CN105869996A - 一种碳化硅外延生长系统及其生长方法 - Google Patents

一种碳化硅外延生长系统及其生长方法 Download PDF

Info

Publication number
CN105869996A
CN105869996A CN201610262594.2A CN201610262594A CN105869996A CN 105869996 A CN105869996 A CN 105869996A CN 201610262594 A CN201610262594 A CN 201610262594A CN 105869996 A CN105869996 A CN 105869996A
Authority
CN
China
Prior art keywords
growth
tank
epitaxial
silicon carbide
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610262594.2A
Other languages
English (en)
Inventor
钮应喜
杨霏
温家良
潘艳
王嘉铭
李永平
田亮
吴昊
李玲
查祎英
郑柳
夏经华
桑玲
刘瑞
张文婷
李嘉琳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
Global Energy Interconnection Research Institute
State Grid Shanghai Electric Power Co Ltd
Original Assignee
State Grid Corp of China SGCC
Global Energy Interconnection Research Institute
State Grid Shanghai Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, Global Energy Interconnection Research Institute, State Grid Shanghai Electric Power Co Ltd filed Critical State Grid Corp of China SGCC
Priority to CN201610262594.2A priority Critical patent/CN105869996A/zh
Publication of CN105869996A publication Critical patent/CN105869996A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02658Pretreatments
    • H01L21/02661In-situ cleaning
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02378Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02441Group 14 semiconducting materials
    • H01L21/02447Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02529Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02634Homoepitaxy

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明提供一种碳化硅外延生长系统及其生长方法。本发明提供的外延系统可进行慢速生长、快速生长、N型掺杂、P型掺杂、单层外延生长、多层外延生长、薄膜外延层生长、厚膜外延层生长、选择性刻蚀等多种功能性的碳化硅外延生长;该系统可依据外延结构要求选择生长模式,生长适合的外延材料。本发明提供的技术方案生长的外延材料质量更优,缺陷更少,更适合应用于高电压电力电子器件中;其适合范围广、生长方法简单、加工成本低,适合工业化生产。

Description

一种碳化硅外延生长系统及其生长方法
技术领域
本发明涉及一种半导体材料生长系统,具体讲,涉及一种多功能性的碳化硅外延生长系统及其生长方法。
背景技术
碳化硅(SiC)是继第一代半导体材料硅、锗和第二代半导体材料砷化镓、磷化铟后发展起来的第三代半导体材料。宽禁带是硅和砷化镓的2~3倍的碳化硅材料使半导体器件能在500℃以上的温度下具有发射蓝光的能力;其中的高击穿电场比硅和砷化镓均高一个数量级,这决定了具有高压、大功率的性能;高的饱和电子漂移速度和低介电常数又决定了该器件高频、高速的工作性能,分别是硅和砷化镓导热率的3.3倍和10倍的性能,意味着该器件导热性能好,电路的集成度显著提高、冷却散热系统大大减少,整机的体积大大压缩。
随着碳化硅材料和器件工艺的不断完善,部分Si领域被碳化硅替代指日可待。此外,由于碳化硅具有宽带隙、高临界击穿场强、高热导率、高电子饱和飘逸速率等特点,特别适合大功率、高电压电力电子器件,而成为当前电力电子领域的研究热点。
高电压电力电子器件,需要超厚碳化硅外延层的厚度达200微米,由于器件结构的要求,又需进行多层外延结构以及不同的掺杂层。但是,传统的碳化硅外延生长系统单一,仅能进行慢速生长模式,不能生长厚膜,无法满足高电压电力电子器件的需求,因此,亟待开发一种适用于高电压电力电子器件的多功能外延生长系统。
发明内容
本发明提供一种具有多功能性的碳化硅外延生长系统及其生长方法,该外延系统可进行慢速生长、快速生长、N型掺杂、P型掺杂、单层外延生长、多层外延生长、薄膜外延层生长、厚膜外延层生长、选择性刻蚀等多种功能性的碳化硅外延生长;该系统可依据器件的需求,生长适合的外延材料,其适合范围广、生长方法简单、加工成本低,适合工业化生产。
为实现上述目的,本发明采用以下技术方案:
一种碳化硅外延生长系统,包括反应腔体及与其连接的尾气处理系统,与所述反应腔体连接的源气控制供应系统包括慢速生长单元、快速生长单元、N型掺杂单元、P型掺杂单元、单层外延生长单元、多层外延生长单元、薄膜外延层生长单元、厚膜外延层生长单元和选择性刻蚀单元。所述反应腔体为长方体;所述尾气处理系统设有与反应腔体连接的尾气处理器。
进一步的,所述反应腔体与并联后的氢气罐、氮气罐、乙烯罐、硅烷罐、氯化氢罐、TCS罐和TMA罐连接,其中的TCS罐和TMA罐通过并联管线与氢气罐连接。
进一步的,所述慢速生长单元设有与反应腔体连接的氢气罐、硅烷罐和乙烯罐。
进一步的,所述快速生长单元设有与反应腔体连接的氢气罐、TCS罐和乙烯罐。
进一步的,所述快速生长单元设有与反应腔体连接的氢气罐、硅烷罐、氯化氢罐和乙烯罐。
进一步的,所述N型掺杂单元包括氮气罐,N型掺杂单元通过采用氮气作掺杂剂实现;所述P型掺杂单元包括TMA罐,所述P型掺杂通过采用TMA作掺杂剂来实现。
进一步的,所述TCS为三甲基铝;所述TMA为三氯氢硅。
进一步的,所述单层外延生长单元的单层为P型或N型的一层外延层;所述多层外延生长单元的多层为P型、N型多层外延层中的一种或多种。
进一步的,所述薄膜外延层生长单元中薄层外延层厚度为0~50um;所述厚膜外延层生长单元中厚膜外延层厚度为50um以上。
进一步的,所述选择性刻蚀单元设有与反应腔体连接的氯化氢罐。
一种碳化硅外延片的生长方法包括下述步骤:
a.加热升温:于真空的反应腔中充入氢气至2000~50000帕,升温至900℃~1600℃;
b.原位蚀刻:通入氯化氢气体对碳化硅衬底进行原位蚀刻3~20min后用氢气吹拂3~15min;
c.缓冲层生长:加热至1600~1700℃后,采用慢速生长模式,生长时间0.2~3min;
d.厚膜沉积生长:加热至1600~1700℃后,采用快速生长模式,生长时间20~120min;
e.薄膜沉积生长:采用慢速生长模式,生长时间0.5~5min;
f.降温。
进一步的,所述步骤c中缓冲层生长、步骤d中厚膜沉积生长和步骤e中薄膜沉积生长的掺杂类型为P型或N型。
进一步的,所述步骤d和步骤e的生长次数为0~10次。
与最接近的现有技术相比,本发明提供的技术方案具有如下优异效果:
1、本发明提供的方案为多功能性外延生长系统,可根据外延结构要求选择生长模式,生长的外延材料质量更优,缺陷更少,更适合应用于高电压电力电子器件中;
2、本发明提供的系统可依据器件的需求,生长适合的外延材料,其适合范围广、生长方法简单、加工成本低,操作简单,实用性强,工艺重复性好,适合工业化连续生产;
3、本发明提供的技术方案生长碳化硅外延材料,不需要多台固定资产投资,生产设备显著简化,占用面积小,加工成本更低。
附图说明
为了更清楚地说明本发明中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1本发明外延生长系统的示意图;
图2本发明实施例4中外延片的缺陷分布图;
图3本发明实施例4中外延片的原子力显微镜图;
图中:1、反应腔体;2、尾气处理器;3、氢气;4、氮气;5、乙烯;6、硅烷;7、氯化氢;8、TCS;9、TMA。
具体实施方式
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本发明保护的范围。
如图1所示,提供了一种碳化硅外延生长系统,该外延生长系统包括反应腔体1及与其连接的尾气处理系统,与反应腔体1连接的源气控制供应系统包括慢速生长单元、快速生长单元、N型掺杂单元、P型掺杂单元、单层外延生长单元、多层外延生长单元、薄膜外延层生长单元、厚膜外延层生长单元和选择性刻蚀单元。反应腔体1为长方体;尾气处理系统设有与反应腔体1连接的尾气处理器2。反应腔体1与并联后的氢气3罐、氮气4罐、乙烯5罐、硅烷6罐、氯化氢7罐、TCS8罐和TMA9罐连接,其中的TCS8罐和TMA9罐通过并联管线与氢气3罐连接。
慢速生长单元设有与反应腔体1连接的氢气3罐、硅烷6罐和乙烯5罐。快速生长单元设有与反应腔体1连接的氢气3罐、TCS8罐和乙烯5罐。快速生长单元设有与反应腔体1连接的氢气3罐、硅烷6罐、氯化氢7罐和乙烯5罐。
N型掺杂单元包括氮气4罐,N型掺杂单元通过采用氮气4作掺杂剂实现;P型掺杂单元包括TMA9罐,P型掺杂通过采用TMA9作掺杂剂来实现。TCS8为三甲基铝;TMA9为三氯氢硅。
单层外延生长单元的单层为P型或N型的一层外延层;多层外延生长单元的多层为P型、N型多层外延层中的一种或多种。薄膜外延层生长单元中薄层外延层厚度为0~50um;厚膜外延层生长单元中厚膜外延层厚度为50um以上。选择性刻蚀单元设有与反应腔体1连接的氯化氢7罐。
实施例1
一种N+NP型低缺陷厚度碳化硅外延片制备方法,包括以下步骤:
1)加热升温:于真空的反应腔体1中充入氢气3至40000帕,升温至1550℃;
2)在线刻蚀衬底:准备材料为4H-SiC的衬底,抽真空,通入流量为40L/min的氢气3和5L/min的氯化氢7,反应室内压力为40mbar,温度为1680℃,维持3min;
3)N+型缓冲层的生长:停止通入氯化氢7,降温至1650℃,通入流量为6mL/min的硅烷6和3mL/min的乙烯5,以流量为1500mL/min的氮气4为掺杂剂,生长压力为40mbar,生长0.4μm厚的缓冲层;
4)N型厚膜外延层的生长:将40L/min流量的氢气3、10mL/min的TCS8和5mL/min的乙烯5通入反应室,保持温度为1650℃、压力40mbar,以800mL/min流量的氮气4为掺杂剂,生长80μm厚的外延层;
5)P型薄膜外延层的生长:通入流量为6mL/min的硅烷6和3mL/min的乙烯5,以流量为1500mL/min的TMA9为掺杂剂,生长压力为40mbar,生长10μm厚的外延层;
6)降温。
实施例2
一种N+NNP型低缺陷厚度碳化硅外延片制备方法,包括以下步骤:
1)加热升温:于真空的反应腔体1中充入氢气3至40000帕,升温至1400℃;
2)在线刻蚀衬底:准备材料为4H-SiC的衬底,抽真空,通入流量为40L/min的氢气3和5L/min的氯化氢7,反应室内压力为40mbar,温度为1680℃,维持5min;
3)N+型缓冲层的生长:停止通入氯化氢7,降温至1650℃,通入流量为6mL/min的硅烷6和3mL/min的乙烯5,以流量为1500mL/min的氮气4为掺杂剂,生长压力为40mbar,生长0.4μm厚的缓冲层;
4)N型薄膜外延层的生长:通入流量为6mL/min的硅烷6和3mL/min的乙烯5,以流量为1500mL/min的氮气4为掺杂剂,生长压力为40mbar,生长10μm厚的外延层;
5)N型厚膜外延层的生长:将40L/min流量的氢气3、10mL/min的TCS8和5mL/min的乙烯5通入反应室,保持温度为1650℃、压力40mbar,以800mL/min流量的氮气4为掺杂剂,生长100μm厚的外延层;
6)P型薄膜外延层的生长:通入流量为6mL/min的硅烷6和3mL/min的乙烯5,以流量为1500mL/min的TMA9为掺杂剂,生长压力为40mbar,生长10μm厚的外延层;
7)降温。
实施例3
一种N+N型低缺陷厚度碳化硅外延片制备方法,包括以下步骤:
1)加热升温:于真空的反应腔体1中充入氢气3至40000帕,升温至1000℃;
2)在线刻蚀衬底:准备材料为4H-SiC的衬底,抽真空,通入流量为40L/min的氢气3和5L/min的氯化氢7,反应室内压力为40mbar,温度为1680℃,维持10min;
3)N+型缓冲层的生长:停止通入氯化氢7,降温至1650℃,通入流量为6mL/min的硅烷6和3mL/min的乙烯5,以流量为1500mL/min的氮气4为掺杂剂,生长压力为40mbar,生长0.4μm厚的缓冲层;
4)N型厚膜外延层的生长:将40L/min流量的氢气3、10mL/min的TCS8和5mL/min的乙烯5通入反应室,保持温度为1650℃、压力40mbar,以800mL/min流量的氮气4为掺杂剂,生长150μm厚的外延层;
5)降温。
实施例4
一种N+P+PP+P++型低缺陷厚度碳化硅外延片制备方法,包括以下步骤:
1)加热升温:于真空的反应腔体1中充入氢气3至40000帕,升温至1600℃;
2)在线刻蚀衬底:准备材料为4H-SiC的衬底,抽真空,通入流量为40L/min的氢气3和5L/min的氯化氢7,反应室内压力为40mbar,温度为1680℃,维持3min;
3)N+型缓冲层的生长:停止通入氯化氢7,降温至1650℃,通入流量为6mL/min的硅烷6和3mL/min的乙烯5,以流量为1500mL/min的氮气4为掺杂剂,生长压力为40mbar,生长5μm厚的缓冲层;
4)P+型薄膜外延层的生长:通入流量为6mL/min的硅烷6和3mL/min的乙烯5,以流量为1500mL/min的TMA9为掺杂剂,生长压力为40mbar,生长1μm厚的外延层;
5)P型厚膜外延层的生长:将40L/min流量的氢气3、10mL/min的TCS8和5mL/min的乙烯5通入反应室,保持温度为1650℃、压力40mbar,以800mL/min流量的TMA9为掺杂剂,生长180μm厚的外延层;
6)P+型薄膜外延层的生长:通入流量为6mL/min的硅烷6和3mL/min的乙烯5,以流量为1500mL/min的TMA9为掺杂剂,生长压力为40mbar,生长10μm厚的外延层;
7)P++型薄膜外延层的生长:通入流量为6mL/min的硅烷6和3mL/min的乙烯5,以流量为1700mL/min的TMA9为掺杂剂,生长压力为40mbar,生长0.5μm厚的外延层;
8)降温。
缺陷测试
用Cadela CS20缺陷分析仪对本发明实施例4制备的10μm厚的碳化硅外延材料的表面缺陷进行测试,如图2所示,测试得表面缺陷密度达0.16/cm2
表面粗糙度测试
用原子力显微镜对本发明实施例4制备的的碳化硅材料的表面形貌及粗糙度进行测试,如图3所示,测试得表面粗糙度均方根为0.15nm。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均在本发明待批权利要求保护范围之内。

Claims (10)

1.一种碳化硅外延生长系统,包括反应腔体(1)及与其连接的尾气处理系统,其特征在于,与所述反应腔体(1)连接的源气控制供应系统包括慢速生长单元、快速生长单元、N型掺杂单元、P型掺杂单元、单层外延生长单元、多层外延生长单元、薄膜外延层生长单元、厚膜外延层生长单元和选择性刻蚀单元。
2.如权利要求1所述的碳化硅外延生长系统,其特征在于,所述反应腔体(1)与并联后的氢气(3)罐、氮气(4)罐、乙烯(5)罐、硅烷(6)罐、氯化氢(7)罐、TCS(8)罐和TMA(9)罐连接,其中的TCS(8)罐和TMA(9)罐通过并联管线与氢气(3)罐连接。
3.如权利要求1所述的碳化硅外延生长系统,其特征在于,所述慢速生长单元设有与反应腔体(1)连接的氢气(3)罐、硅烷(6)罐和乙烯(5)罐。
4.如权利要求1所述的碳化硅外延生长系统,其特征在于,所述快速生长单元设有与反应腔体(1)连接的氢气(3)罐、硅烷(6)罐、氯化氢(7)罐和乙烯(5)罐,或者该快速生长单元设有与反应腔体(1)连接的氢气(3)罐、TCS(8)罐和乙烯(5)罐。
5.如权利要求1所述的碳化硅外延生长系统,其特征在于,所述N型和P型掺杂单元分别采用氮气(4)、TMA(9)作掺杂剂。
6.如权利要求1所述的碳化硅外延生长系统,其特征在于,所述单层外延生长单元的单层为P型或N型的一层外延层;所述多层外延生长单元的多层为P型、N型多层外延层中的一种或多种。
7.如权利要求1所述的碳化硅外延生长系统,其特征在于,所述薄膜和厚膜外延层生长单元制备的外延层厚度分别为0~50um、50um以上。
8.如权利要求1所述的碳化硅外延生长系统,其特征在于,所述选择性刻蚀单元设有与反应腔体(1)连接的氯化氢(7)罐。
9.一种碳化硅外延片的生长方法,其特征在于,所述方法包括下述步骤:
a.加热升温:于真空反应腔中充入氢气(3)至2000~50000帕,升温至900℃~1600℃;
b.原位蚀刻:通入氯化氢(7)对碳化硅衬底进行原位蚀刻3~20min后用氢气(3)吹拂3~15min;
c.缓冲层生长:加热至1600~1700℃后,采用慢速生长模式生长0.2~3min;
d.厚膜沉积生长:加热至1600~1700℃后,采用快速生长模式生长20~120min;
e.薄膜沉积生长:采用慢速生长模式生长0.5~5min;
f.降温。
10.如权利要求8所述的生长方法,其特征在于,所述步骤c中缓冲层生长、步骤d中厚膜沉积生长和步骤e中薄膜沉积生长的掺杂类型为P型或N型;所述步骤d和步骤e的生长次数为0~10次。
CN201610262594.2A 2016-04-25 2016-04-25 一种碳化硅外延生长系统及其生长方法 Pending CN105869996A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610262594.2A CN105869996A (zh) 2016-04-25 2016-04-25 一种碳化硅外延生长系统及其生长方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610262594.2A CN105869996A (zh) 2016-04-25 2016-04-25 一种碳化硅外延生长系统及其生长方法

Publications (1)

Publication Number Publication Date
CN105869996A true CN105869996A (zh) 2016-08-17

Family

ID=56629099

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610262594.2A Pending CN105869996A (zh) 2016-04-25 2016-04-25 一种碳化硅外延生长系统及其生长方法

Country Status (1)

Country Link
CN (1) CN105869996A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109285909A (zh) * 2018-09-29 2019-01-29 扬州乾照光电有限公司 一种多结太阳能电池及其制作方法
CN112885709A (zh) * 2021-01-13 2021-06-01 中电化合物半导体有限公司 一种碳化硅外延结构的制备方法及半导体设备
CN114892147A (zh) * 2022-07-13 2022-08-12 芯三代半导体科技(苏州)有限公司 一种碳化硅沉积设备的石墨部件的修复方法
CN115029773A (zh) * 2022-05-23 2022-09-09 中环领先半导体材料有限公司 一种厚外延颗粒改善的工艺
CN117637444A (zh) * 2024-01-25 2024-03-01 希科半导体科技(苏州)有限公司 外延生长方法
CN117637444B (zh) * 2024-01-25 2024-06-07 希科半导体科技(苏州)有限公司 外延生长方法

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5463978A (en) * 1993-01-25 1995-11-07 Ohio Aerospace Institute Compound semiconductor and controlled doping thereof
US6015459A (en) * 1998-06-26 2000-01-18 Extreme Devices, Inc. Method for doping semiconductor materials
JP2001077027A (ja) * 1999-09-06 2001-03-23 Matsushita Electric Ind Co Ltd ドープ層を有する半導体薄膜の成長方法
CN101150055A (zh) * 2006-09-18 2008-03-26 中国科学院半导体研究所 用于MEMS器件的大面积3C-SiC薄膜的制备方法
JP2009256138A (ja) * 2008-04-17 2009-11-05 Nippon Steel Corp エピタキシャル炭化珪素単結晶基板及びその製造方法
JP2011023502A (ja) * 2009-07-15 2011-02-03 Panasonic Corp 炭化珪素半導体素子及びその製造方法並びに炭化珪素エピタキシャル基板の製造方法
CN102646578A (zh) * 2012-05-09 2012-08-22 中国电子科技集团公司第五十五研究所 提高碳化硅多层结构外延材料批次间掺杂均匀性的方法
JP2013018659A (ja) * 2011-07-07 2013-01-31 Mitsubishi Electric Corp エピタキシャルウエハ及び半導体素子
JP2013170104A (ja) * 2012-02-21 2013-09-02 Nippon Steel & Sumitomo Metal Corp エピタキシャル炭化珪素ウエハの製造方法
CN103343329A (zh) * 2013-07-25 2013-10-09 中国科学院半导体研究所 一种碳化硅薄膜生长设备及其生长方法
CN103715069A (zh) * 2013-12-02 2014-04-09 中国电子科技集团公司第五十五研究所 一种减少碳化硅外延薄膜中缺陷的方法
JP2014103188A (ja) * 2012-11-19 2014-06-05 Nippon Steel & Sumitomo Metal エピタキシャル炭化珪素ウエハの製造方法
CN104867818A (zh) * 2015-04-02 2015-08-26 中国电子科技集团公司第十三研究所 一种减少碳化硅外延材料缺陷的方法
CN104934318A (zh) * 2015-06-08 2015-09-23 国网智能电网研究院 一种n型低缺陷碳化硅外延片的制备方法
CN104993030A (zh) * 2015-06-08 2015-10-21 国网智能电网研究院 一种p型低缺陷碳化硅外延片的制备方法
CN205845906U (zh) * 2016-04-25 2016-12-28 全球能源互联网研究院 一种碳化硅外延生长系统

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5463978A (en) * 1993-01-25 1995-11-07 Ohio Aerospace Institute Compound semiconductor and controlled doping thereof
US6015459A (en) * 1998-06-26 2000-01-18 Extreme Devices, Inc. Method for doping semiconductor materials
JP2001077027A (ja) * 1999-09-06 2001-03-23 Matsushita Electric Ind Co Ltd ドープ層を有する半導体薄膜の成長方法
CN101150055A (zh) * 2006-09-18 2008-03-26 中国科学院半导体研究所 用于MEMS器件的大面积3C-SiC薄膜的制备方法
JP2009256138A (ja) * 2008-04-17 2009-11-05 Nippon Steel Corp エピタキシャル炭化珪素単結晶基板及びその製造方法
JP2011023502A (ja) * 2009-07-15 2011-02-03 Panasonic Corp 炭化珪素半導体素子及びその製造方法並びに炭化珪素エピタキシャル基板の製造方法
JP2013018659A (ja) * 2011-07-07 2013-01-31 Mitsubishi Electric Corp エピタキシャルウエハ及び半導体素子
JP2013170104A (ja) * 2012-02-21 2013-09-02 Nippon Steel & Sumitomo Metal Corp エピタキシャル炭化珪素ウエハの製造方法
CN102646578A (zh) * 2012-05-09 2012-08-22 中国电子科技集团公司第五十五研究所 提高碳化硅多层结构外延材料批次间掺杂均匀性的方法
JP2014103188A (ja) * 2012-11-19 2014-06-05 Nippon Steel & Sumitomo Metal エピタキシャル炭化珪素ウエハの製造方法
CN103343329A (zh) * 2013-07-25 2013-10-09 中国科学院半导体研究所 一种碳化硅薄膜生长设备及其生长方法
CN103715069A (zh) * 2013-12-02 2014-04-09 中国电子科技集团公司第五十五研究所 一种减少碳化硅外延薄膜中缺陷的方法
CN104867818A (zh) * 2015-04-02 2015-08-26 中国电子科技集团公司第十三研究所 一种减少碳化硅外延材料缺陷的方法
CN104934318A (zh) * 2015-06-08 2015-09-23 国网智能电网研究院 一种n型低缺陷碳化硅外延片的制备方法
CN104993030A (zh) * 2015-06-08 2015-10-21 国网智能电网研究院 一种p型低缺陷碳化硅外延片的制备方法
CN205845906U (zh) * 2016-04-25 2016-12-28 全球能源互联网研究院 一种碳化硅外延生长系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
李家业 赵永梅 刘兴昉 孙国胜 王雷 赵万顺 罗木昌 曾一平 李晋闽: "硅(Si)衬底上碳化硅(SiC)薄膜的快速生长", 中国电子学会, pages: 547 - 550 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109285909A (zh) * 2018-09-29 2019-01-29 扬州乾照光电有限公司 一种多结太阳能电池及其制作方法
CN112885709A (zh) * 2021-01-13 2021-06-01 中电化合物半导体有限公司 一种碳化硅外延结构的制备方法及半导体设备
CN112885709B (zh) * 2021-01-13 2024-03-22 中电化合物半导体有限公司 一种碳化硅外延结构的制备方法及半导体设备
CN115029773A (zh) * 2022-05-23 2022-09-09 中环领先半导体材料有限公司 一种厚外延颗粒改善的工艺
CN114892147A (zh) * 2022-07-13 2022-08-12 芯三代半导体科技(苏州)有限公司 一种碳化硅沉积设备的石墨部件的修复方法
CN114892147B (zh) * 2022-07-13 2022-10-25 芯三代半导体科技(苏州)有限公司 一种碳化硅沉积设备的石墨部件的修复方法
CN117637444A (zh) * 2024-01-25 2024-03-01 希科半导体科技(苏州)有限公司 外延生长方法
CN117637444B (zh) * 2024-01-25 2024-06-07 希科半导体科技(苏州)有限公司 外延生长方法

Similar Documents

Publication Publication Date Title
CN105869996A (zh) 一种碳化硅外延生长系统及其生长方法
CN104934318B (zh) 一种n型低缺陷碳化硅外延片的制备方法
CN103370454B (zh) 外延碳化硅单晶基板及其制造方法
CN102373506B (zh) 在SiC衬底上外延生长石墨烯的方法以及石墨烯和石墨烯器件
CN103715069B (zh) 一种减少碳化硅外延薄膜中缺陷的方法
CN104078331B (zh) 单晶4H‑SiC衬底及其制造方法
CN103199008A (zh) 零偏4H-SiC衬底上的同质外延方法
CN106711022A (zh) 一种生长掺杂界面清晰的碳化硅外延薄膜的制备方法
CN105714380A (zh) 一种碳化硅外延生长装置及方法
TWI721107B (zh) 化合物半導體基板、膠片膜及化合物半導體基板之製造方法
CN107958839B (zh) 晶圆键合方法及其键合装置
JP2015044727A (ja) SiCエピタキシャルウエハの製造方法
CN104851781A (zh) 一种n型低偏角碳化硅外延片的制备方法
CN108493304B (zh) 一种发光二极管外延片的制备方法
CN107316805A (zh) 碳化硅外延晶片的制造方法、碳化硅半导体装置的制造方法及碳化硅外延晶片的制造装置
CN205845906U (zh) 一种碳化硅外延生长系统
TWI474966B (zh) 外延構造體的製備方法
CN104465721B (zh) 一种碳化硅外延材料及其制备方法
JP2014027028A (ja) SiCエピタキシャル基板製造装置、SiCエピタキシャル基板の製造方法、SiCエピタキシャル基板
CN104993030A (zh) 一种p型低缺陷碳化硅外延片的制备方法
CN103757693B (zh) 一种GaN纳米线的生长方法
KR102565964B1 (ko) 에피택셜 웨이퍼 및 그 제조 방법
CN107611014A (zh) 一种GaN热电薄膜材料的制备方法
CN108695142B (zh) 一种调控Graphene/SiC纳米异质结生长的方法
JP6927429B2 (ja) SiCエピタキシャル基板の製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination