CN105734527B - 一种用于活塞环表面的类金刚石镀层、活塞环及制备工艺 - Google Patents

一种用于活塞环表面的类金刚石镀层、活塞环及制备工艺 Download PDF

Info

Publication number
CN105734527B
CN105734527B CN201610131810.XA CN201610131810A CN105734527B CN 105734527 B CN105734527 B CN 105734527B CN 201610131810 A CN201610131810 A CN 201610131810A CN 105734527 B CN105734527 B CN 105734527B
Authority
CN
China
Prior art keywords
coating
diamond
layers
preparation process
piston ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610131810.XA
Other languages
English (en)
Other versions
CN105734527A (zh
Inventor
吴映雪
刘千喜
周月亭
张波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asimco Shuanghuan Piston Ring Yizheng Co Ltd
Original Assignee
Asimco Shuanghuan Piston Ring Yizheng Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asimco Shuanghuan Piston Ring Yizheng Co Ltd filed Critical Asimco Shuanghuan Piston Ring Yizheng Co Ltd
Priority to CN201610131810.XA priority Critical patent/CN105734527B/zh
Publication of CN105734527A publication Critical patent/CN105734527A/zh
Priority to JP2016170155A priority patent/JP6333902B2/ja
Priority to US15/296,310 priority patent/US11215283B2/en
Priority to EP16195507.5A priority patent/EP3216893B1/en
Priority to ES16195507T priority patent/ES2861388T3/es
Application granted granted Critical
Publication of CN105734527B publication Critical patent/CN105734527B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J9/00Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction
    • F16J9/26Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction characterised by the use of particular materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0605Carbon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0227Pretreatment of the material to be coated by cleaning or etching
    • C23C16/0245Pretreatment of the material to be coated by cleaning or etching by etching with a plasma
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • C23C16/029Graded interfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/278Diamond only doping or introduction of a secondary phase in the diamond
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45517Confinement of gases to vicinity of substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/513Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using plasma jets
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/515Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using pulsed discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/341Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one carbide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/343Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one DLC or an amorphous carbon based layer, the layer being doped or not
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/36Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including layers graded in composition or physical properties

Abstract

本发明涉及一种用于活塞环表面的类金刚石镀层,所述类金刚石镀层从下至上依次为打底层、梯度层和调幅层,所述调幅层为掺杂有掺杂元素的类金刚石镀层,所述掺杂元素为Cr、Si、Ti中的一种或两种以上,所述掺杂元素在调幅层中的含量随着调幅层的厚度呈正弦波波动形式周期性变化。与传统的单层结构或梯度层结构相比,因本类金刚石镀层的调幅层中的掺杂元素的含量随着调幅层的厚度呈正弦波波动形式周期性变化,使得本类金刚石镀层的调幅层具有多层循环调变结构;其在具有高耐磨、低摩擦系数的基础上,有利于镀层内应力的降低,提高镀层韧性,并且确保类金刚石镀层厚度的提高,同时提高类金刚石镀层活塞环的耐久性能。

Description

一种用于活塞环表面的类金刚石镀层、活塞环及制备工艺
技术领域
本发明涉及活塞环表面处理技术领域,具体涉及一种用于活塞环表面的类金刚石镀层、活塞环及制备工艺。
背景技术
活塞环作为内燃机的关键部件之一,其磨损对发动机整体燃油消耗有着非常重要的影响。目前,车用发动机(尤其是柴油机)正在向高机械负荷、高输出功率(高热负荷)、低燃料消耗及低废气排放等方向发展。活塞环因此厚度变薄、重量变轻,这就要求活塞环具有很高的强度(热疲劳强度),耐磨、耐拉缸性能,以及对缸套不会造成太大磨耗的滑动特性。
为了提高活塞系统的效率和寿命,高硬度耐磨涂层逐渐被广泛采用,然而硬质涂层虽可大幅提高缸套与活塞环摩擦副的耐磨寿命,却仍然对其相对运动时的摩擦系数的影响不大。
目前有效的解决方法之一是沉积兼具低摩擦与低磨损特性的非晶碳涂层,例如DLC(类金刚石碳)镀层,又称为类金刚石镀层。
类金刚石镀层以其高硬度、超低摩擦系数、高抗磨性和耐腐蚀性等特点,在机械、电子、生物医学等领域显示出广阔的应用前景。但是,迄今国内公知的类金刚石镀层都具有较小的厚度,一般小于5μm,最大不超过10μm。这些较薄的类金刚石镀层虽然表现出了优异的低摩擦性能,但不足的耐久性能使这些类金刚石镀层尚不能满足发动机在重载高压条件下对活塞环表面长久的功能实现。
目前限制类金刚石镀层的应用推广的瓶颈主要在于:现有方法制备的类金刚石镀层具有较高的内应力,镀层厚度越大,应力表现也越大。当超过10μm时,镀层本身所具有的高内应力使得镀层很容易发生剥落,制约镀层制备得到更大的厚度。为此,为了进一步扩展类金刚石作为功能防护镀层的应用范围,亟需发展一种超厚类金刚石镀层的沉积技术。
发明内容
本发明的目的之一是提供一种用于活塞环表面的类金刚石镀层,其内应力低,厚度大。
本发明的目的之二是提供一种活塞环,其表面具有内应力低、厚度大的类金刚石镀层。
本发明的目的之三是提供一种用于活塞环表面的类金刚石镀层的制备工艺,其操作简单,适于工业化生产,且制备的类金刚石镀层内应力低、厚度大。
本发明所述的用于活塞环表面的类金刚石镀层,所述类金刚石镀层从下至上依次为打底层、梯度层和调幅层,所述调幅层为掺杂有掺杂元素的类金刚石镀层,所述掺杂元素为Cr、Si、Ti中的一种或两种以上,所述掺杂元素在调幅层中的含量随着调幅层的厚度呈正弦波波动形式周期性变化。
其中,所述正弦波波谷对应的掺杂元素在调幅层中的含量为3.0~5.0at%,所述正弦波波峰对应的掺杂元素在调幅层中的含量为9.0~11.0at%;
优选的,所述正弦波波谷对应的掺杂元素在调幅层中的含量为4.0at%(原子数百分含量),所述正弦波波峰对应的掺杂元素在调幅层中的含量为10.0at%;
优选的,所述正弦波的波动周期为20~50,比如25~45、30~40或35;
优选的,所述正弦波每一波动周期对应的调幅层的厚度为0.5~0.8μm;
优选的,所述调幅层具有亚微晶的晶状分布;
优选的,所述亚微晶的粒径为0.2~0.5μm;
优选的,所述打底层为Cr层、Si层、Ti层中的一种或两种以上,即打底层可为单一层,也可为复合层;
优选的,所述梯度层为CrxC层、SixC层、TixC层中的一种或两种以上,其中x=0.5~1.5;
优选的,所述类金刚石镀层的厚度为10~30μm,比如13~26μm、15~25μm或20μm;
优选的,所述打底层的厚度为0.2~1μm,例如具体可以为0.3μm、0.4μm、0.5μm、0.6μm、0.7μm、0.8μm或0.9μm;
优选的,所述梯度层的厚度为0.5~2μm,例如具体可以为0.6μm、0.7μm、0.8μm、0.9μm、1.0μm、1.1μm、1.2μm、1.3μm、1.4μm、1.5μm、1.6μm、1.7μm、1.8μm或1.9μm;
优选的,所调幅层的厚度为9.3~27μm,比如10~25μm、15~20μm。
本发明所述的活塞环,其表面具有上述的类金刚石镀层。
本发明所述的用于活塞环表面的类金刚石镀层的制备工艺,其在PECVD设备中进行,将待镀活塞环置于半封闭装置内,所述半封闭装置置于PECVD设备的真空腔内,包括如下步骤:
(1)在所述待镀活塞环表面形成打底层;
(2)在所述打底层上形成梯度层;
(3)开启直流脉冲电源,在半封闭装置和待镀活塞环上分别施加负偏压,通入Ar、硅源、有或没有C2H2,所述硅源的流量呈正弦波波动形式周期性变化,最终在梯度层上形成调幅层。
其中,步骤(3)中,所述硅源的流量的正弦波波谷对应的硅源流量为20~50sccm(标准毫升/分),所述硅源的流量的正弦波波峰对应的硅源流量为90~160sccm;其中,所述硅源的流量的正弦波波谷对应的硅源流量具体可以为21sccm、25sccm、30sccm、34sccm、35sccm、40sccm、42sccm、45sccm或48sccm;所述硅源的流量的正弦波波峰对应的硅源流量具体可以为95sccm、100sccm、105sccm、110sccm、115sccm、120sccm、125sccm、130sccm、135sccm、140sccm、145sccm、150sccm或155sccm;
优选的,所述硅源的流量的正弦波的波动周期为20~50,比如25~45、30~40或35;
优选的,所述硅源的流量的正弦波每一波动周期历经5~30min,比如8~26min、10~25min、13~22min、15~20min或18min;
优选的,所述硅源为SiH4和/或TMS(四甲基硅烷)。
本发明所述的用于活塞环表面的类金刚石镀层的制备工艺,其在PECVD设备中进行,将待镀活塞环置于半封闭装置内,所述半封闭装置置于PECVD设备的真空腔内,包括如下步骤:
(1)在所述待镀活塞环表面形成打底层;
(2)在所述打底层上形成梯度层;
(3)开启直流脉冲电源,在半封闭装置和待镀活塞环上分别施加负偏压,通入Ar和C2H2,开启Cr靶或Ti靶,控制Cr靶或Ti靶的阴极电流呈正弦波波动形式周期性变化,最终在梯度层上形成调幅层。
其中,步骤(3)中,所述阴极电流的正弦波波谷对应的阴极电流为50~60A,所述阴极电流的正弦波波峰对应的阴极电流为100~125A;所述阴极电流的正弦波波谷对应的阴极电流具体可以为51A、52A、53A、54A、55A、56A、57A、58A或59A;所述阴极电流的正弦波波峰对应的阴极电流具体可以为101A、102A、103A、104A、105A、106A、107A、108A、109A、110A、111A、112A、113A、114A、115A、116A、117A、118A、119A、120A、121A、122A、123A或124A;
优选的,所述阴极电流的正弦波的波动周期为20~50,比如25~45、30~40或35;
优选的,所述阴极电流的正弦波每一波动周期历经5~30min,比如8~26min、10~25min、13~22min、15~20min或18min。
其中,步骤(1)中,所述打底层为Cr层、Ti层、Si层中的一种或两种以上;
优选的,所述Cr层或Ti层分别通过利用辅助阴极溅射Cr或Ti而制得;
优选的,所述Cr层或Ti层的制备过程为:通入流量为350~650sccm的Ar,开启Cr靶或Ti靶,控制Cr靶或Ti靶的阴极电流为110~135A,利用辅助阴极溅射在待镀活塞环表面沉积Cr层或Ti层;
Ar的流量具体可以为380sccm、400sccm、420sccm、450sccm、460sccm、500sccm、420sccm、550sccm、570sccm、600sccm、620sccm或630sccm;阴极电流具体可以为115A、120A、122A、125A、128A、130A或132A;
优选的,所述Si层通过利用SiH4分解产生的离子态而制得;
优选的,所述Si层的制备过程为:通入流量为150~200sccm的Ar和流量为50~70sccm的SiH4,利用高能等离子体放电在待镀活塞环表面形成Si层,反应时间为25~75min。
Ar的流量具体可以为152sccm、155sccm、160sccm、163sccm、165sccm、170sccm、175sccm、183sccm、185sccm、190sccm、195sccm或198sccm;SiH4的流量具体可以为51sccm、52sccm、53sccm、54sccm、55sccm、56sccm、57sccm、58sccm、59sccm、60sccm、61sccm、62sccm、63sccm、64sccm、65sccm、66sccm、67sccm、68sccm或69sccm;
其中,步骤(2)中,所述梯度层为CrxC层、TixC层、SixC层中的一种或两种以上,其中x=0.5~1.5;
优选的,所述CrxC层或TixC层通过利用辅助阴极溅射Cr靶或Ti靶和工艺反应气体C2H2、Ar而制得;
优选的,所述Cr靶或Ti靶的阴极电流为100~125A;阴极电流具体可以为105A、106A、110A、112A、115A、120A或123A;
优选的,制备CrxC层或TixC层时,C2H2的流量为70~100sccm;C2H2的流量具体可以为73sccm、75sccm、78sccm、80sccm、82sccm、85sccm、87sccm、90sccm、93sccm、95sccm或97sccm。
优选的,制备CrxC层或TixC层时,Ar的流量为150~200sccm,Ar的流量具体可以为152sccm、155sccm、160sccm、163sccm、165sccm、170sccm、175sccm、183sccm、185sccm、190sccm、195sccm或198sccm;
优选的,所述SixC层通过采用SiH4与C2H2、Ar的混合等离子体放电而制得;
优选的,控制SiH4的流量由0逐渐增大至60sccm;
优选的,制备SixC层时,C2H2的流量为80~120sccm;C2H2的流量具体可以为83sccm、85sccm、88sccm、90sccm、92sccm、95sccm、97sccm、100sccm、103sccm、105sccm、108sccm、110sccm、112sccm、115sccm或117sccm。
优选的,制备SixC层时,Ar的流量为150~200sccm,Ar的流量具体可以为152sccm、155sccm、160sccm、163sccm、165sccm、170sccm、175sccm、183sccm、185sccm、190sccm、195sccm或198sccm。
其中,步骤(3)中,在半封闭装置上施加的负偏压为-1200~-1800V,在所述待镀活塞环上施加的负偏压与在半封闭装置上施加的负偏压间的差值为-200~500V,即在待镀活塞环上施加的负偏压为第二负偏压,在半封闭装置上施加的负偏压为第一负偏压,第二负偏压-第一负偏压=-200~500V;
优选的,步骤(3)中,Ar的流量为150~200sccm,C2H2的流量为80~120sccm;Ar的流量具体可以为152sccm、155sccm、160sccm、163sccm、165sccm、170sccm、175sccm、183sccm、185sccm、190sccm、195sccm或198sccm;C2H2的流量具体可以为83sccm、85sccm、88sccm、90sccm、92sccm、95sccm、97sccm、100sccm、103sccm、105sccm、108sccm、110sccm、112sccm、115sccm或117sccm。
优选的,在步骤(1)之前还包括步骤(1a),将待镀活塞环表面进行清洁处理;
优选的,对待镀活塞环表面进行清洁处理的操作为:通入99.99%纯度的Ar,Ar的流量为50~100sccm,在所述半封闭装置施加负偏压-800~-2000V,在待镀活塞环施加的负偏压与在半封闭装置施加的负偏压间的差值为-100~-200V,即在待镀活塞环上施加的负偏压为第二负偏压,在半封闭装置上施加的负偏压为第一负偏压,第二负偏压-第一负偏压=-100~-200V;Ar离子轰击清洗待镀活塞环表面15~40min,制得清洗干净的待镀活塞环。
本发明所述的半封闭装置从其表面意思出发,即为不完全封闭的反应装置,反应时,其具体置于真空腔内,反应性气体可通过半封闭装置具有的缺口进入其中,从而使得置于半封闭装置内的活塞环置于反应性气体的环境内。半封闭装置可以为筒状,也可以为框式,只要满足半封闭即可。
本发明之所以采用半封闭装置,有利于工艺反应气体放电集中在待镀活塞环周围,进而大大提高镀层的沉积速率。
另外,在镀层时,因在半封闭装置和活塞环上分别施加了负偏压,等于在活塞环上施加了额外负偏压,可进一步使等离子体快速堆积到待镀活塞环表面,以形成致密的镀层结构。
与现有技术相比,本发明的优点在于:与传统的单层结构或梯度层结构相比,因本类金刚石镀层的调幅层中的掺杂元素的含量随着调幅层的厚度呈正弦波波动形式周期性变化,使得本类金刚石镀层的调幅层具有多层循环调变结构;其有利于镀层内应力的降低,提高镀层韧性,并且确保类金刚石镀层厚度的提高。
另外,与传统的恒定量Si含量掺杂类金刚石薄膜不同,本类金刚石镀层的调幅层采用了多层循环掺杂含量的变化,掺杂含量采用了正弦波波形循环变化,进而避免了镀层成分突变造成的影响,且每一层内可形成亚微晶的晶状分布,提高了镀层内部裂纹扩展阻力,减小镀层中缺陷尺寸(粗大柱状晶、大颗粒等),有效提高镀层硬度。
此外,虽然本发明所述的类金刚石镀层的厚度增加,但是同时保证了类金刚石镀层具有较低的摩擦系数,经测试,本发明所述的类金刚石镀层的摩擦系数不超过0.12。因此,本类金刚石镀层在具有高耐磨、低摩擦系数的基础上,有利于镀层内应力的降低,提高镀层韧性,并且确保类金刚石镀层厚度的提高,同时提高类金刚石镀层活塞环的耐久性能。
本发明工艺简单,涂层厚度可控性好,可在各类试样基底上大面积超高速沉积超厚类金刚石涂层,适于规模化生产。
附图说明
图1为实施例1类金刚石镀层的结构示意图;
图2为实施例1调幅层中掺杂元素含量变化示意图;
图3为实施例1制备调幅层时SiH4流量呈正弦波波动变化示意图;
图4为实施例1制备类金刚石镀层所需设备结构示意图;
图5为实施例1制备的类金刚石镀层的微观扫描电镜图;
图6为实施例1制备的类金刚石镀层在干摩擦条件下的摩擦系数曲线。
具体实施方式
以下结合附图实施例对本发明作进一步详细描述。
实施例1
本实施例用于活塞环表面的类金刚石镀层,如图1所示,其由下至上依次为打底层3——Si层、梯度层2——SiC层和调幅层1——Si-DLC,即掺杂有Si的DLC层(类金刚石镀层)。Si层厚度为1μm,SiC层厚度为2μm,Si-DLC总厚度为27μm,类金刚石镀层总厚度为30μm。本实施例类金刚石镀层在干摩擦条件下的摩擦系数为0.11,如图6所示。
Si元素在调幅层1中的含量随着调幅层1的厚度呈正弦波波动形式周期性变化如图2所示,图2中的1a对应图1中的打底层3,2a对应图1中的梯度层2,3a对应图1中的调幅层1,4a为正弦波的一个变化周期。调幅层1中共有45个循环周期,即正弦波的波动周期为45,每个波动周期对应的调幅层1的厚度为0.6μm。正弦波波谷对应的Si在调幅层1中的含量为4.0at%,正弦波波峰对应的Si在调幅层1中的含量为10.0at%。
本实施例在制备类金刚石镀层时,采用的设备为PECVD设备,具体将待镀活塞环7置于半封闭装置6内,半封闭装置6置于PECVD设备的真空腔5内,具体装置见图4。本反应装置具体通过真空泵8向外抽气,工艺反应气体从进气口9进入真空腔5,然后再进入半封闭装置6。类金刚石镀层制备方法,包含以下步骤:
(1a)清洗待镀活塞环7:通入流量为50sccm的99.99%纯度的Ar,向半封闭装置6施加第一负偏压-1000V(即为图4中的-V),向活塞环7额外施加第二负偏压,第二负偏压与第一负偏压间的差值为-200V(即为图4中的△V,△V=第二负偏压-第一负偏压)的情况下,Ar离子轰击清洗活塞环7表面30min,制得清洗干净的待镀活塞环7;
(1)制备打底层3:通入Ar和SiH4,Ar流量为180sccm,SiH4为流量60sccm,利用高能等离子体放电形成打底层3——Si层,反应时间为50min,制得打底层3;
(2)制备梯度层2:采用SiH4与C2H2、Ar混合等离子体放电形成梯度层2——SiC层,其中SiH4流量由0逐渐增大到60sccm,C2H2流量为100sccm,Ar流量为180sccm,制得梯度层2;
(3)制备调幅层1:开启直流脉冲电源,利用半封闭装置6内的等离子体放电反应最终在活塞环7表面沉积出具有多层循环调变结构掺杂Si的类金刚石镀层,其中,循环调变采用渐变式的正弦波波形结构,以减少镀层结构突变。本步骤的具体操作为:在半封闭装置6上施加第一负偏压-1200V(即为图4中的-V),在待镀活塞环7上施加第二负偏压,第二负偏压与第一负偏压间的差值为-200V(即为图4中的△V,△V=第二负偏压-第一负偏压),通入Ar、C2H2、SiH4的混合气体,其中Ar流量为180sccm,C2H2流量100sccm,如图3所示SiH4流量呈正弦波波动形式周期性变化,正弦波波谷对应的硅源流量为20sccm,正弦波波峰对应的硅源流量为90sccm,正弦波的每一波动周期历经25min,共循环45周期。
本实施例制备的类金刚石镀层的微观扫描电镜图如图5所示,由图4可知,类金刚石镀层具有亚微晶的晶状形态。
实施例2
本实施例用于活塞环表面的类金刚石镀层,由下至上依次为打底层——Si层、梯度层——Si0.8C层和调幅层——Si-DLC。Si层厚度为0.6μm,Si0.8C层厚度为1.2μm,Si-DLC厚度为18μm,本实施例类金刚石镀层总厚度为19.8μm。本实施例类金刚石镀层在干摩擦条件下的摩擦系数为0.11。
Si元素在调幅层中的含量随着调幅层的厚度呈正弦波波动形式周期性变化。调幅层中共有45个循环周期,即正弦波的波动周期为45,每个波动周期对应的调幅层的厚度为0.4μm。正弦波波谷对应的Si在调幅层中的含量为4.0at%,正弦波波峰对应的Si在调幅层中的含量为10.0at%。
本实施例在制备类金刚石镀层时,采用的设备为PECVD设备,具体将待镀活塞环置于半封闭装置内,半封闭装置置于PECVD设备的真空腔内,具体装置如同实施例1。类金刚石镀层制备方法,包含以下步骤:
(1a)清洗待镀活塞环:具体操作如同实施例1的步骤(1a)。
(1)制备打底层:通入Ar和SiH4,Ar流量为180sccm,SiH4流量为60sccm,利用高能等离子体放电形成打底层——Si层,维持时间30min;
(2)制备梯度层:采用SiH4与C2H2、Ar混合等离子体放电形成梯度层——Si0.8C层,其中SiH4流量由0逐渐增大到60sccm,C2H2流量为120sccm,Ar流量为190sccm;
(3)制备调幅层:开启直流脉冲电源,利用半封闭装置内的等离子体放电反应最终在活塞环表面沉积出具有多层循环调变结构掺杂Si的类金刚石镀层,其中,循环调变采用渐变式的正弦波波形结构,以减少镀层结构突变。本步骤的具体操作为:在半封闭装置上施加第一负偏压-1200V,在待镀活塞环上施加第二负偏压,第二负偏压-第一负偏压=-200V,通入Ar与TMS的混合气体,其中Ar流量为180sccm,TMS流量呈正弦波波动形式周期性变化,正弦波波谷对应的硅源流量为40sccm,正弦波波峰对应的硅源流量为120sccm,正弦波的每一波动周期历经17min,共循环45周期。
实施例3
本实施例用于活塞环表面的类金刚石镀层,由下至上依次为打底层——Cr层、梯度层——CrC层和调幅层——Cr-DLC,即掺杂有Cr的DLC层(类金刚石镀层)。其中,打底层Cr层厚度为1μm,CrC层厚度为2μm,CrC-DLC调幅层总厚度为27μm,本实施类金刚石镀层总厚度为30μm。本实施例类金刚石镀层在干摩擦条件下的摩擦系数为0.09。
Cr元素在调幅层中的含量随着调幅层的厚度呈正弦波波动形式周期性变化。调幅层中共有50个循环周期,即正弦波的波动周期为50,每个波动周期对应的调幅层的厚度为0.54μm。正弦波波谷对应的Cr在调幅层中的含量为4.0at%,正弦波波峰对应的Cr在调幅层中的含量为10.0at%。
本实施例在制备类金刚石镀层时,采用的设备为PECVD设备,具体将待镀活塞环置于半封闭装置内,半封闭装置置于PECVD设备的真空腔内,具体装置如同实施例1。类金刚石镀层制备方法,包含以下步骤:
(1a)清洗待镀活塞环:具体操作如同实施例1的步骤(1a)。
(1)制备打底层:通入流量为350~650sccm的Ar,开启Cr靶,控制Cr靶的阴极电流为110A,利用辅助阴极溅射沉积打底层——Cr层;维持时间65min。
(2)制备梯度层:利用辅助阴极溅射Cr靶和工艺反应气体C2H2、Ar形成CrC梯度层,其中Cr靶的阴极电流为125A,C2H2流量为75sccm,Ar流量为180sccm。
(3)制备调幅层:开启直流脉冲电源,利用等离子体放电和磁控溅射的组合最终在活塞环表面沉积出具有多层循环调变结构掺杂Cr的类金刚石镀层,其中,循环调变采用渐变式的正弦波波形结构,以减少镀层结构突变。本步骤的具体操作为:在半封闭装置上施加第一负偏压-1200V,在待镀活塞环上施加第二负偏压,第二负偏压-第一负偏压=-200V,通入Ar、C2H2混合气体,其中Ar流量为160sccm,C2H2流量为100sccm,控制Cr靶阴极电流按正弦波波动形式周期性变化,阴极电流的变化趋势与图3所示的SiH4流量变化;正弦波波谷对应的阴极电流为60A,正弦波波峰对应的阴极电流为125A,正弦波的每一波动周期历经28min,共循环50周期。
实施例4
本实施例与实施例3不同之处在于:打底层为Ti层,类金刚石镀层的其他层组分及厚度如同实施例3。
另外,本实施例类金刚石镀层的制备工艺与实施例3不同之处在于:将步骤分(1)中的Cr靶替换为Ti层。
实施例5
本实施例与实施例3不同之处在于:梯度层为TiC层,类金刚石镀层的其他层组分及厚度如同实施例3。
另外,本实施例类金刚石镀层的制备工艺与实施例3不同之处在于:将步骤分(1)中的Cr靶替换为Ti层。
对比例
本实施例用于活塞环表面的类金刚石镀层,镀层由下至上依次为打底层——Si层、梯度层——SiC层和Si-DLC层,即掺杂Si的类金刚石镀层。打底层Si层厚度为0.8μm,SiC层厚度为2μm,Si-DLC厚度为1.6μm,本实施类金刚石镀层总厚度为4.4μm。本实施例类金刚石镀层在干摩擦条件下的摩擦系数为0.10。
本实施例Si-DLC层中,Si为恒量添加,其添加量为6at%。
本实施例在制备类金刚石镀层时,采用的设备为PECVD设备,本实施例与实施例1不同之处在于:直接将待镀活塞环置于真空腔内。类金刚石镀层制备方法,包含以下步骤:
(1a)清洗待镀活塞环:具体操作如同实施例1的步骤(1a)。
(1)制备打底层:通入Ar和SiH4,Ar流量为180sccm,SiH4流量为60sccm,利用高能等离子体放电形成Si打底层,维持时间45min。
(2)制备梯度层:采用SiH4与C2H2、Ar混合等离子体放电形成SiC梯度层,其中SiH4流量由0逐渐增大到60sccm,C2H2流量为100sccm,Ar流量为180sccm。
(3)制备Si-DLC层:开启直流脉冲电源,利用等离子体放电反应最终在活塞环表面沉积出掺杂Si的类金刚石镀层。其中,在待镀活塞环上施加偏压-1000V,通入Ar、C2H2、SiH4混合气体,其中Ar流量为180sccm,C2H2流量为100sccm,SiH4流量为60sccm,沉积时间为140min。
对比实施例1~3与对比例可知,实施例1~3的调幅层的厚度明显大于对比例,这是因为实施例1~3的调幅层中的掺杂元素的含量随着调幅层的厚度呈正弦波波动形式周期性变化,因避免了镀层成分突变造成的影响,使得每一周期对应的调幅层内形成亚微晶的晶状分布,进而减小了类金刚石镀层的内应力。
另外,对比实施例1~3与对比例的摩擦系数可知,虽然实施例1~3的厚度明显大于对比例,但是保证了类金刚石镀层具有较低的摩擦系数,即实施例1~3的厚度增加并不影响到类金刚石镀层的摩擦性能。
以上内容仅为本发明的较佳实施例,对于本领域的普通技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,本说明书内容不应理解为对本发明的限制。

Claims (39)

1.一种用于活塞环表面的类金刚石镀层,其特征在于:所述类金刚石镀层从下至上依次为打底层、梯度层和调幅层,所述梯度层为CrxC层、SixC层、TixC层中的一种或两种以上,其中x为0.5~1.5,所述调幅层为掺杂有掺杂元素的类金刚石镀层,所述掺杂元素为Cr、Si、Ti中的一种或两种以上,所述掺杂元素在调幅层中的含量随着调幅层的厚度呈正弦波波动形式周期性变化,所述正弦波波谷对应的掺杂元素在调幅层中的含量为3.0~5.0at%,所述正弦波波峰对应的掺杂元素在调幅层中的含量为9.0~11.0at%。
2.如权利要求1所述的类金刚石镀层,其特征在于:所述正弦波波谷对应的掺杂元素在调幅层中的含量为4.0at%,所述正弦波波峰对应的掺杂元素在调幅层中的含量为10.0at%。
3.如权利要求1所述的类金刚石镀层,其特征在于:所述正弦波的波动周期为20~50。
4.如权利要求1所述的类金刚石镀层,其特征在于:所述正弦波每一波动周期对应的调幅层的厚度为0.5~0.8μm。
5.如权利要求1所述的类金刚石镀层,其特征在于:所述调幅层具有亚微晶的晶状分布。
6.如权利要求5所述的类金刚石镀层,其特征在于:所述亚微晶的粒径为0.2~0.5μm。
7.如权利要求1所述的类金刚石镀层,其特征在于:所述打底层为Cr层、Si层、Ti层中的一种或两种以上。
8.如权利要求1所述的类金刚石镀层,其特征在于:所述类金刚石镀层的厚度为10~30μm。
9.如权利要求1所述的类金刚石镀层,其特征在于:所述打底层的厚度为0.2~1μm。
10.如权利要求1所述的类金刚石镀层,其特征在于:所述梯度层的厚度为0.5~2μm。
11.如权利要求1所述的类金刚石镀层,其特征在于:所述调幅层的厚度为9.3~27μm。
12.一种具有如权利要求1所述类金刚石镀层的活塞环。
13.一种如权利要求1所述用于活塞环表面的类金刚石镀层的制备工艺,其特征在于:所述工艺在PECVD设备中进行,将待镀活塞环置于半封闭装置内,所述半封闭装置置于PECVD设备的真空腔内,包括如下步骤:
(1)在所述待镀活塞环表面形成打底层;
(2)在所述打底层上形成梯度层;
(3)开启直流脉冲电源,在半封闭装置和待镀活塞环上分别施加负偏压,通入Ar、硅源、有或没有C2H2,所述硅源的流量呈正弦波波动形式周期性变化,最终在梯度层上形成调幅层。
14.如权利要求13所述的制备工艺,其特征在于:步骤(3)中,所述硅源的流量的正弦波波谷对应的硅源流量为20~50sccm,所述硅源的流量的正弦波波峰对应的硅源流量为90~160sccm。
15.如权利要求13所述的制备工艺,其特征在于:所述硅源的流量的正弦波的波动周期为20~50。
16.如权利要求13所述的制备工艺,其特征在于:所述硅源的流量的正弦波每一波动周期历经5~30min。
17.如权利要求13所述的制备工艺,其特征在于:所述硅源为SiH4和/或TMS。
18.一种如权利要求1所述用于活塞环表面的类金刚石镀层的制备工艺,其特征在于:所述工艺在PECVD设备中进行,将待镀活塞环置于半封闭装置内,所述半封闭装置置于PECVD设备的真空腔内,包括如下步骤:
(1)在所述待镀活塞环表面形成打底层;
(2)在所述打底层上形成梯度层;
(3)开启直流脉冲电源,在半封闭装置和待镀活塞环上分别施加负偏压,通入Ar和C2H2,开启Cr靶或Ti靶,控制Cr靶或Ti靶的阴极电流呈正弦波波动形式周期性变化,最终在梯度层上形成调幅层。
19.如权利要求18所述的制备工艺,其特征在于:步骤(3)中,所述阴极电流的正弦波波谷对应的阴极电流为50~60A,所述正弦波波峰对应的阴极电流为100~125A。
20.如权利要求18所述的制备工艺,其特征在于:所述阴极电流的正弦波的波动周期为20~50。
21.如权利要求18所述的制备工艺,其特征在于:所述阴极电流的正弦波每一波动周期历经5~30min。
22.如权利要求13或18所述的制备工艺,其特征在于:步骤(1)中,所述打底层为Cr层、Ti层、Si层中的一种或两种以上。
23.如权利要求22所述的制备工艺,其特征在于:所述Cr层或Ti层分别通过利用辅助阴极溅射Cr或Ti而制得。
24.如权利要求23所述的制备工艺,其特征在于:所述Cr层或Ti层的制备过程为:通入流量为350~650sccm的Ar,开启Cr靶或Ti靶,控制Cr靶或Ti靶的阴极电流为110~135A,利用辅助阴极在待镀活塞环表面溅射沉积Cr层或Ti层。
25.如权利要求22所述的制备工艺,其特征在于:所述Si层通过利用SiH4分解产生的离子态而制得。
26.如权利要求25所述的制备工艺,其特征在于:所述Si层的制备过程为:通入流量为150~200sccm的Ar和流量为50~70sccm的SiH4,利用高能等离子体放电在待镀活塞环表面形成Si层,反应时间为25~75min。
27.如权利要求13或18所述的制备工艺,其特征在于:步骤(2)中,所述梯度层为CrxC层、TixC层、SixC层中的一种或两种以上,其中x=0.5~1.5。
28.如权利要求27所述的制备工艺,其特征在于:所述CrxC层或TixC层通过利用辅助阴极溅射Cr靶或Ti靶和工艺反应气体C2H2、Ar而制得。
29.如权利要求28所述的制备工艺,其特征在于:所述Cr靶或Ti靶的阴极电流为100~125A。
30.如权利要求28所述的制备工艺,其特征在于:制备CrxC层或TixC层时,C2H2的流量为70~100sccm。
31.如权利要求28所述的制备工艺,其特征在于:制备CrxC层或TixC层时,Ar的流量为150~200sccm。
32.如权利要求27所述的制备工艺,其特征在于:所述SixC层通过采用SiH4与C2H2、Ar的混合等离子体放电而制得。
33.如权利要求32所述的制备工艺,其特征在于:控制SiH4的流量由0逐渐增大至60sccm。
34.如权利要求32所述的制备工艺,其特征在于:制备SixC层时,C2H2的流量为80~120sccm。
35.如权利要求32所述的制备工艺,其特征在于:制备SixC层时,Ar的流量为150~200sccm。
36.如权利要求13或18所述的制备工艺,其特征在于:步骤(3)中,在半封闭装置上施加的负偏压为-1200~-1800V,在所述待镀活塞环上施加的负偏压与在半封闭装置上施加的负偏压间的差值为-200~500V。
37.如权利要求13或18所述的制备工艺,其特征在于:步骤(3)中,Ar的流量为150~200sccm,C2H2的流量为80~120sccm。
38.如权利要求13或18所述的制备工艺,其特征在于:在步骤(1)之前还包括步骤(1a),将待镀活塞环表面进行清洁处理。
39.如权利要求38所述的制备工艺,其特征在于:对待镀活塞环表面进行清洁处理的操作为:通入99.99%纯度的Ar,Ar的流量为50~100sccm,在所述半封闭装置施加负偏压-800~-2000V,在待镀活塞环施加的负偏压与在半封闭装置施加的负偏压间的差值为-100~-200V,Ar离子轰击清洗待镀活塞环表面15~40min,制得清洗干净的待镀活塞环。
CN201610131810.XA 2016-03-08 2016-03-08 一种用于活塞环表面的类金刚石镀层、活塞环及制备工艺 Active CN105734527B (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201610131810.XA CN105734527B (zh) 2016-03-08 2016-03-08 一种用于活塞环表面的类金刚石镀层、活塞环及制备工艺
JP2016170155A JP6333902B2 (ja) 2016-03-08 2016-08-31 ピストンリング表面用ダイヤモンドライクカーボンコーティング層、ピストンリング及び製造プロセス
US15/296,310 US11215283B2 (en) 2016-03-08 2016-10-18 Diamond-like coating for piston ring surfaces, piston ring and processes for preparing the same
EP16195507.5A EP3216893B1 (en) 2016-03-08 2016-10-25 Diamond-like coating for piston ring surfaces, piston ring and processes for preparing the same
ES16195507T ES2861388T3 (es) 2016-03-08 2016-10-25 Revestimiento similar al diamante para superficies de aros de pistón, aro de pistón y procedimientos para preparar el mismo

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610131810.XA CN105734527B (zh) 2016-03-08 2016-03-08 一种用于活塞环表面的类金刚石镀层、活塞环及制备工艺

Publications (2)

Publication Number Publication Date
CN105734527A CN105734527A (zh) 2016-07-06
CN105734527B true CN105734527B (zh) 2019-01-18

Family

ID=56250108

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610131810.XA Active CN105734527B (zh) 2016-03-08 2016-03-08 一种用于活塞环表面的类金刚石镀层、活塞环及制备工艺

Country Status (5)

Country Link
US (1) US11215283B2 (zh)
EP (1) EP3216893B1 (zh)
JP (1) JP6333902B2 (zh)
CN (1) CN105734527B (zh)
ES (1) ES2861388T3 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018211387A1 (de) * 2018-07-10 2020-01-16 Robert Bosch Gmbh Verschleißschutzschichtanordnung und Bauteil mit Verschleißschutzschichtanordnung
CN109570539A (zh) * 2019-02-14 2019-04-05 廊坊西波尔钻石技术有限公司 一种用于加工铝合金的刀具
DE102019206420A1 (de) * 2019-05-03 2020-11-05 Robert Bosch Gmbh Verfahren zum Beschichten einer mechanisch hochbelasteten Oberfläche eines Bauteils sowie beschichtetes Bauteil selbst
CN111139430B (zh) * 2020-01-17 2020-12-11 兰州理工大学 一种织构化类金刚石碳基薄膜及其制备方法
CN111334794B (zh) * 2020-03-09 2022-03-29 中国科学院海洋研究所 一种在基体表面沉积含Ti过渡层及钛掺杂类金刚石的改性薄膜及方法
CN113529048A (zh) * 2021-07-20 2021-10-22 中国科学院兰州化学物理研究所 一种活塞环表面高结合力超厚dlc涂层的超高速沉积方法
CN114447354B (zh) * 2022-01-26 2022-11-25 纳狮新材料有限公司 一种用于金属极板的类金刚石复合涂层及其制备方法
CN114703452B (zh) * 2022-03-02 2023-03-21 燕山大学 一种CoCrFeNi高熵合金掺杂非晶碳薄膜及其制备方法
CN114990510B (zh) * 2022-07-18 2022-10-28 湖南碳康生物科技有限公司 一种医用不锈钢材料及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102586735A (zh) * 2012-03-16 2012-07-18 广州有色金属研究院 一种无氢掺硅类金刚石膜层及其制备方法
CN102994967A (zh) * 2011-09-17 2013-03-27 中国科学院兰州化学物理研究所 超厚类金刚石涂层的超高速制备方法
CN103016200A (zh) * 2011-09-27 2013-04-03 现代自动车株式会社 发动机用活塞环及其制造方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01209707A (ja) * 1988-02-18 1989-08-23 Matsushita Electric Ind Co Ltd 窒素を含む磁性合金膜
JP3501231B2 (ja) * 1993-05-24 2004-03-02 東洋紡績株式会社 熱線反射薄膜
BE1008229A3 (nl) * 1993-10-29 1996-02-20 Vito Werkwijze voor het aanbrengen van een tegen slijtage beschermende laag op een substraat.
DE4343354C2 (de) * 1993-12-18 2002-11-14 Bosch Gmbh Robert Verfahren zur Herstellung einer Hartstoffschicht
US5693376A (en) 1995-06-23 1997-12-02 Wisconsin Alumni Research Foundation Method for plasma source ion implantation and deposition for cylindrical surfaces
DE10018143C5 (de) * 2000-04-12 2012-09-06 Oerlikon Trading Ag, Trübbach DLC-Schichtsystem sowie Verfahren und Vorrichtung zur Herstellung eines derartigen Schichtsystems
JP4022048B2 (ja) * 2001-03-06 2007-12-12 株式会社神戸製鋼所 ダイヤモンドライクカーボン硬質多層膜成形体およびその製造方法
JP4170004B2 (ja) * 2002-03-28 2008-10-22 日本板硝子株式会社 化合物半導体積層膜構造
JP2004022025A (ja) * 2002-06-13 2004-01-22 Hitachi Ltd 磁気記録媒体及びその製造方法とそれを用いた磁気記憶装置
PT1915472T (pt) * 2005-08-18 2018-12-06 Oerlikon Surface Solutions Ag Pfaeffikon Substrato revestido com uma estrutura em camadas compreendendo uma camada de carbono tetraédrico e uma camada exterior mais macia
JP2008024996A (ja) * 2006-07-21 2008-02-07 Ohashi Technica Inc ダイヤモンドライクカーボン積層皮膜部材及びその製造方法
JP5109320B2 (ja) * 2006-09-28 2012-12-26 ブラザー工業株式会社 摺動部材
DE102009000821B4 (de) * 2009-02-12 2013-05-02 Surcoatec Ag Verfahren zum Aufbringen einer Beschichtung auf Werkstücke und/oder Werkstoffe aufweisend mindestens ein leicht oxidierbares Nichteisenmetall sowie Werkstück und/oder Werkstoff hergestellt nach dem Verfahren
DE102012007796A1 (de) 2012-04-20 2013-10-24 Amg Coating Technologies Gmbh Beschichtung enthaltend Si-DLC, DLC und Me-DLC und Verfahren zur Herstellung von Beschichtungen
JP2014098184A (ja) * 2012-11-14 2014-05-29 Minebea Co Ltd 多層dlc皮膜を有する摺動部材
JP6238053B2 (ja) * 2013-09-13 2017-11-29 株式会社ジェイテクト 摺動部材
JP5965378B2 (ja) * 2013-10-31 2016-08-03 株式会社リケン ピストンリング及びその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102994967A (zh) * 2011-09-17 2013-03-27 中国科学院兰州化学物理研究所 超厚类金刚石涂层的超高速制备方法
CN103016200A (zh) * 2011-09-27 2013-04-03 现代自动车株式会社 发动机用活塞环及其制造方法
CN102586735A (zh) * 2012-03-16 2012-07-18 广州有色金属研究院 一种无氢掺硅类金刚石膜层及其制备方法

Also Published As

Publication number Publication date
US20170261103A1 (en) 2017-09-14
EP3216893B1 (en) 2021-02-17
ES2861388T3 (es) 2021-10-06
EP3216893A1 (en) 2017-09-13
US11215283B2 (en) 2022-01-04
JP2017160899A (ja) 2017-09-14
JP6333902B2 (ja) 2018-05-30
CN105734527A (zh) 2016-07-06

Similar Documents

Publication Publication Date Title
CN105734527B (zh) 一种用于活塞环表面的类金刚石镀层、活塞环及制备工艺
JP2610469B2 (ja) 炭素または炭素を主成分とする被膜を形成する方法
US7833581B2 (en) Method for making a highly stable diamond film on a substrate
CN101921994B (zh) 一种原子层沉积超薄氧化铝薄膜的装置及方法
CN111500982A (zh) 一种四面体非晶碳复合涂层及其制备方法
JP5099693B2 (ja) 非晶質炭素膜及びその成膜方法
CN106978593B (zh) 一种顶面为钛掺杂类金刚石多层隔热厚膜的活塞及其制备方法和应用
CN110423989A (zh) 一种低残余应力的硬质类金刚石薄膜的制备方法
JPH04374A (ja) プラスチック基板表面の硬化保護膜製造方法
Dwivedi et al. Influence of bonding environment on nano-mechanical properties of nitrogen containing hydrogenated amorphous carbon thin films
CN1632165A (zh) 一种在硬质合金工具上制备金刚石涂层的方法
CN111850484A (zh) 一种制备强韧化非晶碳基多相杂化薄膜的装置及方法
Günther et al. High rate deposition of hard aC: H films using microwave excited plasma enhanced CVD
CN100485083C (zh) 一种Si-C-N纳米复合超硬薄膜的制备方法
JP2775278B2 (ja) 炭素系被膜の作製方法
JPH01246115A (ja) 炭素または炭素を主成分とする被膜を形成する方法
JP2003027237A (ja) 炭素または炭素を主成分とする膜
JPH05202211A (ja) 耐摩耗性プラスチック成形物及びその製造方法
JP2003113471A (ja) ダイヤモンド様炭素膜透明導電積層体及びその製造方法
JP3236600B2 (ja) 炭素または炭素を主成分とする被膜の形成方法
JPH03247766A (ja) プラズマcvd法による薄膜形成方法
Yang et al. Plasma-Enhanced Chemical Vapor Deposition of High Quality Cubic BN Films with an Intermediate Layer of Turbostratic BN Thinner than 3 nm
JP2000290776A (ja) 炭素膜が形成された部材
JP3321139B2 (ja) 部 材
JP2001081567A (ja) 保護膜

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant