱替而言,使用除水之外,至少包含所述共聚物(P)、至少一种碱和至少一种表面活性剂的含水配制剂。所述含水配制剂的pH为至少8,优选至少9,尤其为9-13,优选为10-12,例如为10.5-11。合适的碱已在上文加以描述。
所用的表面活性剂原则上可为适于表面活性剂驱替的任何表面活性剂。该类表面活性剂原则上是本领域技术人员所已知的。适于表面活性剂驱替的表面活性剂实例包括含硫酸根、磺酸根、聚氧亚烷基、阴离子改性的聚氧亚烷基、甜菜碱基、葡糖苷基或氧化胺基团的表面活性剂,包括烷基苯磺酸盐、烯烃磺酸盐、酰胺基丙基甜菜碱、烷基多葡糖苷、烷基聚烷氧基化物或烷基聚烷氧基-硫酸盐、-磺酸盐或羧酸盐。可优选使用阴离子表面活性剂,其任选与非离子表面活性剂组合。
表面活性剂的浓度通常为0.01-2重量%,优选为0.05-1重量%,例如为0.1-0.8重量%,基于所述含水配制剂所有组分的总和。
在本发明的优选实施方案中,至少一种表面活性剂为如下通式的阴离子表面活性剂:
R24-O-(R28O)n(R29O)m(R30O)l-R25-YM (XII)
在式(XII)中,R24为脂族、脂环族和/或芳族烃基,优选为具有10-36个碳原子,优选16-36个碳原子的直链或支化脂族,优选伯脂族烃基。
R28基团各自独立地为亚丁基-CR31(R32)-CR33(R34)-,其中R31、R32、R33和R34基团各自独立地为H、甲基或乙基,条件是R31、R32、R33和R34的碳原子总和在每种情况下为2,且其中在至少70摩尔%,优选至少80摩尔%,更优选至少95摩尔%的R28单元中,R31、R32和R33为H且R34为乙基。
R29基团为1,2-亚丙基-CH2-CH(CH3)-,且R30基团为亚乙基-CH2-CH2-。
R25为单键或具有2-6个碳原子的亚烷基,其还可任选被OH基取代。
Y为选自如下组的基团:硫酸根、磺酸根、羧酸根和磷酸根,优选为硫酸根或羧酸根,且M为H或阳离子,尤其为碱金属阳离子,例如Na+
此外,在上式(XII)中,n为0-25的数,m为0-35的数,l为0-50的数,条件是n+m+l之和为3-75,优选为3-50,此外,其中-(R28O)-、-(R29O)-和-(R30O)-单元以式(XII)中所示的顺序以至少80摩尔%,优选至少90摩尔%的程度引入该表面活性剂中。烷氧基化物领域的技术人员知晓烷氧基化水平n、m和l为平均值。它们还可为有理数。
在本发明的一个实施方案中,表面活性剂(XII)中的R24基团为具有12-22个碳原子的直链脂族烃基R24a,尤其为衍生自伯脂肪醇的直链烃基。衍生自脂肪醇的基团具有偶数个碳原子,且通常为不同基团的混合物。例如,可存在C16基团和C18基团的混合物。
具有直链脂族R24a基团的表面活性剂(XII)可例如为如下通式的烷基聚烷氧基硫酸盐:
R24a-O-(R29O)m(R30O)lSO3M (XIIa)
即n=0,R25为单键且Y为硫酸根。在式(XIIa)中,m为0-15的数,n为0-15的数,其中m+l之和为3-30。优选地,m为5-15,n为0.1-15,其中m+l之和为5.1-25。M如上文所定义。
具有直链脂族R24a基团的表面活性剂(XII)可额外为如下通式的烷基聚烷氧基硫酸盐:
R24a-O-(R28O)n(R29O)m(R30O)lSO3M (XIIb)
即R25为单键且Y为硫酸根。在式(XIIb)中,n为3-15的数,m为0-15的数,n为0-25的数,其中n+m+l之和为3-50,优选为3-35。优选地,n为5-15,m为1-15,l为1-25。
具有直链脂族R24a基团的表面活性剂(XII)可额外为如下通式的烷基聚羧酸盐:
R24a-O-(R29O)m(R30O)l-CH2-CO2M (XIIc)
即n=0,R25为亚甲基-CH2-且Y为羧基。在式(XIIc)中,m为0-15的数,n为0-15的数,其中m+l之和为3-30。优选地,m为5-15,n为0.1-15,其中m+l之和为5.1-25。M如上文所定义。
在本发明的另一实施方案中,表面活性剂(XII)中的R24基团为具有10-36个碳原子,优选12-28个碳原子的支化脂族烃基R24b。R24b基团的平均支化水平通常为0.1-3.5,优选为0.5-3.5,例如为0.9-3。此处,术语“支化水平”以原则上已知的方式定义为R24”基团中的甲基数量减1。平均支化水平为所有基团支化水平的统计平均值。
支化脂族基团R24b可为衍生自格尔伯特醇的R24b’基团。衍生自格尔伯特醇的基团包括如下通式的2支化基团Cv+2H2(v+2)+1(CvH2v+1)CH-CH2-(XIII),其中v为3-18的数。格尔伯特醇可通过在碱存在下缩合一元醇,从而形成具有2倍碳原子数的二聚体(称为格尔伯特醇)而获得。除二聚体之外,格尔伯特醇还可获得单体醇和更高级缩合产物的基团。
具有衍生自格尔伯特醇的支化脂族R24b’基团的表面活性剂可例如为如下通式的烷基聚烷氧基硫酸盐:
R24b’-O-(R28O)n(R29O)m(R30O)lSO3M (XIId)
即R25为单键且Y为硫酸根。在式(XIId)中,n为3-15的数,m为0-15的数,n为0-25的数,其中n+m+l之和为3-50,优选为3-35。优选地,n为5-15,m为1-15,l为1-25。
具有衍生自格尔伯特醇的支化脂族R24b’基团的表面活性剂可额外为如下通式的烷基聚烷氧基羧酸盐:
R24b’-O-(R28O)n(R29O)m(R30O)l-CH2-CO2M (XIIe)
即R25为亚甲基且Y为羧酸根。在式(XIIe)中,n为0-15的数,m为0-15的数,n为0-25的数,其中n+m+l之和为3-50,优选为3-35。优选地,n为0-15,m为1-15,l为2-25。
在一个实施方案中,支化脂族R24b基团为主要具有甲基支链的R24b”基团。例如,所述基团可为其中80%支链为甲基支链且优选具有0.1-3.5支化水平的那些。
具有该类R24b”基团的表面活性剂可例如为如下通式的烷基醚硫酸盐:
R24b”-O-(R29O)m(R30O)lSO3M (XIIf)
即n=0,R25为单键且Y为硫酸根。在式(XIIf)中,m为0-15的数,n为0-15的数,其中m+l之和为3-30。优选地,m为5-15,n为0.1-15,其中m+l之和为5.1-25。M如上文所定义。例如R24”’可具有16-17个脂族碳原子。
在本发明的另一实施方案中,所述表面活性剂为如下通式的烷基醚硫酸盐:
R26-O-CH2CHR27-(R29O)m(R30O)lSO3M (XIV)
在式(XIV)中,m为0-35的数,n为0-55的数,其中m+l之和为3-60。优选地,m为5-15,n为0.1-15,其中m+l之和为5.1-25。R26表示含4-22个碳原子的直链或支化脂族烃基。R27表示含8-22个碳原子的直链脂族烃基。
在本发明的另一实施方案中,所述表面活性剂为烷基芳基磺酸盐,例如烷基苯磺酸盐。该类表面活性剂的实例包括十二烷基苯磺酸盐和十六烷基苯磺酸盐。
在本发明的另一实施方案中,所述表面活性剂为芳基烷基磺酸盐,例如苯基烷基磺酸盐。该类表面活性剂的实例包括苯基十二烷基磺酸盐。
在本发明的另一实施方案中,所述表面活性剂为链烷磺酸盐,例如含14-17个碳原子的仲链烷磺酸盐。
在本发明的另一实施方案中,所述表面活性剂为烯烃磺酸盐,例如α-烯烃磺酸盐,优选为具有12-32个碳原子的内烯烃磺酸盐。烯烃磺酸盐以原则上已知的方式通过磺化相应的烯烃而获得。优选具有12-28个碳原子的内烯烃磺酸盐,例如内C15/18烯烃磺酸盐、内C19/23烯烃磺酸盐、内C20/24烯烃磺酸盐或内C24/28烯烃磺酸盐。
在本发明的另一实施方案中,所述表面活性剂为烷基多葡糖苷,其中烷基结构部分包含8-18个脂族碳原子。
在本发明的另一实施方案中,所述表面活性剂为烷基乙氧基化物,其中烷基结构部分包含8-36个脂族碳原子且所述表面活性剂具有8-39的乙氧基化水平。
就所述方法和所用含水配制剂的其他细节而言,参考上文描述。用于碱-表面活性剂-聚合物驱替的配制剂可为上文所述的配制剂(包括优选实施方案),条件是所述配制剂额外包含至少一种碱和至少一种表面活性剂,优选刚才所述的表面活性剂,且具有上述pH。
在本发明的一个实施方案中,用于碱-表面活性剂-聚合物驱替的配制剂额外包含至少一种配位剂。以此方式,当所述碱性含水配制剂与相应金属离子接触时和/或用于所述方法的含水配制剂包含相应的盐时,可有利地防止微溶性盐,尤其是Ca和Mg盐沉淀。配位剂的量由本领域技术人员选择。其可例如为0.1-4重量%,基于所述含水配制剂所有组分的总和。
组合方法
本发明方法当然可与其他工艺步骤组合。
在一个实施方案中,所述方法可与水驱替组合。在水驱替中,将水经由至少一个注入井注入矿物油油藏中,且经由至少一个采出井从油藏中抽出原油。所述水可为淡水或盐水,例如海水或油藏水。在水驱替后,可使用本发明的聚合物驱替方法。
在另一实施方案中,所述方法还可与表面活性剂驱替组合。在表面活性剂驱替中,将表面活性剂水溶液经由至少一个注入井注入矿物油油藏中,且经由至少一个采出井从油藏中抽出原油。所述水可为淡水或盐水,例如海水或油藏水。所述表面活性剂可为上述表面活性剂,包括所述的优选表面活性剂。所述表面活性剂水溶液还可额外包含碱。该技术称为碱-表面活性剂驱替。可能的工艺顺序为水驱替→表面活性剂驱替→聚合物驱替或水驱替→碱-表面活性剂驱替→聚合物驱替。
当然,本发明的方法也可用不同的含水配制剂连续使用数次。例如,可逐步提高配制剂中的聚合物浓度。另一种组合可包含作为第一步骤的碱-表面活性剂驱替,随后为作为第二步骤的不使用表面活性剂和碱的聚合物驱替。
另一种组合包括作为第一步骤的碱-表面活性剂-聚合物驱替,随后为作为第二步骤的不使用表面活性剂和碱的聚合物驱替。
另一实施方案包括作为第一步骤的表面活性剂-聚合物驱替,随后为作为第二步骤的不使用表面活性剂的聚合物驱替。
在后面的各组合中,可在第一步骤中使用具有比第二步骤更高盐度的含水配制剂。或者,两个步骤也可使用具有相等盐度的水实施。
另一实施方案包括在气体(例如氮气、甲烷、乙烷、丙烷、丁烷或二氧化碳)存在下或者与气体交替地泵入聚合物水溶液。该方法可任选在表面活性剂存在下实施。
本发明的优点
由现有技术,例如由WO2010/133527A2、WO2012/069477A1或WO2012/069478A1已知的疏水缔合共聚物具有H2C=CH-R-O-(EO)10-150(AO)5-15R’的结构,其中EO表示乙氧基,AO表示具有至少4个碳原子的烷氧基,R表示连接基团且R’表示H或具有1-30个碳原子的烃基,这意味着它们具有端疏水性基团。
具有大分子单体(B)的本发明共聚物(P)包含同样具有端疏水性基团的大分子单体(B2)以及额外具有短亲水性端基的大分子单体(B1)。令人惊讶地,所述短端亲水性基团不赋予在水溶液中的缔合性,而是相反地,实际上导致所述共聚物性能的改善。
WO2012/069477A1的具有大分子单体H2C=CH-R-O-(EO)10-150(AO)5-15R’的缔合型共聚物的水溶液具有作为温度含水的粘度特性谱。图1a和1b各自显示了各种共聚物水溶液的粘度对温度的依赖性,尤其是两种市售非缔合型共聚物,即约50重量%丙烯酰胺和约50重量%ATBS-钠(ATBS=2-丙烯酰胺基-2-甲基丙磺酸钠盐)的共聚物(共聚物V3),75摩尔%丙烯酰胺和25摩尔%丙烯酸钠的共聚物(共聚物V4),以及额外地约50重量%丙烯酰胺、约48重量%ATBS-钠和2重量%所述大分子单体的共聚物(共聚物V1)的粘度。在所述两种市售非缔合型共聚物的情况下,粘度随温度升高而降低。在所述缔合型共聚物的情况下,水溶液的粘度首先显著升高,通过约60℃处的最大值,随后再次降低。
因此,WO2012/069477A1的缔合型共聚物的水溶液在60℃的区域内具有特别高的粘度效率。
在本发明共聚物(P)的水溶液的情况下,所述溶液的粘度如在WO2012/069477A1共聚物情况下那样,首先随温度的升高而达到约60℃下的最大值。随着温度进一步升高,粘度令人惊讶地根据该聚合物和盐度而至少不再显著降低或者甚至或多或少保持恒定,直至90℃。
因此,本发明共聚物(P)在高于60℃的温度下具有比现有技术已知的共聚物更好的粘度效率,且即使在较高的油藏温度下也允许更经济可行地进行聚合物驱替。
下文实施例旨在详细阐述本发明:
大分子单体(B)的制备:
缩写
HBVE 羟基丁基乙烯基醚,H2C=CH-O-(CH2)4-OH
EO 氧化乙烯
BuO 氧化丁烯(1,2-氧化丁烯>85重量%)
PeO 氧化戊烯(主要为1,2-氧化戊烯)
大分子单体1:
用24.5EO,随后用16BuO,随后用3.5EO烷氧基化HBVE
混合物:
H2C=CH-O-(CH2)4-O-(EO)24.5(BuO)15.8[(BuO)0.3(EO)5.8]-H(B1) 约60摩尔%
H2C=CH-O-(CH2)4-O-(EO)24.5(BuO)15.8-H(B2) 约40摩尔%
制备方法:
首先在具有桨式搅拌器的2L高压釜中装入135.3g(1.16mol)羟基丁基乙烯基醚(HBVE)(用100ppm氢氧化钾(KOH)稳定),开启搅拌器。流入1.06g甲醇钾(KOMe)溶液(32%KOMe,于甲醇(MeOH)中,对应于0.0048mol钾),将搅拌的釜抽真空至10-20毫巴的压力,加热至65℃并在65℃和10-20毫巴的压力下运行70分钟。蒸出MeOH。将所述釜用N2(氮气)吹扫三次。随后,测试该釜的泄露,将压力设定至0.5巴表压(1.5巴绝对压力),并将所述釜加热至120℃。减压至1巴绝对压力,并计量加入1126g(25.6mol)氧化乙烯(EO)达p最大为3.9巴绝对压力和T最大为150℃。在计量添加300g EO之后,停止计量添加(在开始后约3小时),将所述釜静置30分钟并减压至1.3巴绝对压力。随后,计量加入剩余的EO。包括减压在内的EO计量添加持续总计10小时。
将所述混合物在约145-150℃下搅拌至恒定压力(1小时),冷却至100℃,并在小于10毫巴的压力下脱除低沸物1小时。将物料在80℃下在N2下分配。分析(OH值,GPC,于CDCl3中的1H NMR,于MeOD中的1H NMR)证实结构为HBVE-22EO。
首先在具有桨式搅拌器的2L高压釜中装入588.6g(0.543mol)HBVE-22EO,开启搅拌器。随后,添加2.39g 50%NaOH溶液(0.030mol NaOH,1.19g NaOH),施加<10毫巴的真空,将所述混合物加热至100℃并在该温度下保持80分钟以蒸出水。将所述釜用N2吹扫三次。随后,测试该釜的泄露,将压力设定至0.5巴表压(1.5巴绝对压力),将所述釜加热至127℃,然后将压力调节至1.6巴绝对压力。在127℃下计量加入59.7g(1.358mol)EO;p最大为3.9巴绝对压力。等待建立恒定的压力,这耗时30分钟,然后将所述釜减压至1.0巴绝对压力。在127℃下计量加入625.5g(8.688mol)BuO(氧化丁烯);p最大为3.1巴绝对压力。由于填充水平的提高,实施中间减压。停止计量添加BuO,使所述混合物反应1小时,直至压力恒定,将所述釜减压至1.0巴绝对压力。随后,继续计量添加BuO。P最大仍为3.1巴(在610g BuO后第一次减压,BuO的8小时总计量添加时间包括减压中断时间)。在BuO计量添加结束后,使所述混合物再反应8小时,然后加热至135℃。将所述釜减压至1.6巴绝对压力。随后,在135℃下计量加入83.6g(1.901mol)EO(氧化乙烯);p最大为3.1巴绝对压力。在EO计量添加结束后,使所述混合物再反应4小时。将所述混合物冷却至100℃,抽出残余的氧化物达至少10分钟,直至压力小于10毫巴。然后在120℃下添加0.5%水,然后抽出达至少10分钟,直至压力小于10毫巴。用N2破坏真空,添加100ppm BHT。在80℃和N2下实施分配。分析(质谱,GPC,于CDCl3中的1HNMR,于MeOD中的1H NMR)证实平均组成为HBVE-24.5EO-16BuO-3.5EO。
测定大分子单体B1和B2的量:
大分子单体(B1)具有仲端OH基,而大分子单体(B2)具有伯端OH基。因此,它们可在位移试剂TAI(三氯乙酰基异氰酸酯)存在下借助在CDCl3中的1H NMR分析而识别,且可定量测量(B1)与(B2)之比。
由于HBVE基产物中的烯醇醚基团为酸敏感的,且可在测试条件下水解并形成伯醇,这可使得测试结果失真,因此单体B1与B2之比通过用对酸水解更稳定的丁基二甘醇(BDG,H3C-(CH2)3-O-CH2CH2O-CH2-CH2OH)代替HBVE实施实验而确定。
对测量而言,首先用3当量的BuO,随后用3.5当量EO在上述条件下烷氧基化BDG。BDG-3BuO中间体仅具有仲端OH基。在用3.5EO烷氧基化之后,发现40摩尔%的仲醇和60摩尔%伯醇,因此一部分BDG-3BuO中间体未被完全乙氧基化。因此,已乙氧基化的中间体包含超过3.5当量的EO。该结果可解释如下:第一个EO分子与空间拥挤的仲醇反应,且形成较少空间拥挤且因此更具反应性的伯醇。下一EO分子优先与已形成的伯醇基团而非仲醇基团反应。
测定氧化丁烯的残余量
c值通过在丁氧基化结束(即HBVE→24.5EO→16BuO)之后和在第二乙氧基化(即HBVE→24.5EO→16BuO→3.5EO)之后测定各反应混合物中的氧化丁烯残余含量而测定。
在HBVE→24.5EO→16BuO的情况下,实施所述方法,直至BuO的计量添加结束(包括进一步反应8小时),且省略随后的乙氧基化。称量批料,然后在100℃下施加真空(<10毫巴)2小时,再次称量批料。移除约6000ppm挥发性组分,其经顶空GC鉴定为1,2-氧化丁烯。
在HBVE→24.5EO→16BuO→3.5EO的情况下,在最后的乙氧基化(包括进一步的反应时间)之后,以类似的方式称量批料,然后在100℃下施加真空(<10毫巴)2小时,再次称量批料。移除约1500ppm挥发性组分,其经顶空GC鉴定为1,2-氧化丁烯。
因此,在最后的乙氧基化期间,在大分子单体中引入约4500ppm BuO,因此大分子单体B1的端EO嵌段包含少量的BuO。由所述量计算得到约0.3的c值。
大分子单体1a:
用24.5EO,随后用16BuO,随后用3.5EO烷氧基化HBVE
程序如对大分子单体1那样,不同之处在于在至多6巴的压力下实施丁氧基化和乙氧基化。
首先在具有桨式搅拌器的2L高压釜中装入135.3g(1.16mol)羟基丁基乙烯基醚(HBVE)(用100ppm氢氧化钾(KOH)稳定),开启搅拌器。流入1.06g甲醇钾(KOMe)溶液(32%KOMe,于甲醇(MeOH)中,对应于0.0048mol钾),将搅拌的釜抽真空至10-20毫巴的压力,加热至65℃并在65℃和10-20毫巴的压力下运行70分钟。蒸出MeOH。将所述釜用N2(氮气)吹扫三次。随后,测试该釜的泄露,将压力设定至0.5巴表压(1.5巴绝对压力),并将所述釜加热至120℃。减压至1巴绝对压力,并计量加入1126g(25.6mol)氧化乙烯(EO)达p最大为3.9巴绝对压力和T最大为150℃。在计量添加300g EO之后,停止计量添加(在开始后约3小时),将所述釜静置30分钟并减压至1.3巴绝对压力。随后,计量加入剩余的EO。包括减压在内的EO计量添加持续总计10小时。
将所述混合物在约145-150℃下搅拌至恒定压力(1小时),冷却至100℃,并在小于10毫巴的压力下脱除低沸物1小时。将物料在80℃下在N2下分配。分析(OH值,GPC,于CDCl3中的1H NMR,于MeOD中的1H NMR)证实结构为HBVE-22EO。
首先在具有桨式搅拌器的2L高压釜中装入568.6g(0.525mol)HBVE-22EO,开启搅拌器。随后,添加2.31g 50%NaOH溶液(0.029mol NaOH,1.16g NaOH),施加<10毫巴的真空,将所述混合物加热至100℃并在该温度下保持80分钟以蒸出水。将所述釜用N2吹扫三次。随后,测试该釜的泄露,将压力设定至0.5巴表压(1.5巴绝对压力),将所述釜加热至127℃,然后将压力调节至3巴绝对压力。在127℃下计量加入57.7g(1.311mol)EO;p最大为6巴绝对压力。等待建立恒定的压力,这耗时30分钟,然后将所述釜减压至4.0巴绝对压力。在127℃下计量加入604.2g(8.392mol)BuO(氧化丁烯);p最大为6巴绝对压力。由于填充水平的提高,实施中间减压。停止计量添加BuO,使所述混合物反应1小时,直至压力恒定,将所述釜减压至4.0巴绝对压力。随后,继续计量添加BuO。P最大仍为6巴(在505g BuO后第一次减压,BuO的11小时总计量添加时间包括减压中断时间)。在BuO计量添加结束后,使所述混合物在127℃下再反应6小时。将所述釜减压至4巴绝对压力。随后,在127℃下计量加入80.8g(1.836mol)EO(氧化乙烯);p最大为6巴绝对压力。在EO计量添加结束后,使所述混合物再反应4小时。将所述混合物冷却至100℃,抽出残余的氧化物达至少10分钟,直至压力小于10毫巴。移除约1400ppm挥发性组分。然后在120℃下添加0.5%水,然后抽出达至少10分钟,直至压力小于10毫巴。用N2破坏真空,添加100ppm BHT。在80℃和N2下实施分配。分析(质谱,GPC,于CDCl3中的1H NMR,于MeOD中的1H NMR)证实平均组成为HBVE-24.5EO-16BuO-3.5EO。
大分子单体1b:
用24.5EO,随后用16BuO,随后用3.5EO烷氧基化
程序如对大分子单体1那样,不同之处在于在0.3-2巴绝对压力的压力下实施丁氧基化。
首先在具有桨式搅拌器的2L高压釜中装入135.3g(1.16mol)羟基丁基乙烯基醚(HBVE)(用100ppm氢氧化钾(KOH)稳定),开启搅拌器。流入1.06g甲醇钾(KOMe)溶液(32%KOMe,于甲醇(MeOH)中,对应于0.0048mol钾),将搅拌的釜抽真空至10-20毫巴的压力,加热至65℃并在65℃和10-20毫巴的压力下运行70分钟。蒸出MeOH。将所述釜用N2(氮气)吹扫三次。随后,测试该釜的泄露,将压力设定至0.5巴表压(1.5巴绝对压力),并将所述釜加热至120℃。减压至1巴绝对压力,并计量加入1126g(25.6mol)氧化乙烯(EO)达p最大为3.9巴绝对压力和T最大为150℃。在计量添加300g EO之后,停止计量添加(在开始后约3小时),将所述釜静置30分钟并减压至1.3巴绝对压力。随后,计量加入剩余的EO。包括减压在内的EO计量添加持续总计10小时。
将所述混合物在约145-150℃下搅拌至恒定压力(1小时),冷却至100℃,并在小于10毫巴的压力下脱除低沸物1小时。将物料在80℃下在N2下分配。分析(OH值,GPC,于CDCl3中的1H NMR,于MeOD中的1H NMR)证实结构为HBVE-22EO。
首先在具有桨式搅拌器的2L高压釜中装入568.6g(0.525mol)HBVE-22EO,开启搅拌器。随后,添加2.31g 50%NaOH溶液(0.029mol NaOH,1.16g NaOH),施加<10毫巴的真空,将所述混合物加热至100℃并在该温度下保持80分钟以蒸出水。将所述釜用N2吹扫三次。随后,测试该釜的泄露,将压力设定至0.5巴表压(1.5巴绝对压力),将所述釜加热至127℃,然后将压力调节至3巴绝对压力。在127℃下计量加入57.7g(1.311mol)EO;p最大为6巴绝对压力。等待建立恒定的压力,这耗时30分钟,然后将所述釜减压至1.0巴绝对压力。施加真空,并将压力降至0.3巴绝对压力。在127℃下计量加入604.2g(8.392mol)BuO(氧化丁烯);p最大为2巴绝对压力。由于填充水平的提高,无需任何中间减压(BuO的计量添加耗时约14小时)。在BuO计量添加结束后,使所述混合物在127℃下再反应5小时。注入N2,建立3巴绝对压力的压力。随后,在127℃下计量添加80.8g(1.836mol)EO(氧化乙烯);P最大为6巴绝对压力。在BuO计量添加结束后,使所述混合物再反应4小时。将所述混合物冷却至100℃,抽出残余的氧化物达至少10分钟,直至压力小于10毫巴。移除约1400ppm挥发性组分。然后在120℃下添加0.5%水,然后抽出达至少10分钟,直至压力小于10毫巴。用N2破坏真空,添加100ppm BHT。在80℃和N2下实施分配。分析(质谱,GPC,于CDCl3中的1H NMR,于MeOD中的1H NMR)证实平均组成为HBVE-24.5EO-16BuO-3.5EO。
大分子单体2:
用24.5EO,随后用16BuO,随后用5EO烷氧基化HBVE
混合物:
H2C=CH-O-(CH2)4-O-(EO)24.5(BuO)15.8[(BuO)0.3(EO)7.7]-H 约65摩尔%
H2C=CH-O-(CH2)4-O-(EO)24.5(BuO)15.8 -H 约35摩尔%
制备方法:
首先在具有桨式搅拌器的2L高压釜中装入135.3g(1.16mol)羟基丁基乙烯基醚(HBVE)(用100ppm氢氧化钾(KOH)稳定),开启搅拌器。流入1.06g甲醇钾(KOMe)溶液(32%KOMe,于甲醇(MeOH)中,对应于0.0048mol钾),将搅拌的釜抽真空至10-20毫巴的压力,加热至65℃并在65℃和10-20毫巴的压力下运行70分钟。蒸出MeOH。将所述釜用N2(氮气)吹扫三次。随后,测试该釜的泄露,将压力设定至0.5巴表压(1.5巴绝对压力),并将所述釜加热至120℃。减压至1巴绝对压力,并计量加入1126g(25.6mol)氧化乙烯(EO)达p最大为3.9巴绝对压力和T最大为150℃。在计量添加300g EO之后,停止计量添加(在开始后约3小时),将所述釜静置30分钟并减压至1.3巴绝对压力。随后,计量加入剩余的EO。包括减压在内的EO计量添加持续总计10小时。
将所述混合物在约145-150℃下搅拌至恒定压力(1小时),冷却至100℃,并在小于10毫巴的压力下脱除低沸物1小时。将物料在80℃下在N2下分配。分析(OH值,GPC,于CDCl3中的1H NMR,于MeOD中的1H NMR)证实结构为HBVE-22EO。
首先在具有桨式搅拌器的2L高压釜中装入566.4g(0.522mol)HBVE-22EO,开启搅拌器。随后,添加2.30g 50%NaOH溶液(0.029mol NaOH,1.15g NaOH),施加<10毫巴的真空,将所述混合物加热至100℃并在该温度下保持80分钟以蒸出水。将所述釜用N2吹扫三次。随后,测试该釜的泄露,将压力设定至0.5巴表压(1.5巴绝对压力),将所述釜加热至127℃,然后将压力调节至1.1巴绝对压力。在127℃下计量加入57.5g(1.306mol)EO;p最大为3.9巴绝对压力。等待建立恒定的压力,这耗时30分钟,然后将所述釜减压至1.0巴绝对压力。在127℃下计量加入601.7g(8.357mol)BuO(氧化丁烯);p最大为3.1巴绝对压力。由于填充水平的提高,实施中间减压。停止计量添加BuO,使所述混合物反应1小时,直至压力恒定,将所述釜减压至1.0巴绝对压力。随后,继续计量添加BuO。P最大仍为3.1巴(在450g BuO后第一次减压,BuO的8小时总计量添加时间包括减压中断时间)。在BuO计量添加结束后,使所述混合物再反应8小时,然后加热至135℃。将所述釜减压至1.6巴绝对压力。随后,在135℃下计量加入114.9g(2.612mol)EO(氧化乙烯);p最大为3.1巴绝对压力。在EO计量添加结束后,使所述混合物再反应5小时。将所述混合物冷却至100℃,抽出残余的氧化物达至少10分钟,直至压力小于10毫巴。然后在120℃下添加0.5%水,然后抽出达至少10分钟,直至压力小于10毫巴。用N2破坏真空,添加100ppm BHT。在80℃和N2下实施分配。分析(质谱,GPC,于CDCl3中的1HNMR,于MeOD中的1H NMR)证实平均组成为HBVE-24.5EO-16BuO-5EO。
大分子单体B1和B2的量和c值类似于对大分子单体1的程序测定。因此,在丁氧基化HBVE→24.5EO→16BuO后,发现约6000ppm挥发性组分,经鉴定为1,2-氧化丁烯。在添加5当量EO后,挥发性组分的比例降至约1200ppm。由此计算得到约0.3的c值。
大分子单体3:
用22EO,随后用10PeO,随后用2.5EO烷氧基化HBVE
混合物:
H2C=CH-O-(CH2)4-O-(EO)22(PeO)9.7[(PeO)0.2(EO)5.5]-H 约45摩尔%
H2C=CH-O-(CH2)4-O-(EO)22(PeO)9.7H 约55摩尔%
制备方法:
首先在具有桨式搅拌器的2L高压釜中装入135.3g(1.16mol)羟基丁基乙烯基醚(HBVE)(用100ppm氢氧化钾(KOH)稳定),开启搅拌器。流入1.06g甲醇钾(KOMe)溶液(32%KOMe,于甲醇(MeOH)中,对应于0.0048mol钾),将搅拌的釜抽真空至10-20毫巴的压力,加热至65℃并在65℃和10-20毫巴的压力下运行70分钟。蒸出MeOH。将所述釜用N2(氮气)吹扫三次。随后,测试该釜的泄露,将压力设定至0.5巴表压(1.5巴绝对压力),并将所述釜加热至120℃。减压至1巴绝对压力,并计量加入1126g(25.6mol)氧化乙烯(EO)达p最大为3.9巴绝对压力和T最大为150℃。在计量添加300g EO之后,停止计量添加(在开始后约3小时),将所述釜静置30分钟并减压至1.3巴绝对压力。随后,计量加入剩余的EO。包括减压在内的EO计量添加持续总计10小时。
将所述混合物在约145-150℃下搅拌至恒定压力(1小时),冷却至100℃,并在小于10毫巴的压力下脱除低沸物1小时。将物料在80℃下在N2下分配。分析(OH值,GPC,于CDCl3中的1H NMR,于MeOD中的1H NMR)证实结构为HBVE-22EO。
首先在具有桨式搅拌器的2L高压釜中装入713.6g(0.658mol)HBVE-22EO,开启搅拌器。随后,添加2.89g 50%NaOH溶液(0.036mol NaOH,1.45g NaOH),施加<10毫巴的真空,将所述混合物加热至100℃并在该温度下保持80分钟以蒸出水。将所述釜用N2吹扫三次。随后,测试该釜的泄露,将压力设定至0.5巴表压(1.5巴绝对压力),将所述釜加热至127℃,然后将压力调节至1.1巴绝对压力。在127℃下计量加入566.1g(6.583mol)PeO(氧化戊烯);p最大为2.1巴绝对压力。由于填充水平的提高,实施中间减压。停止计量添加PeO,使所述混合物反应1小时,直至压力恒定,将所述釜减压至1.0巴绝对压力。随后,继续计量添加PeO。P最大仍为2.1巴(在310g PeO后第一次减压,PeO的6.5小时总计量添加时间包括减压中断时间)。在PeO计量添加结束后,使所述混合物再反应2小时,然后加热至135℃。将所述釜减压至1.6巴绝对压力。随后,在135℃下计量加入72.4g(1.646mol)EO(氧化乙烯);p最大为3.1巴绝对压力。在EO计量添加结束后,使所述混合物再反应5小时。将所述混合物冷却至100℃,抽出残余的氧化物达至少10分钟,直至压力小于10毫巴。然后在120℃下添加0.5%水,然后抽出达至少10分钟,直至压力小于10毫巴。用N2破坏真空,添加100ppm BHT。在80℃和N2下实施分配。分析(质谱,GPC,于CDCl3中的1H NMR,于MeOD中的1H NMR)证实平均组成为HBVE→22EO→10PeO→2.5EO。
大分子单体B1和B2的量和c值类似于对大分子单体1的程序测定。因此,在HBVE→22EO→10PeO的情况下,发现约12 000ppm挥发性组分,经鉴定为1,2-氧化丁烯。在添加2.5当量EO后,挥发性组分的比例降至约9000ppm。由此计算得到约0.2的c值。
大分子单体4:
用22EO,随后用10PeO,随后用9EO烷氧基化HBVE
混合物:
H2C=CH-O-(CH2)4-O-(EO)22(PeO)9.7[(PeO)0.1(EO)12]-H 约75摩尔%
H2C=CH-O-(CH2)4-O-(EO)22(PeO)9.7 -H 约25摩尔%
制备方法:
首先在具有桨式搅拌器的2L高压釜中装入135.3g(1.16mol)羟基丁基乙烯基醚(HBVE)(用100ppm氢氧化钾(KOH)稳定),开启搅拌器。流入1.06g甲醇钾(KOMe)溶液(32%KOMe,于甲醇(MeOH)中,对应于0.0048mol钾),将搅拌的釜抽真空至10-20毫巴的压力,加热至65℃并在65℃和10-20毫巴的压力下运行70分钟。蒸出MeOH。将所述釜用N2(氮气)吹扫三次。随后,测试该釜的泄露,将压力设定至0.5巴表压(1.5巴绝对压力),并将所述釜加热至120℃。减压至1巴绝对压力,并计量加入1126g(25.6mol)氧化乙烯(EO)达p最大为3.9巴绝对压力和T最大为150℃。在计量添加300g EO之后,停止计量添加(在开始后约3小时),将所述釜静置30分钟并减压至1.3巴绝对压力。随后,计量加入剩余的EO。包括减压在内的EO计量添加持续总计10小时。
将所述混合物在约145-150℃下搅拌至恒定压力(1小时),冷却至100℃,并在小于10毫巴的压力下脱除低沸物1小时。将物料在80℃下在N2下分配。分析(OH值,GPC,于CDCl3中的1H NMR,于MeOD中的1H NMR)证实结构为HBVE-22EO。
首先在具有桨式搅拌器的2L高压釜中装入611.5g(0.564mol)HBVE-22EO,开启搅拌器。随后,添加2.48g 50%NaOH溶液(0.031mol NaOH,1.24g NaOH),施加<10毫巴的真空,将所述混合物加热至100℃并在该温度下保持80分钟以蒸出水。将所述釜用N2吹扫三次。随后,测试该釜的泄露,将压力设定至0.5巴表压(1.5巴绝对压力),将所述釜加热至127℃,然后将压力调节至1.1巴绝对压力。在127℃下计量加入485.1g(5.641mol)PeO(氧化戊烯);p最大为2.1巴绝对压力。由于填充水平的提高,实施中间减压。停止计量添加PeO,使所述混合物反应1小时,直至压力恒定,将所述釜减压至1.0巴绝对压力。随后,继续计量添加PeO。P最大仍为2.1巴(在360g PeO后第一次减压,PeO的9小时总计量添加时间包括减压中断时间)。在PeO计量添加结束后,使所述混合物再反应9小时,然后加热至135℃。将所述釜减压至1.6巴绝对压力。随后,在135℃下计量加入223.4g(5.077mol)EO(氧化乙烯);p最大为3.1巴绝对压力。在EO计量添加结束后,使所述混合物再反应5小时。将所述混合物冷却至100℃,抽出残余的氧化物达至少10分钟,直至压力小于10毫巴。然后在120℃下添加0.5%水,然后抽出达至少10分钟,直至压力小于10毫巴。用N2破坏真空,添加100ppm BHT。在80℃和N2下实施分配。分析(质谱,GPC,于CDCl3中的1H NMR,于MeOD中的1H NMR)证实平均组成为HBVE-22EO-10PeO-9EO。
大分子单体B1和B2的量和c值类似于对大分子单体1的程序测定。因此,在HBVE-22EO-10PeO的情况下,发现约12 000ppm挥发性组分,经鉴定为1,2-氧化丁烯。在添加9当量EO后,挥发性组分的比例降至约6000ppm。由此计算得到约0.1的c值。
大分子单体V1:
用22EO,随后用10PeO烷氧基化HBVE
H2C=CH-O-(CH2)4-O-(EO)22(PeO)9.7-H 100%
首先在具有桨式搅拌器的2L高压釜中装入135.3g(1.16mol)羟基丁基乙烯基醚(HBVE)(用100ppm氢氧化钾(KOH)稳定),开启搅拌器。流入1.06g甲醇钾(KOMe)溶液(32%KOMe,于甲醇(MeOH)中,对应于0.0048mol钾),将搅拌的釜抽真空至10-20毫巴的压力,加热至65℃并在65℃和10-20毫巴的压力下运行70分钟。蒸出MeOH。
将所述釜用N2(氮气)吹扫三次。随后,测试该釜的泄露,将压力设定至0.5巴表压(1.5巴绝对压力),并将所述釜加热至120℃。减压至1巴绝对压力,并计量加入1126g(25.6mol)氧化乙烯(EO)达p最大为3.9巴绝对压力和T最大为150℃。在计量添加300g EO之后,停止计量添加(在开始后约3小时),将所述釜静置30分钟并减压至1.3巴绝对压力。随后,计量加入剩余的EO。包括减压在内的EO计量添加持续总计10小时。
将所述混合物在约145-150℃下搅拌至恒定压力(1小时),冷却至100℃,并在小于10毫巴的压力下脱除低沸物1小时。将物料在80℃下在N2下分配。
分析(OH值,GPC,于CDCl3中的1H NMR,于MeOD中的1H NMR)证实结构为HBVE-22EO。
首先在具有桨式搅拌器的2L高压釜中装入744.5g(0.6868mol)HBVE-22EO,开启搅拌器。随后,添加5.33g 32%NaOMe(甲醇钠)溶液(0.0316mol NaOMe,1.71g NaOMe),施加<10毫巴的真空,将所述混合物加热至100℃并在该温度下保持80分钟,从而蒸出甲醇。
将所述釜用N2吹扫三次。随后,测试该釜的泄露,将压力设定至0.5巴表压(1.5巴绝对压力),将所述釜加热至127℃,然后将压力调节至1.1巴绝对压力。在127℃下计量加入590.6g(6.868mol)PeO(氧化戊烯);p最大为2.1巴绝对压力。由于填充水平的提高,必须实施中间减压。停止计量添加PeO,使所述混合物反应1小时,直至压力恒定,将所述釜减压至1.0巴绝对压力。随后,继续计量添加PeO。P最大仍为2.1巴(在约400g PeO后第一次减压,PeO的7小时总计量添加时间包括减压中断时间)。在PeO计量添加结束后,使所述混合物进一步反应至恒定压力或反应3小时。将所述混合物冷却至110℃,在减压下移除残余的氧化物达至少60分钟,直至压力小于10毫巴。然后在110℃下添加0.5%水,然后抽出达至少60分钟,直至压力小于10毫巴。因此,对HBVE-22EO-10PeO而言,发现并移除总计约12 000ppm的挥发性级分,经鉴定为1,2-氧化戊烯。用N2破坏真空,添加100ppm BHT。在80℃和N2下实施分配。
分析(质谱,GPC,于CDCl3中的1H NMR,于MeOD中的1H NMR)证实了所述结构。
大分子单体V2:
用24.5EO,随后用16BuO烷氧基化HBVE
H2C=CH-O-(CH2)4-O-(EO)24.5(BuO)15.8-H 100%
首先在具有桨式搅拌器的2L高压釜中装入135.3g(1.16mol)羟基丁基乙烯基醚(HBVE)(用100ppm氢氧化钾(KOH)稳定),开启搅拌器。流入1.06g甲醇钾(KOMe)溶液(32%KOMe,于甲醇(MeOH)中,对应于0.0048mol钾),将搅拌的釜抽真空至10-20毫巴的压力,加热至65℃并在65℃和10-20毫巴的压力下运行70分钟。蒸出MeOH。将所述釜用N2(氮气)吹扫三次。随后,测试该釜的泄露,将压力设定至0.5巴表压(1.5巴绝对压力),并将所述釜加热至120℃。减压至1巴绝对压力,并计量加入1126g(25.6mol)氧化乙烯(EO)达p最大为3.9巴绝对压力和T最大为150℃。在计量添加300g EO之后,停止计量添加(在开始后约3小时),将所述釜静置30分钟并减压至1.3巴绝对压力。随后,计量加入剩余的EO。包括减压在内的EO计量添加持续总计10小时。
将所述混合物在约145-150℃下搅拌至恒定压力(1小时),冷却至100℃,并在小于10毫巴的压力下脱除低沸物1小时。将物料在80℃下在N2下分配。分析(OH值,GPC,于CDCl3中的1H NMR,于MeOD中的1H NMR)证实结构为HBVE-22EO。
首先在具有桨式搅拌器的2L高压釜中装入588.6g(0.543mol)HBVE-22EO,开启搅拌器。随后,添加2.39g 50%NaOH溶液(0.030mol NaOH,1.19g NaOH),施加<10毫巴的真空,将所述混合物加热至100℃并在该温度下保持80分钟以蒸出水。将所述釜用N2吹扫三次。随后,测试该釜的泄露,将压力设定至0.5巴表压(1.5巴绝对压力),将所述釜加热至127℃,然后将压力调节至1.6巴绝对压力。在127℃下计量加入59.7g(1.358mol)EO;p最大为3.9巴绝对压力。等待建立恒定的压力,这耗时30分钟,然后将所述釜减压至1.0巴绝对压力。在127℃下计量添加625.5g(8.688mol)BuO(氧化丁烯);P最大为2.1巴绝对压力。由于填充水平的提高,实施三次中间减压。停止计量添加BuO,使所述混合物反应1小时,直至压力恒定,将所述釜减压至1.0巴绝对压力。随后,继续计量添加BuO。P最大仍为3.1巴(在约300g BuO后第一次减压,在约500g BuO后第二次减压,BuO的约24小时总计量添加时间包括减压中断时间)。在BuO计量添加结束后,使所述混合物再反应4小时。将所述混合物冷却至100℃并减压至1巴绝对压力。移除残余的氧化物达至少2小时,直至压力小于10毫巴。然后在120℃下添加0.5%水,然后抽出达至少10分钟,直至压力小于10毫巴。用N2破坏真空,添加100ppm BHT。在80℃和N2下实施分配。用N2破坏真空,添加100ppm BHT。在80℃和N2下实施分配。分析(质谱,GPC,于CDCl3中的1H NMR,于MeOD中的1H NMR)证实平均组成为HBVE-24.5EO-16BuO。
在丁氧基化HBVE→24.5EO→16BuO后的情况下,发现约6000ppm挥发性组分,经鉴定为1,2-氧化丁烯。将这些移除,因此最终存在HBVE-24.5EO-15.8BuO。
大分子单体V3:
用22EO,随后用12PeO烷氧基化HBVE
H2C=CH-O-(CH2)4-O-(EO)22(PeO)12-H 100%
按照大分子单体V1的程序,不同之处在于使用不同量的PeO。
共聚物(P)的制备:
所述共聚物借助在水溶液中绝热凝胶聚合而制备。
共聚物1:
50重量%丙烯酰胺、48重量%Na-ATBS(2-丙烯酰胺基-2-甲基丙磺酸的钠盐)和2%大分子单体1的共聚物
大分子单体1:
H2C=CH-O-(CH2)4-O-(EO)24.5(BuO)15.8[(BuO)0.3(EO)5.8]-H(B1) 约60摩尔%
H2C=CH-O-(CH2)4-O-(EO)24.5(BuO)15.8-H(B2) 约40摩尔%
制备方法:
首先在具有磁力搅拌器、pH计和温度计的塑料桶中装入146.5g 50%Na-ATBS水溶液,然后连续添加如下物质:105.8g蒸馏水、0.4g市售聚硅氧烷基消泡剂(Dow消泡剂乳液RD)、2.8g大分子单体2、138.2g丙烯酰胺(50%水溶液)、1.2g 5%二亚乙基三胺五乙酸五钠盐水溶液和3.0g非离子表面活性剂iC13-(EO)15H。
在用20%或2%硫酸溶液调节至pH 6且添加剩余的水以获得37重量%的所需单体浓度(水的总量减去已添加的水量,减去所需的酸量)之后,将所述单体溶液调节至4℃的引发温度。将所述溶液转移至保温烧瓶中,插入用于记录温度的温度传感器,将所述烧瓶用氮气吹扫30分钟,使用1.6ml10%水溶性偶氮引发剂2,2’-偶氮二(2-甲基丙脒)二盐酸盐(Wako V-50)的水溶液、0.12ml 1%t-BHPO溶液和0.24ml 1%亚硫酸钠溶液引发聚合。随着聚合的开始,温度在约25分钟内升至80-90℃。获得固体聚合物凝胶。
在聚合后,将所述凝胶冷却至约50℃,借助绞肉机将凝胶块粉碎。将所得凝胶颗粒在流化床干燥器中在55℃下干燥2小时。这得到硬质白色颗粒,借助离心研磨机将其转化成粉末状态。
重均分子量Mw为8百万至14百万g/mol。
共聚物2:
50重量%丙烯酰胺、48重量%Na-ATBS(2-丙烯酰胺基-2-甲基丙磺酸的钠盐)和2%大分子单体2的共聚物
大分子单体2:
H2C=CH-O-(CH2)4-O-(EO)24.5(BuO)15.8[(BuO)0.3(EO)7.7]-H 约65摩尔%
H2C=CH-O-(CH2)4-O-(EO)24.5(BuO)15.8 -H 约35摩尔%
制备方法:
首先在具有磁力搅拌器、pH计和温度计的塑料桶中装入146.5g 50%Na-ATBS水溶液,然后连续添加如下物质:105g蒸馏水、0.4g市售聚硅氧烷基消泡剂(Dow消泡剂乳液RD)、2.8g大分子单体2、138.2g丙烯酰胺(50%水溶液)、1.2g 5%二亚乙基三胺五乙酸五钠盐水溶液和3.0g非离子表面活性剂iC13-(EO)15H。
在用20%氢氧化钠溶液调节至pH 6且添加剩余的水以获得37重量%的所需单体浓度(水的总量减去已添加的水量,减去所需的酸量)之后,将所述单体溶液调节至4℃的引发温度。将所述溶液转移至保温烧瓶中,插入用于记录温度的温度传感器,将所述烧瓶用氮气吹扫45分钟,使用1.6ml10%水溶性偶氮引发剂2,2’-偶氮二(2-甲基丙脒)二盐酸盐(Wako V-50)的水溶液、0.12ml 1%t-BHPO溶液和0.24ml 1%亚硫酸钠溶液引发聚合。随着聚合的开始,温度在约25分钟内升至80-90℃。获得固体聚合物凝胶。
在冷却至约50℃后,借助绞肉机将凝胶块粉碎。将所得凝胶颗粒在流化床干燥器中在55℃下干燥2小时。这得到硬质白色颗粒,借助离心研磨机将其转化成粉末状态。
重均分子量Mw为8百万至14百万g/mol。
共聚物3:
50重量%丙烯酰胺、48重量%Na-ATBS(2-丙烯酰胺基-2-甲基丙磺酸的钠盐)和2%大分子单体3的共聚物
大分子单体3:
H2C=CH-O-(CH2)4-O-(EO)22(PeO)9.7[(PeO)0.2(EO)5.5]-H 约45摩尔%
H2C=CH-O-(CH2)4-O-(EO)22(PeO)9.7H 约55摩尔%
首先在具有磁力搅拌器、pH计和温度计的塑料桶中装入146.5g 50%Na-ATBS水溶液,然后连续添加如下物质:105g蒸馏水、0.4g市售聚硅氧烷基消泡剂(Dow消泡剂乳液RD)、2.8g大分子单体3、137.4g丙烯酰胺(50%水溶液)、1.2g 5%二亚乙基三胺五乙酸五钠盐水溶液和3.0g非离子表面活性剂iC13-(EO)15H。
在用20%氢氧化钠溶液调节至pH 6且添加剩余的水以获得37重量%的所需单体浓度(水的总量减去已添加的水量,减去所需的酸量)之后,将所述单体溶液调节至4℃的引发温度。将所述溶液转移至保温烧瓶中,插入用于记录温度的温度传感器,将所述烧瓶用氮气吹扫45分钟,使用1.6ml10%水溶性偶氮引发剂2,2’-偶氮二(2-甲基丙脒)二盐酸盐(Wako V-50)的水溶液、0.12ml 1%t-BHPO溶液和0.24ml 1%亚硫酸钠溶液引发聚合。随着聚合的开始,温度在约25分钟内升至80-90℃。获得固体聚合物凝胶。
在冷却至约50℃后,借助绞肉机将凝胶块粉碎。将所得凝胶颗粒在流化床干燥器中在55℃下干燥2小时。这得到硬质白色颗粒,借助离心研磨机将其转化成粉末状态。
重均分子量Mw为8百万至14百万g/mol。
共聚物4:
69重量%丙烯酰胺、30重量%丙烯酸钠和1重量%大分子单体1的共聚物大分子单体1:
H2C=CH-O-(CH2)4-O-(EO)24.5(BuO)15.8[(BuO)0.3(EO)5.8]-H(B1) 约60摩尔%
H2C=CH-O-(CH2)4-O-(EO)24.5(BuO)15.8-H(B2) 约40摩尔%
首先在具有磁力搅拌器、pH计和温度计的塑料桶中装入101.8g 35%丙烯酸钠水溶液,然后连续添加如下物质:119.1g蒸馏水、0.4g市售聚硅氧烷基消泡剂(Dow消泡剂乳液RD)、1.2g大分子单体1、163.3g丙烯酰胺(50%水溶液)、4g 4%4,4’-偶氮二(4-氰基戊酸)溶液(溶解在5%氢氧化钠溶液中)、1.2g 5%二亚乙基三胺五乙酸五钠盐水溶液和1.2g非离子表面活性剂iC13-(EO)15H。
在用5%氢氧化钠溶液调节至pH 6.75且添加剩余的水以获得30重量%的所需单体浓度(水的总量减去已添加的水量,减去所需的酸量)之后,将所述单体溶液调节至4℃的引发温度。将所述溶液转移至保温烧瓶中,插入用于记录温度的温度传感器,将所述烧瓶用氮气吹扫45分钟,使用4g 4%偶氮引发剂2,2’-偶氮二(2-甲基丙腈)甲醇溶液、0.16ml 1%t-BHPO溶液和0.16ml 1%亚硫酸钠溶液引发聚合。随着聚合的开始,温度在40-50分钟内升至80-90℃。获得固体聚合物凝胶。
在冷却后,借助绞肉机将凝胶块粉碎。将所得凝胶颗粒在流化床干燥器中在55℃下干燥2小时。这得到硬质白色颗粒,借助离心研磨机将其转化成粉末状态。
重均分子量Mw为10百万至20百万g/mol。
共聚物5:
69重量%丙烯酰胺、30重量%丙烯酸钠和1重量%大分子单体4的共聚物大分子单体4:
H2C=CH-O-(CH2)4-O-(EO)22(PeO)9.7[(PeO)0.1(EO)12]-H 约75摩尔%
H2C=CH-O-(CH2)4-O-(EO)22(PeO)9.7 -H 约25摩尔%
首先在具有磁力搅拌器、pH计和温度计的塑料桶中装入101.8g 35%丙烯酸钠水溶液,然后连续添加如下物质:111.6g蒸馏水、0.4g市售聚硅氧烷基消泡剂(Dow消泡剂乳液RD)、1.2g大分子单体4、163.3g丙烯酰胺(50%水溶液)、4g 4%4,4’-偶氮二(4-氰基戊酸)溶液(溶解在5%氢氧化钠溶液中)、1.2g 5%二亚乙基三胺五乙酸五钠盐水溶液和1.2g非离子表面活性剂iC13-(EO)15H。
在用5%氢氧化钠溶液调节至pH 6.75且添加剩余的水以获得30重量%的所需单体浓度(水的总量减去已添加的水量,减去所需的酸量)之后,将所述单体溶液调节至4℃的引发温度。随后,将所述反应溶液转移至保温烧瓶中,插入用于记录温度的温度传感器,将所述烧瓶用氮气吹扫45分钟,使用4g 4%偶氮引发剂2,2’-偶氮二(2-甲基丙腈)甲醇溶液、0.16ml 1%t-BHPO溶液和0.24ml 1%亚硫酸钠溶液引发聚合。随着聚合的开始,温度在40-50分钟内升至80-90℃。获得固体聚合物凝胶。
在冷却后,借助绞肉机将凝胶块粉碎。将所得凝胶颗粒在流化床干燥器中在55℃下干燥2小时。这得到硬质白色颗粒,借助离心研磨机将其转化成粉末状态。
重均分子量Mw为10百万至20百万g/mol。
共聚物6:
98重量%丙烯酰胺和2重量%大分子单体1的共聚物
大分子单体1:
H2C=CH-O-(CH2)4-O-(EO)24.5(BuO)15.8[(BuO)0.3(EO)5.8]-H(B1) 约60摩尔%
H2C=CH-O-(CH2)4-O-(EO)24.5(BuO)15.8-H(B2) 约40摩尔%
首先在具有磁力搅拌器、pH计和温度计的塑料桶中装入140g蒸馏水,并添加231.27g丙烯酰胺(50%溶液)、0.4g市售聚硅氧烷基消泡剂(Dow消泡剂乳液RD)、4g 4%4,4’-偶氮二(4-氰基戊酸)溶液(溶于5%氢氧化钠溶液中)、1.2g 5%二亚乙基三胺五乙酸五钠盐水溶液、1.2g非离子表面活性剂iC13-(EO)15H和2.36g大分子单体1。
在用20%或2%硫酸溶液调节至pH 6且添加剩余的水(水的总量减去已添加的水量,减去所需的酸量)以调节至30%的单体含量之后,将所述单体溶液调节至4℃的引发温度。将所述溶液转移至保温烧瓶中,插入用于记录温度的温度传感器,将所述烧瓶用氮气吹扫30分钟,使用4.0ml 4%AIBN甲醇溶液、0.48g 1%过二硫酸铵溶液和0.80g 1%硫酸铁铵溶液引发聚合。获得固体聚合物凝胶。
在聚合后,将所述凝胶冷却至约50℃,借助绞肉机将凝胶块粉碎。将所得凝胶颗粒在流化床干燥器中在55℃下干燥2小时。这得到硬质白色颗粒,借助离心研磨机将其转化成粉末状态。
共聚物7:
56重量%丙烯酰胺、29.7重量%丙烯酸钠、12.3重量%Na-ATBS和2重量%大分子单体1的共聚物
大分子单体1:
H2C=CH-O-(CH2)4-O-(EO)24.5(BuO)15.8[(BuO)0.3(EO)5.8]-H(B1) 约60摩尔%
H2C=CH-O-(CH2)4-O-(EO)24.5(BuO)15.8-H(B2) 约40摩尔%
首先在具有磁力搅拌器、pH计和温度计的塑料桶中装入90g蒸馏水,然后连续添加如下物质:50.64g丙烯酸钠溶液(35%,于水中)、86.24g ATBS钠溶液(50%,于水中)、0.4g市售聚硅氧烷基消泡剂(Dow消泡剂乳液RD)、155.53g丙烯酰胺(52%溶液)、1.2g 5%二亚乙基三胺五乙酸五钠盐水溶液、3.14g大分子单体1和3g非离子表面活性剂iC13-(EO)15H。
在用20%或2%硫酸溶液调节至pH 6且添加剩余的水(水的总量减去已添加的水量,减去所需的酸量)以调节至37%的单体含量之后,将所述单体溶液调节至4℃的引发温度。将所述溶液转移至保温烧瓶中,插入用于记录温度的温度传感器,将所述烧瓶用氮气吹扫30分钟,使用2.4ml 10%2,2'-偶氮二(2-甲基丙脒)二盐酸盐水溶液、0.12g 1%TBHP溶液和0.24g 1%亚硫酸钠溶液引发聚合。获得固体聚合物凝胶。
在聚合后,将所述凝胶冷却至约50℃,借助绞肉机将凝胶块粉碎。将所得凝胶颗粒在流化床干燥器中在55℃下干燥2小时。这得到硬质白色颗粒,借助离心研磨机将其转化成粉末状态。
共聚物V1:
50重量%丙烯酰胺、48重量%Na-ATBS(2-丙烯酰胺基-2-甲基丙磺酸的钠盐)和2%大分子单体V1的共聚物
大分子单体V1:
H2C=CH-O-(CH2)4-O-(EO)22(PeO)9.7-H 100%
首先在具有磁力搅拌器、pH计和温度计的塑料桶中装入146.5g 50%Na-ATBS水溶液,然后连续添加如下物质:105g蒸馏水、0.4g市售聚硅氧烷基消泡剂(Dow消泡剂乳液RD)、2.8g大分子单体V1、137.4g丙烯酰胺(50%水溶液)、1.2g 5%二亚乙基三胺五乙酸五钠盐水溶液和3.0g非离子表面活性剂iC13-(EO)15H。
在用20%氢氧化钠溶液调节至pH 6且添加剩余的水以获得37重量%的所需单体浓度(水的总量减去已添加的水量,减去所需的酸量)之后,将所述单体溶液调节至4℃的引发温度。将所述反应溶液转移至保温烧瓶中,插入用于记录温度的温度传感器,将所述烧瓶用氮气吹扫45分钟,使用1.6ml 10%水溶性偶氮引发剂2,2’-偶氮二(2-甲基丙脒)二盐酸盐(Wako V-50)的水溶液、0.12ml 1%t-BHPO溶液和0.24ml 1%亚硫酸钠溶液引发聚合。随着聚合的开始,温度在约25分钟内升至80-90℃。获得固体聚合物凝胶。
在冷却至约50℃后,借助绞肉机将凝胶块粉碎。将所得凝胶颗粒在流化床干燥器中在55℃下干燥2小时。这得到硬质白色颗粒,借助离心研磨机将其转化成粉末状态。
重均分子量Mw为8百万至14百万g/mol。
共聚物V2:
50重量%丙烯酰胺、48重量%Na-ATBS(2-丙烯酰胺基-2-甲基丙磺酸的钠盐)和2%大分子单体V2的共聚物
大分子单体V2:
H2C=CH-O-(CH2)4-O-(EO)24.5(BuO)15.8-H 100%
首先在具有磁力搅拌器、pH计和温度计的塑料桶中装入146.5g 50%Na-ATBS水溶液,然后连续添加如下物质:105g蒸馏水、0.4g市售聚硅氧烷基消泡剂(Dow消泡剂乳液RD)、2.8g大分子单体V1、137.4g丙烯酰胺(50%水溶液)、1.2g 5%二亚乙基三胺五乙酸五钠盐水溶液和3.0g非离子表面活性剂iC13-(EO)15H。
在用20%氢氧化钠溶液调节至pH 6且添加剩余的水以获得37重量%的所需单体浓度(水的总量减去已添加的水量,减去所需的酸量)之后,将所述单体溶液调节至4℃的引发温度。将所述反应溶液转移至保温烧瓶中,插入用于记录温度的温度传感器,将所述烧瓶用氮气吹扫45分钟,使用1.6ml 10%水溶性偶氮引发剂2,2’-偶氮二(2-甲基丙脒)二盐酸盐(Wako V-50)的水溶液、0.12ml 1%t-BHPO溶液和0.24ml 1%亚硫酸钠溶液引发聚合。随着聚合的开始,温度在约25分钟内升至80-90℃。获得固体聚合物凝胶。
在冷却至约50℃后,借助绞肉机将凝胶块粉碎。将所得凝胶颗粒在流化床干燥器中在55℃下干燥2小时。这得到硬质白色颗粒,借助离心研磨机将其转化成粉末状态。
重均分子量Mw为8百万至14百万g/mol。
共聚物V3:
用于聚合物驱替的约50重量%丙烯酰胺和约50重量%2-丙烯酰胺基-2-甲基丙磺酸的市售共聚物,其具有约8-13*106g/mol的重均分子量Mw
共聚物V4:
用于聚合物驱替的约75摩尔%丙烯酰胺和约25摩尔%丙烯酸钠单元的市售共聚物,其具有约20 000 000g/mol的重均分子量Mw
共聚物V5:
69重量%丙烯酰胺、30重量%丙烯酸钠和1重量%大分子单体V3的共聚物。
大分子单体V3:
H2C=CH-O-(CH2)4-O-(EO)22(PeO)12-H 100%
程序如同共聚物5那样,不同之处在于使用大分子单体V3代替大分子单体4。
性能测试:
粘度测量
粘度测量使用Haake RS 80粘度计在7s-1剪切速率下进行。
对粘度测量而言,使用聚合物的水溶液。使用如下含水介质溶解聚合物:
自来水:
总盐度123mg/l
海水(合成的):
总盐度:约35 000mg/l;
Na+10692mg/l、K+420mg/l、Mg2+1295mg/l、Ca2+422mg/l、Cl-19218mg/l、HCO3 -145mg/l、SO4 2-2697mg/l;
碱金属离子/碱土金属离子之比:6.2。
油藏水(合成的):
总盐度:185548mg/l;
Na+52 079mg/l、Mg2+2681mg/l、Ca2+15 383mg/l、Cl-115 105mg/l、硼酸根117mg/l、SO4 2-183mg/l;
碱金属离子/碱土金属离子之比:2.9;
油藏水具有高Ca2+含量。
实施如下测试:
用自来水、海水和油藏水以500-3000ppm的不同浓度配制本发明共聚物和对比聚合物各自的溶液。在每种情况下在不同温度下测量粘度。
结果示于图1-7中。在每种情况下测试的聚合物、水相的类型和所用聚合物的浓度报告在所述图中。
附图列表:
与实验有关的评述:
图1a和1b各自显示了不同共聚物水溶液的粘度对温度的依赖性,特别是两种市售非缔合型共聚物(共聚物V3和V4)以及额外的具有大分子单体V1的缔合型共聚物(共聚物V1)的粘度对温度的依赖性。在所述两种市售非缔合型共聚物的情况下,粘度随温度升高而降低。在所述缔合型共聚物的情况下,水溶液的粘度首先显著增大,通过在约60℃处的最大值,然后再次降低。
图2a-2d各自显示了共聚物V2水溶液粘度作为温度或浓度函数的依赖性。共聚物V2不含本发明的大分子单体(B1)和(B2),而是仅含不具有端-[-(R4O)c(R5O)d(1+x)]-H基团的大分子单体(B2)。作为温度函数的粘度谱类似于共聚物V1,即粘度在约60℃处达到最大值,然后再次降低。
图3a-3d各自显示了具有磺基的本发明共聚物1(50重量%丙烯酰胺、48重量%ATBS、2重量%大分子单体)水溶液的粘度作为温度或浓度函数的依赖性。在自来水中测得的粘度由30℃连续增大至90℃,且完全不降低。在海水中,在达到约50℃处的最大值之后,如果有的话,粘度仅非显著地再次降低,这意味着其或多或少地保持恒定至90℃。在油藏水中,粘度在达到最大值后降低,但粘度如聚合物V1那样。
图4a-4d和5a-5d显示了两种具有磺基且包含50重量%丙烯酰胺、48重量%ATBS和2重量%大分子单体的其他共聚物(共聚物2和3)的测试结果,其中在每种情况下使用其他大分子单体(B)。结果非常类似于共聚物1的结果。
图6a-6c和7a-7c各自显示了具有-COOH基的共聚物,即包含69重量%丙烯酰胺、30重量%丙烯酸钠和1重量%大分子单体的共聚物(共聚物4和5)的测试结果。组成基本上对应于共聚物V4,不同之处在于共聚物V4不含任何大分子单体。正如所预期的那样,作为浓度函数的粘度测量显示,与使用具有磺基的共聚物相比,在使用自来水和使用海水之间具有明显得多的区别。共聚物4在自来水中的粘度在30-90℃范围内略有降低,但在80℃处再次稍微增大。在海水中,较低浓度下的粘度或多或少具有温度依赖性,但在2000ppm下,粘度随温度稍微增大。共聚物5的水溶液的行为与此相似。因此,具有-COOH基的共聚物在中等盐度,例如海水下具有良好的聚合物驱替适用性。
在多孔介质中的性能(岩心驱替测试):
使用共聚物1实施岩心驱替测试。为此,使用共聚物1于合成海水(组成参见上文)中的溶液,其中聚合物浓度为300ppm、500ppm和1000ppm。对岩心驱替测试而言,使用渗透率为约2达西的Bentheim砂岩。所述实验各自在60℃下进行。
在第一步骤中,首先将不含聚合物的合成海水以1ml/分钟的流动速率泵经岩心,并测量通过岩心的压差。随后,将聚合物溶液以1ml/分钟的流动速率泵经岩心,在每种情况下测量压差。
然后,使用聚合物溶液和纯海水的压差之比来计算阻力系数(RF)。高(RF)表明溶解聚合物对水溶液具有有效的增稠效果。共聚物1的RF值汇总在下表中:
聚合物浓度[ppm] 阻力系数(RF)
300 139
500 393
1000 721
所述结果表明,共聚物1即使在300ppm的低浓度下也具有非常高的RF值。

Claims (38)

1.一种从地下矿物油油藏开采矿物油的方法,其中将包含至少一种增稠水溶性共聚物(P)的含水配制剂经由至少一个注入井注入矿物油油藏中,并经由至少一个采出井从所述油藏中抽出原油,所述水溶性共聚物(P)至少包含:
(A)35-99.5重量%至少一种选自(甲基)丙烯酰胺、N-甲基(甲基)丙烯酰胺、N,N’-二甲基(甲基)丙烯酰胺和N-羟甲基(甲基)丙烯酰胺的不荷电的单烯属不饱和亲水性单体(A),
(B)0.01-15重量%至少一种单烯属不饱和大分子单体(B),其除单烯属不饱和基团之外,至少包含亲水性基团和疏水性基团,和
(C)0.1-69.99重量%至少一种含至少一个选自-COOH、-SO3H和-PO3H2基团的酸性基团或其盐的亲水性阴离子单烯属不饱和单体(C),
其中至少一种大分子单体(B)为包含如下通式的大分子单体(B1)和(B2)的混合物:
(B1)H2C=C(R1)-R2-O-(R3O)a-(R4O)b-[-(R4O)c(R5O)d]-H (I),和
(B2)H2C=C(R1)-R2-O-(R3O)a-(R4O)b-H (II),
其中所述的单体量各自基于共聚物(P)中所有单体的总量,大分子单体(B1)的摩尔比例x基于(B1)和(B2)的总和为0.1-0.99,且其中基团和指数各自定义如下:
R1:H或甲基,
R2:单键或二价连接基团-OR35-,其中R35为具有1-6个碳原子的亚烷基,
R3:独立地为亚乙基-CH2CH2-、1,2-亚丙基-CH2CH(CH3)-或亚烷基R4,条件是至少90摩尔%的R3基团为亚乙基,
R4:独立地为亚烷基-CR6(R7)-CR8(R9)-,其中R6、R7、R8和R9基团各自独立地为H或具有1-8个碳原子的直链或支化烷基,条件是并非所有基团均为H且R6、R7、R8和R9基团中的碳原子总和为2-8,
R5:亚乙基-CH2CH2-,
a 10-35的数,
b 5-30的数,
c 0-2的数,
d 1-15的数,
且其中,此外:
●所述共聚物具有1*106至30*106g/mol的重均分子量MW
●所述含水配制剂中的共聚物的量为0.02-2重量%,和
●所述矿物油油藏的温度为20-120℃。
2.根据权利要求1的方法,其中油藏温度为35-120℃。
3.根据权利要求1的方法,其中油藏温度为40-100℃。
4.根据权利要求1的方法,其中所述含水配制剂包含盐。
5.根据权利要求2的方法,其中所述含水配制剂包含盐。
6.根据权利要求3的方法,其中所述含水配制剂包含盐。
7.根据权利要求4的方法,其中所述盐的浓度为5000-250000ppm,基于所述配制剂中所有组分的总和。
8.根据权利要求1-7中任一项的方法,其中R6、R7、R8和R9基团中的2个或3个为H,且R6、R7、R8和R9基团中的碳原子总和为2或3。
9.根据权利要求1-7中任一项的方法,其中对R4O基团的数量b+c加以选择,条件是所存在的所有R6、R7、R8和R9基团中的所有碳原子总和为25-50。
10.根据权利要求1-7中任一项的方法,其中单体(B1)的摩尔比例x为0.4-0.95,基于(B1)和(B2)的总和。
11.根据权利要求1-7中任一项的方法,其包括碱-聚合物驱替,且其中用于注入的含水配制剂额外包含至少一种碱。
12.根据权利要求1-7中任一项的方法,其包括碱-表面活性剂-聚合物驱替,且其中用于注入的含水配制剂额外包含至少一种碱和至少一种表面活性剂。
13.根据权利要求11的方法,其中所述含水配制剂具有9-13的pH。
14.根据权利要求12的方法,其中至少一种表面活性剂为如下通式的阴离子表面活性剂:
R24-O-(R28O)n(R29O)m(R30O)l-R25-YM (XII)
其中基团和指数各自定义如下:
R24:具有10-36个碳原子的脂族、脂环族和/或芳族烃基,
R28:独立地为亚丁基-CR31(R32)-CR33(R34)-,其中R31、R32、R33和R34基团各自独立地为H、甲基或乙基,条件是R31、R32、R33和R34的碳原子总和在每种情况下为2,且其中在至少70摩尔%的R28单元中,R31、R32和R33各自为H且R34为乙基,
R29:1,2-亚丙基-CH2-CH(CH3)-,
R30:-CH2CH2-,
R25:单键或具有2-6个碳原子且还可任选被OH基取代的亚烷基,
Y选自如下组的基团:硫酸根、磺酸根、羧酸根和磷酸根,
M H或阳离子,
n 0-25,
m 0-35,
l 0-75,且
n+m+l 3-75。
15.根据权利要求14的方法,其中R24基团为具有12-22个碳原子的直链脂族烃基R24a
16.根据权利要求14的方法,其中R24基团为具有12-28个碳原子的支化脂族烃基R24b
17.根据权利要求12的方法,其中至少一种表面活性剂为烯烃磺酸盐。
18.根据权利要求1-7中任一项的方法,其中所述配制剂额外包含至少一种配位剂。
19.根据权利要求1-7中任一项的方法,其中所述配制剂额外包含至少一种自由基清除剂。
20.根据权利要求1-7中任一项的方法,其中所述配制剂额外包含至少一种氧清除剂。
21.根据权利要求1-7中任一项的方法,其中所述配制剂额外包含至少一种牺牲试剂。
22.根据权利要求1-7中任一项的方法,其中共聚物(P)为包含如下的共聚物(P1):
●40-60重量%作为单体(A)的(甲基)丙烯酰胺,和
●0.1-5重量%大分子单体(B1)和(B2),其中大分子单体(B1)的摩尔比例基于(B1)和(B2)的总和为0.3-0.95,且其中式(I)和(II)中的基团和指数定义如下:
R1:H或甲基,
R2:二价连接基团-OR35-,其中R35为具有1-6个碳原子的直链1,ω-亚烷基,
R3:亚乙基-CH2CH2-,
R4:独立地为亚烷基-CR6(R7)-CR8(R9)-,其中R6、R7、R8和R9的碳原子总和在每种情况下为2,且其中在至少70摩尔%的-CR6(R7)CR8(R9)-单元中,R6、R7和R8各自为H且R9为乙基,
R5:亚乙基-CH2CH2-,
a 20-28的数,
b 10-25的数,
c 0-1.5的数,
d 1.5-10的数,
和,此外,
●40-60重量%至少一种含SO3H基团或其盐的亲水性阴离子单烯属不饱和单体(C),
其中单体的量各自基于共聚物(P1)中所有单体的量。
23.根据权利要求22的方法,其中所述含水配制剂包含浓度为5000-250000ppm的盐,基于所述配制剂中所有组分的总和。
24.根据权利要求22的方法,其中油藏温度为50-120℃。
25.根据权利要求1-7中任一项的方法,其中共聚物(P)为包含如下的共聚物(P2):
●50-85重量%作为单体(A)的(甲基)丙烯酰胺,和
●0.1-10重量%大分子单体(B1)和(B2),其中大分子单体(B1)的摩尔比例基于(B1)和(B2)的总和为0.3-0.95,且其中式(I)和(II)中的基团和指数各自定义如下:
R1:H或甲基,
R2:二价连接基团-OR35-,其中R35为具有1-6个碳原子的直链1,ω-亚烷基,
R3:亚乙基-CH2CH2-,
R4:独立地为亚烷基-CR6(R7)-CR8(R9)-,其中R6、R7、R8和R9的碳原子总和在每种情况下为2,且其中在至少70摩尔%的-CR6(R7)CR8(R9)-单元中,R6、R7和R8各自为H且R9为乙基,
R5:亚乙基-CH2CH2-,
a 20-28的数,
b 10-25的数,
c 0-2的数,
d 1.5-10的数,
和,此外,
●5-45重量%至少一种含COOH基或其盐的亲水性阴离子单烯属不饱和单体(C),
其中单体的量各自基于共聚物(P2)中所有单体的量。
26.根据权利要求25的方法,其中所述含水配制剂包含浓度为5000-60000ppm的盐,基于所述配制剂中所有组分的总和。
27.根据权利要求25的方法,其中油藏温度为35-90℃。
28.根据权利要求1-7中任一项的方法,其中共聚物(P)为包含如下的共聚物(P3):
●30-85重量%作为单体(A)的(甲基)丙烯酰胺,和
●0.1-10重量%大分子单体(B1)和(B2),其中大分子单体(B1)的摩尔比例基于(B1)和(B2)的总和为0.3-0.95,且其中式(I)和(II)中的基团和指数各自定义如下:
R1:H或甲基,
R2:二价连接基团-OR35-,其中R35为具有1-6个碳原子的直链1,ω-亚烷基,
R3:亚乙基-CH2CH2-,
R4:独立地为亚烷基-CR6(R7)-CR8(R9)-,其中R6、R7、R8和R9的碳原子总和在每种情况下为2,且其中在至少70摩尔%的-CR6(R7)CR8(R9)-单元中,R6、R7和R8各自为H且R9为乙基,
R5:亚乙基-CH2CH2-,
a 20-28的数,
b 10-25的数,
c 0-2的数,
d 1.5-10的数,
和,此外,
●至少两种亲水性阴离子单烯属不饱和单体(C),其包含5-40重量%的至少一种含COOH基或其盐的单体(C1),和5-40重量%的至少一种含-SO3H基团或其盐的单体(C2),
其中单体的量各自基于共聚物(P3)中所有单体的量。
29.根据权利要求28的方法,其中所述含水配制剂包含浓度为5000-150000ppm的盐,基于所述配制剂中所有组分的总和。
30.根据权利要求28的方法,其中油藏温度为40-100℃。
31.一种水溶性共聚物(P),其至少包含:
(A)30-99.99重量%至少一种选自(甲基)丙烯酰胺、N-甲基(甲基)丙烯酰胺、N,N’-二甲基(甲基)丙烯酰胺和N-羟甲基(甲基)丙烯酰胺的不荷电的单烯属不饱和亲水性单体(A),和
(B)0.01-15重量%至少一种单烯属不饱和大分子单体(B),其除单烯属不饱和基团之外,至少包含亲水性基团和疏水性基团,其中至少一种大分子单体(B)为包含如下通式的大分子单体(B1)和(B2)的混合物:
(B1)H2C=C(R1)-R2-O-(R3O)a-(R4O)b-[-(R4O)c(R5O)d]-H (I),和
(B2)H2C=C(R1)-R2-O-(R3O)a-(R4O)b-H (II),
(C)0.1-69.99重量%至少一种含至少一个选自-COOH、-SO3H和-PO3H2基团的酸性基团或其盐的亲水性阴离子单烯属不饱和单体(C),
其中所述的单体量各自基于共聚物(P)中所有单体的总量,大分子单体(B1)的摩尔比例x基于(B1)和(B2)的总和为0.1-0.99,且其中基团和指数各自定义如下:
R1:H或甲基,
R2:单键或二价连接基团-OR35-,其中R35为具有1-6个碳原子的亚烷基,
R3:独立地为亚乙基-CH2CH2-、1,2-亚丙基或亚烷基R4,条件是至少90摩尔%的R3基团为亚乙基,
R4:独立地为亚烷基-CR6(R7)-CR8(R9)-,其中R6、R7、R8和R9基团各自独立地为H或具有1-8个碳原子的直链或支化烷基,条件是并非所有基团均为H且R6、R7、R8和R9基团中的碳原子总和为2-8,
R5:亚乙基-CH2CH2-,
a 10-35的数,
b 5-30的数,
c 0-2的数,
d 1-15的数,
且其中所述共聚物具有1*106-30*106g/mol的重均分子量MW
32.根据权利要求31的共聚物(P),其为包含如下的共聚物(P1):
●40-60重量%作为单体(A)的(甲基)丙烯酰胺,和
●0.1-5重量%大分子单体(B1)和(B2),其中大分子单体(B1)的摩尔比例基于(B1)和(B2)的总和为0.3-0.95,且其中式(I)和(II)中的基团和指数定义如下:
R1:H或甲基,
R2:二价连接基团-OR35-,其中R35为具有1-6个碳原子的直链1,ω-亚烷基,
R3:亚乙基-CH2CH2-,
R4:独立地为亚烷基-CR6(R7)-CR8(R9)-,其中R6、R7、R8和R9的碳原子总和在每种情况下为2,且其中在至少70摩尔%的-CR6(R7)CR8(R9)-单元中,R6、R7和R8各自为H且R9为乙基,
R5:亚乙基-CH2CH2-,
a 20-28的数,
b 10-30的数,
c 0-2的数,
d 1.5-10的数,
和,此外,
●40-60重量%至少一种含SO3H基团或其盐的亲水性阴离子单烯属不饱和单体(C),
其中单体的量各自基于共聚物(P1)中所有单体的量。
33.根据权利要求31的共聚物(P),其为包含如下的共聚物(P2):
●50-85重量%作为单体(A)的(甲基)丙烯酰胺,和
●0.1-10重量%大分子单体(B1)和(B2),其中大分子单体(B1)的摩尔比例基于(B1)和(B2)的总和为0.3-0.95,且其中式(I)和(II)中的基团和指数各自定义如下:
R1:H或甲基,
R2:二价连接基团-OR35-,其中R35为具有1-6个碳原子的直链1,ω-亚烷基,
R3:亚乙基-CH2CH2-,
R4:独立地为亚烷基-CR6(R7)-CR8(R9)-,其中R6、R7、R8和R9的碳原子总和在每种情况下为2,且其中在至少70摩尔%的-CR6(R7)CR8(R9)-单元中,R6、R7和R8各自为H且R9为乙基,
R5:亚乙基-CH2CH2-,
a 20-28的数,
b 10-25的数,
c 0-2的数,
d 1.5-10的数,
和,此外,
●5-45重量%至少一种含COOH基或其盐的亲水性阴离子单烯属不饱和单体(C),
其中单体的量各自基于共聚物(P2)中所有单体的量。
34.根据权利要求31的共聚物(P),其为包含如下的共聚物(P3):
●30-85重量%作为单体(A)的(甲基)丙烯酰胺,和
●0.1-10重量%大分子单体(B),其中大分子单体(B1)的摩尔比例基于(B1)和(B2)的总和为0.3-0.95,且其中式(I)和(II)中的基团和指数各自定义如下:
R1:H或甲基,
R2:二价连接基团-OR35-,其中R35为具有1-6个碳原子的直链1,ω-亚烷基,
R3:亚乙基-CH2CH2-,
R4:独立地为亚烷基-CR6(R7)-CR8(R9)-,其中R6、R7、R8和R9的碳原子总和在每种情况下为2,且其中在至少70摩尔%的-CR6(R7)CR8(R9)-单元中,R6、R7和R8各自为H且R9为乙基,
R5:亚乙基-CH2CH2-,
a 20-28的数,
b 10-25的数,
c 0-2的数,
d 1.5-10的数,
和,此外,
●至少两种亲水性阴离子单烯属不饱和单体(C),其包含5-40重量%的至少一种含COOH基或其盐的单体(C1),和5-40重量%的至少一种含-SO3H基团或其盐的单体(C2),
其中单体的量各自基于共聚物(P3)中所有单体的量。
35.一种含水配制剂,其包含至少一种根据权利要求31-34中任一项的水溶性共聚物(P),其中所述含水配制剂中的共聚物的量为0.02-2重量%。
36.一种制备根据权利要求31的水溶性共聚物(P)的方法,至少包括如下工艺步骤:
(a)提供至少包含如下的单体水溶液:
●水,
●35-99.5重量%至少一种选自(甲基)丙烯酰胺、N-甲基(甲基)丙烯酰胺、N,N’-二甲基(甲基)丙烯酰胺和N-羟甲基(甲基)丙烯酰胺的不荷电的单烯属不饱和亲水性单体(A),和
●0.01-15重量%至少一种单烯属不饱和大分子单体(B),其除单烯属不饱和基团之外,至少包含亲水性基团和疏水性基团,其中至少一种大分子单体(B)为包含如下通式的大分子单体(B1)和(B2)的混合物:
(B1)H2C=C(R1)-R2-O-(R3O)a-(R4O)b-[-(R4O)c(R5O)d]-H (I),和
(B2)H2C=C(R1)-R2-O-(R3O)a-(R4O)b-H (II),
其中所述的单体量各自基于共聚物(P)中所有单体的总量,大分子单体(B1)的摩尔比例x基于(B1)和(B2)的总和为0.1-0.99,且其中基团和指数各自如权利要求31所定义,和
●0.1-69.99重量%至少一种含至少一个选自-COOH、-SO3H和-PO3H2基团的酸性基团或其盐的亲水性阴离子单烯属不饱和单体(C),
其中所有单体一起的浓度为10-60重量%,基于所述单体水溶液,
(b)将所述单体水溶液冷却至低于+10℃的温度,
(c)向所述单体水溶液中添加至少一种用于自由基聚合的热引发剂,其中至少一种引发剂能在低于+10℃的温度下引发自由基聚合,
(d)在基本上绝热的条件下聚合单体混合物,其中所述混合物在所形成的聚合热影响下加热并形成聚合物凝胶,
(e)粉碎所形成的聚合物凝胶,
(f)干燥所述聚合物凝胶。
37.根据权利要求36的方法,其中所述单体水溶液进一步包含不可聚合的表面活性化合物(T)。
38.根据权利要求36或37的方法,其中聚合在锥形反应器中进行,其中所述锥形反应器为具有直径D1和位于下端处的锥形收窄(2)的管式反应器,其中锥形收窄末端处的直径为D2,D1/D2之比为2:1-25:1,且圆柱段(1)中的壁与锥形收窄(2)区域中的壁之间的角度α为大于120°且小于180°,且所述反应器额外具有设置在锥形收窄下端处的关闭装置(3)和至少一个位于反应器上端处的进料口(4),和
●步骤(a)和(b)在锥形反应器外部的合适混合和冷却装置中进行,
●将经冷却的单体溶液经由进料口(4)从其中转移至所述反应器中,和
●在聚合后,通过打开关闭装置(3)和经由进料口(4)注入至少一种气体而迫使所形成的聚合物凝胶(5)经由打开的关闭装置从反应器中排出。
CN201480072192.5A 2013-12-13 2014-12-05 开采矿物油的方法 Active CN105874032B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP13197065 2013-12-13
EP13197065.9 2013-12-13
PCT/EP2014/076772 WO2015086468A1 (de) 2013-12-13 2014-12-05 Verfahren zur erdölförderung

Publications (2)

Publication Number Publication Date
CN105874032A CN105874032A (zh) 2016-08-17
CN105874032B true CN105874032B (zh) 2019-05-10

Family

ID=49759158

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480072192.5A Active CN105874032B (zh) 2013-12-13 2014-12-05 开采矿物油的方法

Country Status (16)

Country Link
US (1) US9783730B2 (zh)
EP (1) EP3080227B1 (zh)
JP (1) JP6505106B2 (zh)
KR (1) KR102416065B1 (zh)
CN (1) CN105874032B (zh)
AR (1) AR100384A1 (zh)
AU (1) AU2014363793B2 (zh)
BR (1) BR112016013465B1 (zh)
CA (1) CA2933114C (zh)
CO (1) CO2016006164A2 (zh)
EA (1) EA031462B9 (zh)
ES (1) ES2662194T3 (zh)
MX (1) MX356321B (zh)
MY (1) MY182901A (zh)
WO (1) WO2015086468A1 (zh)
ZA (1) ZA201604584B (zh)

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2933271B1 (de) 2014-04-15 2016-03-23 Basf Se Verfahren zur herstellung von wasserlöslichen homo- oder copolymeren umfassend (meth)acrylamid
EP3221417B1 (de) 2014-11-18 2019-09-18 Basf Se Verfahren zur erdölförderung
US10538724B2 (en) 2015-07-16 2020-01-21 Bafs Se Defect reduction rinse solution containing ammonium salts of sulfoesters
EP3324738B1 (de) * 2015-07-22 2019-04-24 Basf Se Agroformulierung mit copolymeren enthaltend hydroxybutylvinylether als assoziativverdicker
MX2018008704A (es) * 2016-01-13 2018-09-21 Basf Se Metodo para la recuperacion terciaria de petroleo por medio de un polimero de asociacion hidrofoba.
US10836946B2 (en) * 2016-03-28 2020-11-17 Halliburton Energy Services, Inc. Sugar-based surfactant for well treatment fluids
EP3454655A1 (en) * 2016-05-11 2019-03-20 Basf Se Aqueous agricultural composition having improved spray drift performance
WO2018086984A1 (en) 2016-11-10 2018-05-17 Basf Corporation Process for increasing the production of hydrocarbons from hydrocarbon bearing reservoirs
EP3447106A1 (en) 2017-08-25 2019-02-27 Basf Se Process for enhanced oil recovery
WO2019081004A1 (en) 2017-10-25 2019-05-02 Basf Se PROCESS FOR PRODUCING AQUEOUS POLYACRYLAMIDE SOLUTIONS
CA3076545A1 (en) 2017-10-25 2019-05-02 Basf Se Process for producing aqueous polyacrylamide solutions
AR113387A1 (es) 2017-10-25 2020-04-29 Basf Se Proceso y planta modular y reubicable para producir soluciones acuosas de poliacrilamida
WO2019081324A1 (en) 2017-10-25 2019-05-02 Basf Se METHOD AND APPARATUS FOR PRODUCING AQUEOUS POLYMER SOLUTIONS
AR113386A1 (es) 2017-10-25 2020-04-29 Basf Se Proceso y planta modular y reubicable para producir soluciones acuosas de poliacrilamida
WO2019081003A1 (en) 2017-10-25 2019-05-02 Basf Se PROCESS FOR PRODUCING AQUEOUS POLYACRYLAMIDE SOLUTIONS
MX2020004297A (es) * 2017-10-25 2020-08-13 Basf Se Proceso para producir poliacrilamidas de asociacion hidrofoba.
WO2019081318A1 (en) 2017-10-25 2019-05-02 Basf Se PROCESS FOR PRODUCING AQUEOUS POLYACRYLAMIDE SOLUTIONS
AR113377A1 (es) 2017-10-25 2020-04-22 Basf Se Proceso para producir soluciones acuosas de poliacrilamida
WO2019121298A1 (fr) * 2017-12-19 2019-06-27 Rhodia Operations Formulations aqueuses de tensioactifs et polymeres associatifs pour la recuperation assistee du petrole
WO2019233948A1 (en) 2018-06-06 2019-12-12 Basf Se Associative copolymers with hydrophobic quaternized (meth)acrylamide and (meth)acrylic acid derivatives
WO2019233947A1 (en) 2018-06-06 2019-12-12 Basf Se Associative copolymers with hydrophobic quaternized (meth)acrylamide and (meth)acrylic acid derivatives
CA3107790A1 (en) 2018-07-30 2020-02-06 Ecolab Usa Inc. Fast dissolving, water soluble, hydrophobically-modified polyelectrolytes
CA3108176A1 (en) 2018-07-30 2020-02-06 Championx Usa, Inc. Salt-tolerant, fast-dissolving, water-soluble rheology modifiers
WO2020079119A1 (en) 2018-10-18 2020-04-23 Basf Se Method of providing aqueous polyacrylamide concentrates
AR116742A1 (es) 2018-10-18 2021-06-09 Basf Se Proceso para producir un concentrado acuoso de poliacrilamida
CA3112658A1 (en) 2018-10-18 2020-04-23 Basf Se Process of fracturing subterranean formations
WO2020079124A1 (en) 2018-10-18 2020-04-23 Basf Se Process for producing aqueous polyacrylamide compositions
CA3112417A1 (en) 2018-10-18 2020-04-23 Basf Se Method of providing homogeneous aqueous polyacrylamide concentrates and use thereof
WO2020079123A1 (en) 2018-10-18 2020-04-23 Basf Se Method of fracturing subterranean formations using aqueous solutions comprising hydrophobically associating copolymers
AU2019362384A1 (en) 2018-10-18 2021-05-06 Basf Se Process for producing ammonium (METH-) acrylate
WO2020084033A1 (de) 2018-10-26 2020-04-30 Basf Se Hydrophob assoziierende copolymere für die tertiäre erdölförderung umfassend monomere mit propylenoxy-einheiten
WO2020084046A1 (de) 2018-10-26 2020-04-30 Basf Se Verfahren zur herstellung von propylenoxy-haltigen hydrophob assoziierenden monomeren mittels dmc-katalyse
WO2020216433A1 (en) 2019-04-23 2020-10-29 Basf Se A process and apparatus for producing aqueous compositions of water-soluble polymers
CN110054727B (zh) * 2019-04-25 2022-12-20 西安万德能源化学股份有限公司 一种聚丙烯酰胺纳米微球的制备方法及装置
WO2021175760A1 (en) 2020-03-06 2021-09-10 Basf Se Method of fracturing subterranean formations
WO2021175757A1 (en) 2020-03-06 2021-09-10 Basf Se Method of manufacturing an aqueous polyacrylamide premix
WO2021191041A1 (en) 2020-03-26 2021-09-30 Basf Se Process and plant for manufacturing aqueous polyacrylamide gels
WO2021204850A1 (en) 2020-04-09 2021-10-14 Basf Se Biocatalytic synthesis of monomer mixtures for polyacrylamide manufacturing
WO2021209148A1 (en) 2020-04-17 2021-10-21 Basf Se Process for making an aqueous injection fluid
WO2021209149A1 (en) 2020-04-17 2021-10-21 Basf Se Process and devices for making aqueous wellbore treating fluids
WO2021209150A1 (en) 2020-04-17 2021-10-21 Basf Se Processes and devices for making aqueous wellbore treating fluids
MX2022013863A (es) 2020-05-04 2022-11-30 Basf Se Un proceso y un aparato para producir composiciones acuosas de polimeros hidrosolubles.
WO2022063955A1 (en) 2020-09-25 2022-03-31 Basf Se Process of heap leaching employing hydrophobically associating agglomeration agents
WO2022101081A1 (de) 2020-11-13 2022-05-19 Basf Se Verfahren zur erdölförderung aus unterirdischen carbonatlagerstätten
WO2022106308A1 (en) 2020-11-23 2022-05-27 Basf Se Process for making water-soluble, nvp-containing copolymers in powder form
WO2023084075A1 (en) 2021-11-15 2023-05-19 Basf Se Method for increasing the efficacy of a herbicide
WO2023156293A1 (en) 2022-02-17 2023-08-24 Basf Se Improved process and device for making aqueous wellbore treating fluids

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006002936A1 (de) * 2004-07-03 2006-01-12 Construction Research & Technology Gmbh Wasserlösliche sulfogruppenhaltige copolymere, varfahren zu deren herstellung und ihre verwendung
WO2011015520A1 (de) * 2009-08-06 2011-02-10 Basf Se Wasserlösliches, hydrophob assoziierendes copolymer
WO2012069477A1 (de) * 2010-11-24 2012-05-31 Basf Se Verfahren zur erdölförderung unter verwendung hydrophob assoziierender copolymere
WO2012069478A1 (de) * 2010-11-24 2012-05-31 Basf Se Verfahren zur erdölförderung unter verwendung hydrophob assoziierender copolymere
CN103328601A (zh) * 2010-11-24 2013-09-25 巴斯夫欧洲公司 疏水缔合共聚物和表面活性剂的含水配制剂及其在石油开采中的用途

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1218157B (de) 1962-11-07 1966-06-02 Basf Ag Verfahren zur Herstellung wasserloeslicher Polymerisate
US4921902A (en) 1984-02-02 1990-05-01 The Dow Chemical Company Hydrophobie associative composition containing a polymer of a water-soluble monomer and an amphiphilic monomer
DE4325237A1 (de) 1993-07-28 1995-02-02 Basf Ag Verfahren zur Herstellung von Alkoxylierungsprodukten in Gegenwart von mit Additiven modifizierten Mischhydroxiden
DE19502939A1 (de) 1995-01-31 1996-08-01 Basf Ag Verfahren zur Herstellung von hochmolekularen Polymerisaten
DE19909231C2 (de) * 1999-03-03 2001-04-19 Clariant Gmbh Wasserlösliche Copolymere auf AMPS-Basis und ihre Verwendung als Bohrhilfsmittel
GB0202990D0 (en) 2002-02-08 2002-03-27 Ciba Spec Chem Water Treat Ltd Apparatus and method for degassing liquids
DE10243361A1 (de) 2002-09-18 2004-04-01 Basf Ag Alkoxylatgemische und diese enthaltende Waschmittel
WO2006117292A1 (en) 2005-04-29 2006-11-09 Ciba Specialty Chemicals Holding Inc. Production of polymers in a conical reactor
FR2922255B1 (fr) 2007-10-12 2010-03-12 Spcm Sa Installation pour la recuperation assistee du petrole mettant en oeuvre des polymeres hydrosolubles, procede mettant en oeuvre l'installation
FR2922256B1 (fr) 2007-10-12 2010-03-12 Spcm Sa Installation pour la recuperation assistee du petrole mettant en oeuvre des polymeres hydrosolubles, procede mettant en oeuvre l'installation
WO2010133527A2 (de) 2009-05-20 2010-11-25 Basf Se Hydrophob assoziierende copolymere
FR2948964B1 (fr) 2009-08-07 2011-09-30 Spcm Sa Methode de dissolution continue d'emulsions de polyacrylamides pour la recuperation assistee du petrole (rap)
MX2013000240A (es) * 2010-07-09 2013-02-07 Lubrizol Advanced Mat Inc Mezclas de espesantes de copolimero acrilico.
ES2549934T3 (es) * 2010-07-09 2015-11-03 Lubrizol Advanced Materials, Inc. Espesantes de copolímero de acrilato estructurado
FR2973828B1 (fr) 2011-04-11 2014-04-18 Snf Sas Ensemble de materiel de mesure et regulation de viscosite en ligne a haute pression
US9777094B2 (en) 2012-12-17 2017-10-03 Basf Se Water-soluble, hydrophobically associating copolymers having novel hydrophobically associating monomers
AU2013363874B2 (en) 2012-12-17 2016-12-08 Basf Se Process for preparing a macromonomer
US20160200969A1 (en) 2013-08-22 2016-07-14 Basf Se Stabilised compositions containing acrylamide polymers, and method for the tertiary production of crude oil using said compositions

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006002936A1 (de) * 2004-07-03 2006-01-12 Construction Research & Technology Gmbh Wasserlösliche sulfogruppenhaltige copolymere, varfahren zu deren herstellung und ihre verwendung
WO2011015520A1 (de) * 2009-08-06 2011-02-10 Basf Se Wasserlösliches, hydrophob assoziierendes copolymer
WO2012069477A1 (de) * 2010-11-24 2012-05-31 Basf Se Verfahren zur erdölförderung unter verwendung hydrophob assoziierender copolymere
WO2012069478A1 (de) * 2010-11-24 2012-05-31 Basf Se Verfahren zur erdölförderung unter verwendung hydrophob assoziierender copolymere
CN103328601A (zh) * 2010-11-24 2013-09-25 巴斯夫欧洲公司 疏水缔合共聚物和表面活性剂的含水配制剂及其在石油开采中的用途

Also Published As

Publication number Publication date
EP3080227A1 (de) 2016-10-19
US20170101576A1 (en) 2017-04-13
BR112016013465B1 (pt) 2023-01-24
CO2016006164A2 (es) 2017-04-10
JP2017509812A (ja) 2017-04-06
EA031462B9 (ru) 2019-05-31
ZA201604584B (en) 2017-11-29
EA031462B1 (ru) 2019-01-31
AU2014363793B2 (en) 2018-02-22
AR100384A1 (es) 2016-10-05
CA2933114C (en) 2022-05-10
MX2016007730A (es) 2016-09-09
AU2014363793A1 (en) 2016-07-28
CA2933114A1 (en) 2015-06-18
CN105874032A (zh) 2016-08-17
KR102416065B1 (ko) 2022-07-01
MY182901A (en) 2021-02-05
US9783730B2 (en) 2017-10-10
EP3080227B1 (de) 2017-12-27
ES2662194T3 (es) 2018-04-05
JP6505106B2 (ja) 2019-04-24
KR20160096710A (ko) 2016-08-16
EA201691230A1 (ru) 2016-11-30
WO2015086468A1 (de) 2015-06-18
MX356321B (es) 2018-05-23
BR112016013465A2 (zh) 2017-08-08

Similar Documents

Publication Publication Date Title
CN105874032B (zh) 开采矿物油的方法
CN103339160B (zh) 疏水缔合共聚物作为添加剂在具体油田应用中的用途
CN108431170A (zh) 借助疏水缔合性聚合物三次开采矿物油方法
US8684080B2 (en) Use of surfactant mixtures of polycarboxylates for microemulsion flooding
JP6567423B2 (ja) 新規疎水会合性モノマーを含む水溶性疎水会合性共重合体
EP2643422B1 (de) Wässrige formulierungen von hydrophob assoziierenden copolymere und tensiden sowie deren verwendung zur erdölförderung
EA024043B1 (ru) Водорастворимый гидрофобно-ассоциирующий сополимер
CA2818847A1 (en) Process for mineral oil production using hydrophobically associating copolymers
JP2013501112A (ja) 疎水性で会合性の水溶性コポリマー
CN102686696A (zh) 使用表面活性剂混合物的三次矿物油开采方法
US8584750B2 (en) Process for tertiary mineral oil production using surfactant mixtures
CN102791824A (zh) 使用基于含氧化丁烯的烷基烷氧基化物的表面活性剂开采矿物油的方法
JP5961274B2 (ja) C28ゲルベとc30ゲルベとc32ゲルベを含有するヒドロカルビルアルコキシレート混合物系の界面活性剤を用いる鉱油の製造方法
CN102575150A (zh) 使用表面活性剂混合物开采矿物油的方法
CN102712840A (zh) 使用表面活性剂混合物的三次矿物油开采方法
US10155900B2 (en) Process for producing mineral oil using surfactants based on a mixture of C24 guerbet, C26 guerbet, C28 guerbet-containing hydrocarbyl alkoxylates
CN104974299B (zh) 一种压裂用降阻剂及其制备方法
US9475979B2 (en) Process for producing mineral oil using surfactants based on a mixture of C20 Guerbet-, C22 Guerbet-, C24 Guerbet-containing hydrocarbyl alkoxylates
US9475977B2 (en) Process for producing mineral oil using surfactants based on a mixture of C28 Guerbet, C30 Guerbet, C32 Guerbet-containing hydrocarbyl alkoxylates
US20120125643A1 (en) Process for mineral oil production using hydrophobically associating copolymers
JP2014534994A (ja) C28ゲルベとc30ゲルベとc32ゲルベを含有するハイドロカルビルアルコキシレート混合物系の界面活性剤を用いる鉱油の製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant