CN111139430B - 一种织构化类金刚石碳基薄膜及其制备方法 - Google Patents

一种织构化类金刚石碳基薄膜及其制备方法 Download PDF

Info

Publication number
CN111139430B
CN111139430B CN202010052653.XA CN202010052653A CN111139430B CN 111139430 B CN111139430 B CN 111139430B CN 202010052653 A CN202010052653 A CN 202010052653A CN 111139430 B CN111139430 B CN 111139430B
Authority
CN
China
Prior art keywords
target
textured
metal mesh
sputtering
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010052653.XA
Other languages
English (en)
Other versions
CN111139430A (zh
Inventor
何东青
尚伦霖
李文生
张广安
成波
张辛健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lanzhou Institute of Chemical Physics LICP of CAS
Lanzhou University of Technology
Original Assignee
Lanzhou Institute of Chemical Physics LICP of CAS
Lanzhou University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanzhou Institute of Chemical Physics LICP of CAS, Lanzhou University of Technology filed Critical Lanzhou Institute of Chemical Physics LICP of CAS
Priority to CN202010052653.XA priority Critical patent/CN111139430B/zh
Publication of CN111139430A publication Critical patent/CN111139430A/zh
Application granted granted Critical
Publication of CN111139430B publication Critical patent/CN111139430B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • C23C14/044Coating on selected surface areas, e.g. using masks using masks using masks to redistribute rather than totally prevent coating, e.g. producing thickness gradient
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0605Carbon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0635Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明提供了一种织构化类金刚石碳基薄膜及其制备方法,属于表面工程领域。本发明提供一种利用金属网筛栅遮挡金属基体表面的方法,简单便捷地原位制备织构化DLC薄膜,金属基底表面的金属网筛并非与基底紧密贴合,而是与基底留有一定间隙,且间隙尺寸严格控制,利用此间隙实现沉积空间等离子体密度的重新分布,使金属网栅遮挡区域与基体间隙处的等离子体密度增加,从而提高此区域的沉积速率,而未遮挡区域沉积速率不变,导致遮挡区域薄膜厚度大于未遮挡区域,从而在薄膜沉积过程中原位形成织构化表层,薄膜本身连续完整,不存在未覆盖区域,且织构坑形状、密度和深度均可通过沉积工艺的调控实现可控调节。

Description

一种织构化类金刚石碳基薄膜及其制备方法
技术领域
本发明涉及表面工程技术领域,尤其涉及一种织构化类金刚石碳基薄膜及其制备方法。
背景技术
类金刚石碳基(DLC)薄膜由于其优异的机械、化学、电子和摩擦学性能,已广泛应用于汽车零部件、刀具、计算机电子部件和生物医学设备等领域。虽然DLC薄膜性能优越,但是随着行业需求的不断增长,DLC薄膜的性能受到了挑战,尤其是摩擦学性能需进一步提升。为了进一步提高DLC薄膜的摩擦学性能,人们进行了各种尝试,如元素或化合物掺杂、微观结构设计和表面改性。其中,表面织构化由于操作简单、效果显著、加工成本较低,在改善DLC薄膜的摩擦学性能方面具有很大的潜力。
表面织构化是提高机械零部件摩擦学性能的重要技术手段之一,获得可控表面织构化的常用方法可分为三大类:高能束流加工技术、蚀刻技术和微加工成形技术。对于DLC薄膜的表面织构而言,每一种方法都有两种实现方式:①直接织构法,即在镀制有DLC薄膜的工件表面进行织构化处理从而得到织构化DLC薄膜;②间接织构法,即在镀膜前对工件表面进行织构化处理,在镀膜过程中利用工件表面原有的织构形成织构化的DLC薄膜。但不管是直接织构法还是间接织构法,其工序繁复,成本高昂。
发明内容
有鉴于此,本发明的目的在于提供一种织构化类金刚石碳基薄膜及其制备方法。本发明提供的制备方法简单便捷地实现原位制备织构化DLC薄膜,薄膜本身连续完整,不存在未覆盖区域,且织构坑形状、密度和深度均可实现可控调节。
为了实现上述发明目的,本发明提供以下技术方案:
本发明提供了一种织构化类金刚石碳基薄膜的原位制备方法,包括以下步骤:
在金属基底的表面固定金属网栅,所述金属网栅与金属基底表面的间隙为50~200μm,得到表面覆盖金属网栅的金属基底;
以Cr靶为溅射靶材,对所述表面覆盖金属网栅的金属基底进行闭合场非平衡磁控溅射,形成Cr粘接层;
以Cr靶和C靶为溅射靶材,在所述Cr粘接层的表面制备Cr→CrxCy梯度过渡层,所述x逐渐减小,y逐渐增大;
以C靶为溅射靶材,在所述Cr→CrxCy梯度过渡层的表面进行磁控溅射,形成C层,得到所述织构化类金刚石碳基薄膜。
优选地,所述表面覆盖金属网栅的金属基底进行闭合场非平衡磁控溅射前还包括Ar+清洗,所述Ar+清洗的真空压力为2×10-4~5×10-4Pa,偏压为-300~-500V,转架转速为3~5rpm,时间为15~20min。
优选地,所述闭合场非平衡磁控溅射的偏压为-50~-70V,转架转速为3~5rpm,靶功率为500~900W,时间为10~15min。
优选地,所述以Cr靶和C靶为溅射靶材,在所述Cr粘接层的表面制备Cr→CrxCy梯度过渡层的步骤如下:在20~30min内将溅射Cr靶的功率由500~900W线性降为0W,溅射C靶的功率由0W线性升高至2.0~2.3kW。
优选地,所述在Cr→CrxCy梯度过渡层的表面进行磁控溅射的偏压为-50~-70V,转架转速为3~5rpm,C靶的功率为2.0~2.3kW。
优选地,所述金属基底依次经逐级打磨、抛光至表面粗糙度Ra≤0.2μm、丙酮超声清洗、无水乙醇超声清洗和氮气吹干后使用。
优选地,所述丙酮超声清洗和无水乙醇超声清洗的时间独立地为15~20min,温度独立地为25~30℃,功率独立地为500~800W。
优选地,所述金属网栅的厚度为100~200μm。
优选地,所述金属网栅依次经丙酮超声清洗、无水乙醇超声清洗和氮气吹干后使用。
本发明还提供了上述技术方案所述制备方法制得的织构化类金刚石碳基薄膜,依次包括Cr粘接层、Cr→CrxCy梯度过渡层以及C层,所述织构化类金刚石碳基薄膜的厚度为500~1000nm,织构坑深度为140~200nm。
本发明提供了一种织构化类金刚石碳基薄膜的原位制备方法,包括以下步骤:在金属基底的表面固定金属网栅,所述金属网栅与金属基底表面的间隙为50~200μm,得到表面覆盖金属网栅的金属基底;以Cr靶为溅射靶材,对所述表面覆盖金属网栅的金属基底进行闭合场非平衡磁控溅射,形成Cr粘接层;以Cr靶和C靶为溅射靶材,在所述Cr粘接层的表面制备Cr→CrxCy梯度过渡层,所述x逐渐减小,y逐渐增大;以C靶为溅射靶材,在所述Cr→CrxCy梯度过渡层的表面进行磁控溅射,形成C层,得到所述织构化类金刚石碳基薄膜。本发明提供一种利用金属网筛栅遮挡金属基体表面的方法,简单便捷地原位制备织构化DLC薄膜,金属基底表面的金属网筛并非与基底紧密贴合,而是与基底留有一定间隙,且间隙尺寸严格控制,利用此间隙实现沉积空间等离子体密度的重新分布,使金属网栅遮挡区域与基体间隙处的等离子体密度增加,从而提高此区域的沉积速率,而未遮挡区域沉积速率不变,导致遮挡区域薄膜厚度大于未遮挡区域,从而在薄膜沉积过程中原位形成织构化表层,薄膜本身连续完整,不存在未覆盖区域,且织构坑形状、密度和深度均可通过沉积工艺的调控实现可控调节。同时,本发明能够综合织构化微结构和类金刚石碳基薄膜的共同优势,实现了优异的减摩耐磨性能,具有很好的应用价值。实施例的数据表明,当制备工艺及织构密度达最优值时(52%),DLC薄膜表面织构层凸起部分sp3含量显著增加,硬度和模量明显升高,即表面织构层具有更加优异的机械性能,于此同时,原位织构化的表面能够显著降低DLC薄膜的亲油性,当织构密度达52%时,与PAO 8润滑油的接触角达最小值23.5°,表明其具有非常优异的亲油性。
附图说明
图1为实施例1制得的织构化DLC薄膜的表征图,其中a为表面光镜照片,b为截面二维轮廓曲线,c为表面三维形貌图;
图2为实施例2制得的织构化DLC薄膜的表征图,其中a为表面光镜照片,b为截面二维轮廓曲线,c为表面三维形貌图
图3为实施例3制得的织构化DLC薄膜的表征图,其中a为表面光镜照片,b为截面二维轮廓曲线,c为表面三维形貌图。
图4为实施例1~3制得的原位织构化DLC薄膜与未织构DLC薄膜的Raman图谱;
图5为PAO 8润滑油在实施例1~3制得的原位织构化DLC薄膜与未织构DLC薄膜表面接触角;
图6为实施例1~3制得的原位织构化DLC薄膜与未织构DLC薄膜织构坑内(凹陷区域)与凸起处硬度图;
图7为实施例1~3制得的原位织构化DLC薄膜与未织构DLC薄膜织构坑内(凹陷区域)与凸起处弹性模量图;
图8为实施例1~3制得的原位织构化DLC薄膜与未织构DLC薄膜在载荷为10N,线性往复频率为5Hz干摩擦条件下与
Figure BDA0002371743210000041
小球对摩摩擦系数曲线;
图9为实施例1~3制得的原位织构化DLC薄膜与未织构DLC薄膜在载荷为10N,线性往复频率为5Hz干摩擦条件下与
Figure BDA0002371743210000042
小球对摩磨损率图;
图10为实施例1~3制得的原位织构化DLC薄膜与未织构DLC薄膜在载荷为20N,线性往复频率为5Hz PAO 8油润滑条件下与
Figure BDA0002371743210000043
小球对摩摩擦系数曲线;
图11为实施例1~3制得的原位织构化DLC薄膜与未织构DLC薄膜在载荷为20N,线性往复频率为5HzPAO 8油润滑条件下与
Figure BDA0002371743210000044
小球对摩磨损率图。
具体实施方式
本发明提供了一种织构化类金刚石碳基薄膜的原位制备方法,包括以下步骤:
在金属基底的表面固定金属网栅,所述金属网栅与金属基底表面的间隙为50~200μm,得到表面覆盖金属网栅的金属基底;
以Cr靶为溅射靶材,对所述表面覆盖金属网栅的金属基底进行闭合场非平衡磁控溅射,形成Cr粘接层;
以Cr靶和C靶为溅射靶材,在所述Cr粘接层的表面制备Cr→CrxCy梯度过渡层,所述x逐渐减小,y逐渐增大;
以C靶为溅射靶材,在所述Cr→CrxCy梯度过渡层的表面进行磁控溅射,形成C层,得到所述织构化类金刚石碳基薄膜。
本发明在金属基底的表面固定金属网栅,所述金属网栅与金属基底表面的间隙为50~200μm,得到表面覆盖金属网栅的金属基底。在本发明中,所述金属基底优选为316L不锈钢基底。
在本发明中,所述金属基底优选依次经逐级打磨、抛光至表面粗糙度Ra≤0.2μm、丙酮超声清洗、无水乙醇超声清洗和氮气吹干后使用。本发明对所述逐级打磨和抛光的具体方式没有特殊的限定,采用本领域技术人员熟知的技术方案即可。
在本发明中,所述丙酮超声清洗和无水乙醇超声清洗的时间独立地优选为15~20min,温度独立地优选为25~30℃,功率独立地优选为500~800W。
在本发明中,所述金属网栅的厚度优选为100~200μm。本发明对所述金属网栅的网格形状和尺寸没有特殊的限定,根据实际需求选择即可。
在本发明中,所述金属网栅优选依次经丙酮超声清洗、无水乙醇超声清洗和氮气吹干后使用。在本发明中,所述丙酮超声清洗和无水乙醇超声清洗的时间独立地优选为15~20min,温度独立地优选为25~30℃,功率独立地优选为500~800W。
本发明优选利用夹具在金属基底的表面固定金属网栅。
得到表面覆盖金属网栅的金属基底后,本发明以Cr靶为溅射靶材,对所述表面覆盖金属网栅的金属基底进行闭合场非平衡磁控溅射,形成Cr粘接层。
在本发明中,所述表面覆盖金属网栅的金属基底进行闭合场非平衡磁控溅射前优选还包括Ar+清洗,所述Ar+清洗的真空压力为2×10-4~5×10-4Pa,偏压为-300~-500V,转架转速为3~5rpm,时间为15~20min。
在本发明中,所述闭合场非平衡磁控溅射的偏压优选为-50~-70V,转架转速优选为3~5rpm,靶功率优选为500~900W,时间优选为10~15min,在所述闭合场非平衡磁控溅射的过程中,所述金属基底和金属网栅的表面都沉积了Cr粘接层。
在本发明中,所述Ar+清洗和闭合场非平衡磁控溅射优选均在闭合场非平衡磁控溅射装置中进行。
在本发明中,所述Cr靶的纯度优选为99.999%。
在本发明中,所述Cr粘接层的厚度优选为50~150nm。
形成Cr粘接层后,本发明以Cr靶和C靶为溅射靶材,在所述Cr粘接层的表面制备Cr→CrxCy梯度过渡层,所述x逐渐减小,y逐渐增大。
在本发明中,所述以Cr靶和C靶为溅射靶材,在所述Cr粘接层的表面制备Cr→CrxCy梯度过渡层的步骤优选如下:在20~30min内将溅射Cr靶的功率由500~900W线性降为0W,溅射C靶的功率由0W线性升高至2.0~2.3kW。
形成Cr→CrxCy梯度过渡层后,本发明以C靶为溅射靶材,在所述Cr→CrxCy梯度过渡层的表面进行磁控溅射,形成C层,得到所述织构化类金刚石碳基薄膜。
在本发明中,所述在Cr→CrxCy梯度过渡层的表面进行磁控溅射的偏压优选为-50~-70V,转架转速优选为3~5rpm,C靶的功率优选为2.0~2.3kW。
形成C层后,本发明优选将金属网栅拆除。
本发明还提供了上述技术方案所述制备方法制得的织构化类金刚石碳基薄膜,依次包括Cr粘接层、Cr→CrxCy梯度过渡层以及C层,所述织构化类金刚石碳基薄膜的厚度为500~1000nm,织构坑深度为140~200nm。
为了进一步说明本发明,下面结合实例对本发明提供的织构化类金刚石碳基薄膜及其制备方法进行详细地描述,但不能将它们理解为对本发明保护范围的限定。
实施例1
⑴将316L不锈钢基底表面逐级打磨、抛光至表面粗糙度Ra≤0.2μm,分别用丙酮和无水乙醇超声清洗15min,超声温度为25℃,超声功率为600W、氮气吹干得到金属基底(1);
⑵将栅格形状为正方形,栅格宽度为0.46mm,栅格间距为0.16mm,厚度为150μm的金属网栅,分别用丙酮和无水乙醇超声清洗20min,超声温度为25℃,超声功率为600W,氮气吹干后利用特定工装夹具将其固定于金属基底(1)表面,并严格控制金属网栅与基底表面间隙为100μm。
⑶将所述步骤⑵得到的表面覆盖金属网栅的金属基底固定于闭合场非平衡磁控溅射系统样品架上,待真空腔室背景真空达3×10-4Pa时,先用Ar+在偏压为-500V,转架转速为2rpm条件下轰击清洗所述样品表面15min,再以纯度为99.999%的Cr靶为溅射靶材,在偏压为-70V,转架转速为5rpm,靶功率为900W条件下溅射10min,以制备厚度为100nm的Cr粘接层(2)。
⑷在30min内将Cr靶功率由900W线性降为0W,C靶功率由0W线性升高至2.3kW,以在步骤⑶所述Cr粘接层(2)表面制备Cr→CrxCy且x不断减小的梯度过渡层(3)。
⑸在偏压为-70V,转架转速为5rpm,C靶功率为2.3kW条件下溅射240min以在步骤⑷所述Cr→CrxCy梯度过渡层(3)表面原位制备织构化DLC薄膜,记为DLC-T39%。
本实施方法制得的织构化DLC薄膜总厚度为760nm,织构坑深度为160nm,织构密度为39%(织构坑面积与总面积之比),织构层凸起处薄膜硬度和弹性模量分别为13.2GPa和151GPa,织构坑内薄膜硬度和弹性模量分别为12.9GPa和145GPa,且PAO 8润滑油在该织构化DLC薄膜表面的接触角为24.7°,该织构化DLC薄膜在载荷为10N,线性往复频率为5Hz干摩擦条件下与
Figure BDA0002371743210000072
小球对摩时平均摩擦系数为0.11,在载荷为20N,线性往复频率为5Hz,PAO 8油润滑条件下与
Figure BDA0002371743210000071
小球对摩平均摩擦系数为0.075。
图1为实施例1制得的织构化DLC薄膜的表征图,其中a为表面光镜照片,b为截面二维轮廓曲线,c为表面三维形貌图。
实施例2
⑴将316L不锈钢基底表面逐级打磨、抛光至表面粗糙度Ra≤0.2μm,分别用丙酮和无水乙醇超声清洗15min,超声温度为25℃,超声功率为600W、氮气吹干得到金属基底(1);
⑵将栅格形状为正方形,栅格宽度为0.3mm,栅格间距为0.12mm,厚度为150μm的金属网栅,分别用丙酮和无水乙醇超声清洗20min,超声温度为25℃,超声功率为600W,氮气吹干后利用特定工装夹具将其固定于金属基底(1)表面,并严格控制金属网栅与基底表面间隙为100μm。
⑶将所述步骤⑵得到的表面覆盖金属网栅的金属基底固定于闭合场非平衡磁控溅射系统样品架上,待真空腔室背景真空达3×10-4Pa时,先用Ar+在偏压为-500V,转架转速为2rpm条件下轰击清洗所述样品表面15min,再以纯度为99.999%的Cr靶为溅射靶材,在偏压为-70V,转架转速为5rpm,靶功率为900W条件下溅射10min,以制备厚度为100nm的Cr粘接层(2)。
⑷在30min内将Cr靶功率由900W线性降为0W,C靶功率由0W线性升高至2.3kW,以在步骤⑶所述Cr粘接层(2)表面制备Cr→CrxCy且x不断减小的梯度过渡层(3)。
⑸在偏压为-70V,转架转速为5rpm,C靶功率为2.3kW条件下溅射240min以在步骤⑷所述Cr→CrxCy梯度过渡层(3)表面原位制备织构化DLC薄膜,记为DLC-T52%。
本实施方法制得的织构化DLC薄膜总厚度为800nm,织构坑深度为160nm,织构密度为52%(织构坑面积与总面积之比),织构层凸起处薄膜硬度和弹性模量分别为19.9GPa和187.4GPa,织构坑内薄膜硬度和弹性模量分别为13.1GPa和157.5GPa,且PAO 8润滑油在该织构化DLC薄膜表面的接触角为23.5°,该织构化DLC薄膜在载荷为10N,线性往复频率为5Hz干摩擦条件下与
Figure BDA0002371743210000081
小球对摩时平均摩擦系数为0.069,在载荷为20N,线性往复频率为5Hz,PAO 8油润滑条件下与
Figure BDA0002371743210000082
小球对摩平均摩擦系数为0.074。
图2为实施例2制得的织构化DLC薄膜的表征图,其中a为表面光镜照片,b为截面二维轮廓曲线,c为表面三维形貌图。
实施例3
⑴将316L不锈钢基底表面逐级打磨、抛光至表面粗糙度Ra≤0.2μm,分别用丙酮和无水乙醇超声清洗15min,超声温度为25℃,超声功率为600W、氮气吹干得到金属基底(1);
⑵将栅格形状为正方形,栅格宽度为0.16mm,栅格间距为0.1mm,厚度为100μm的金属网栅,分别用丙酮和无水乙醇超声清洗20min,超声温度为25℃,超声功率为600W,氮气吹干后利用特定工装夹具将其固定于金属基底(1)表面,并严格控制金属网栅与基底表面间隙为50μm。
⑶将所述步骤⑵得到的表面覆盖金属网栅的金属基底固定于闭合场非平衡磁控溅射系统样品架上,待真空腔室背景真空达3×10-4Pa时,先用Ar+在偏压为-500V,转架转速为2rpm条件下轰击清洗所述样品表面15min,再以纯度为99.999%的Cr靶为溅射靶材,在偏压为-70V,转架转速为5rpm,靶功率为900W条件下溅射10min,以制备厚度为70nm的Cr粘接层(2)。
⑷在30min内将Cr靶功率由900W线性降为0W,C靶功率由0W线性升高至2.3kW,以在步骤⑶所述Cr粘接层(2)表面制备Cr→CrxCy且x不断减小的梯度过渡层(3)。
⑸在偏压为-70V,转架转速为5rpm,C靶功率为2.3kW条件下溅射240min以在步骤⑷所述Cr→CrxCy梯度过渡层(3)表面原位制备织构化DLC薄膜,记为DLC-T58%。
本实施方法制得的织构化DLC薄膜总厚度为500nm,织构坑深度为140nm,织构密度为58%(织构坑面积与总面积之比),织构层凸起处薄膜硬度和弹性模量分别为19.4GPa和181.8GPa,织构坑内薄膜硬度和弹性模量分别为12.9GPa和152.5GPa,且PAO 8润滑油在该织构化DLC薄膜表面的接触角为25.2°,该织构化DLC薄膜在载荷为10N,线性往复频率为5Hz干摩擦条件下与
Figure BDA0002371743210000091
小球对摩时平均摩擦系数为0.092,在载荷为20N,线性往复频率为5Hz,PAO 8油润滑条件下与
Figure BDA0002371743210000092
小球对摩平均摩擦系数为0.077。
图3为实施例3制得的织构化DLC薄膜的表征图,其中a为表面光镜照片,b为截面二维轮廓曲线,c为表面三维形貌图。
对比例
未织构DLC薄膜:与实施例1相同,区别仅在于不在基底表面设置金属网栅,记为DLC-smooth%。
图4为实施例1~3制得的原位织构化DLC薄膜与未织构DLC薄膜的Raman图谱,由图4可知,本发明制得了具有典型非晶碳结构的DLC薄膜。
图5为PAO 8润滑油在实施例1~3制得的原位织构化DLC薄膜与未织构DLC薄膜表面接触角,可知,原位织构化的表面能够显著降低润滑油在DLC薄膜表面的接触角,本发明制得的原位织构化DLC薄膜具有非常优异的亲油性。
图6为实施例1~3制得的原位织构化DLC薄膜与未织构DLC薄膜织构坑内(凹陷区域)与凸起处硬度图,图7为实施例1~3制得的原位织构化DLC薄膜与未织构DLC薄膜织构坑内(凹陷区域)与凸起处弹性模量图,由图6~7可知,DLC薄膜表面织构层凸起部分sp3含量显著增加,硬度和模量明显升高,即表面织构层具有更加优异的机械性能。
图8为实施例1~3制得的原位织构化DLC薄膜与未织构DLC薄膜在载荷为10N,线性往复频率为5Hz干摩擦条件下与
Figure BDA0002371743210000102
小球对摩摩擦系数曲线,图9为实施例1~3制得的原位织构化DLC薄膜与未织构DLC薄膜在载荷为10N,线性往复频率为5Hz干摩擦条件下与
Figure BDA0002371743210000103
小球对摩磨损率图,图10为实施例1~3制得的原位织构化DLC薄膜与未织构DLC薄膜在载荷为20N,线性往复频率为5Hz PAO 8油润滑条件下与
Figure BDA0002371743210000104
Figure BDA0002371743210000105
小球对摩摩擦系数曲线,图11为实施例1~3制得的原位织构化DLC薄膜与未织构DLC薄膜在载荷为20N,线性往复频率为5HzPAO 8油润滑条件下与
Figure BDA0002371743210000101
小球对摩磨损率图,由图8~11可知,本发明能够综合织构化微结构和类金刚石碳基薄膜的共同优势,实现了优异的减摩耐磨性能,具有很好的应用价值。
以上所述仅是本发明的优选实施方式,并非对本发明作任何形式上的限制。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

1.一种织构化类金刚石碳基薄膜的原位制备方法,其特征在于,为以下步骤:
在金属基底的表面固定金属网栅,所述金属网栅与金属基底表面的间隙为50~200μm,得到表面覆盖金属网栅的金属基底;
以Cr靶为溅射靶材,对所述表面覆盖金属网栅的金属基底进行闭合场非平衡磁控溅射,形成Cr粘接层;
以Cr靶和C靶为溅射靶材,在所述Cr粘接层的表面制备Cr→CrxCy梯度过渡层,所述x逐渐减小,y逐渐增大;
以C靶为溅射靶材,在所述Cr→CrxCy梯度过渡层的表面进行磁控溅射,形成C层,得到所述织构化类金刚石碳基薄膜。
2.根据权利要求1所述的原位制备方法,其特征在于,所述表面覆盖金属网栅的金属基底进行闭合场非平衡磁控溅射前还包括Ar+清洗,所述Ar+清洗的真空压力为2×10-4~5×10-4Pa,偏压为-300~-500V,转架转速为3~5rpm,时间为15~20min。
3.根据权利要求1所述的原位制备方法,其特征在于,所述闭合场非平衡磁控溅射的偏压为-50~-70V,转架转速为3~5rpm,靶功率为500~900W,时间为10~15min。
4.根据权利要求1所述的原位制备方法,其特征在于,所述以Cr靶和C靶为溅射靶材,在所述Cr粘接层的表面制备Cr→CrxCy梯度过渡层的步骤如下:在20~30min内将溅射Cr靶的功率由500~900W线性降为0W,溅射C靶的功率由0W线性升高至2.0~2.3kW。
5.根据权利要求1或4所述的原位制备方法,其特征在于,所述在Cr→CrxCy梯度过渡层的表面进行磁控溅射的偏压为-50~-70V,转架转速为3~5rpm,C靶的功率为2.0~2.3kW。
6.根据权利要求1所述的原位制备方法,其特征在于,所述金属基底依次经逐级打磨、抛光至表面粗糙度Ra≤0.2μm、丙酮超声清洗、无水乙醇超声清洗和氮气吹干后使用。
7.根据权利要求6所述的原位制备方法,其特征在于,所述丙酮超声清洗和无水乙醇超声清洗的时间独立地为15~20min,温度独立地为25~30℃,功率独立地为500~800W。
8.根据权利要求1所述的原位制备方法,其特征在于,所述金属网栅的厚度为100~200μm。
9.根据权利要求1所述的原位制备方法,其特征在于,所述金属网栅依次经丙酮超声清洗、无水乙醇超声清洗和氮气吹干后使用。
10.权利要求1~9任一项所述制备方法制得的织构化类金刚石碳基薄膜,其特征在于,依次包括Cr粘接层、Cr→CrxCy梯度过渡层以及C层,所述织构化类金刚石碳基薄膜的厚度为500~1000nm,织构坑深度为140~200nm。
CN202010052653.XA 2020-01-17 2020-01-17 一种织构化类金刚石碳基薄膜及其制备方法 Active CN111139430B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010052653.XA CN111139430B (zh) 2020-01-17 2020-01-17 一种织构化类金刚石碳基薄膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010052653.XA CN111139430B (zh) 2020-01-17 2020-01-17 一种织构化类金刚石碳基薄膜及其制备方法

Publications (2)

Publication Number Publication Date
CN111139430A CN111139430A (zh) 2020-05-12
CN111139430B true CN111139430B (zh) 2020-12-11

Family

ID=70525927

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010052653.XA Active CN111139430B (zh) 2020-01-17 2020-01-17 一种织构化类金刚石碳基薄膜及其制备方法

Country Status (1)

Country Link
CN (1) CN111139430B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115572921B (zh) * 2022-10-28 2023-06-27 汕头大学 一种提高非晶合金耐磨性的织构化超声冲击方法及应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103299396A (zh) * 2011-06-23 2013-09-11 旭化成株式会社 微细图案形成用积层体及微细图案形成用积层体的制造方法
CN105671576A (zh) * 2016-02-01 2016-06-15 合肥永信信息产业股份有限公司 一种类金刚石涂层褪镀工艺
CN105734527A (zh) * 2016-03-08 2016-07-06 仪征亚新科双环活塞环有限公司 一种用于活塞环表面的类金刚石镀层、活塞环及制备工艺
CN106739277A (zh) * 2016-11-16 2017-05-31 苏州大学 带有磁控溅射类金刚石碳膜的金属型材的制备方法与应用
CN107034440A (zh) * 2017-05-03 2017-08-11 马鞍山市卡迈特液压机械制造有限公司 一种复合类金刚石碳膜及其制备方法
WO2018002072A1 (en) * 2016-06-30 2018-01-04 Mahle Metal Leve S/A Sliding element for internal combustion engines
CN109898064A (zh) * 2019-03-29 2019-06-18 中南大学 一种DLC/Me-C复合薄膜及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140000857A1 (en) * 2012-06-19 2014-01-02 William P. King Refrigerant repelling surfaces
TWI484061B (zh) * 2013-03-08 2015-05-11 Nat Univ Tsing Hua 類鑽石薄膜及其製備方法
CN107345289B (zh) * 2017-06-07 2019-09-17 暨南大学 一种激光制备钛合金含氮化钛涂层织构化表面的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103299396A (zh) * 2011-06-23 2013-09-11 旭化成株式会社 微细图案形成用积层体及微细图案形成用积层体的制造方法
CN105671576A (zh) * 2016-02-01 2016-06-15 合肥永信信息产业股份有限公司 一种类金刚石涂层褪镀工艺
CN105734527A (zh) * 2016-03-08 2016-07-06 仪征亚新科双环活塞环有限公司 一种用于活塞环表面的类金刚石镀层、活塞环及制备工艺
WO2018002072A1 (en) * 2016-06-30 2018-01-04 Mahle Metal Leve S/A Sliding element for internal combustion engines
CN106739277A (zh) * 2016-11-16 2017-05-31 苏州大学 带有磁控溅射类金刚石碳膜的金属型材的制备方法与应用
CN107034440A (zh) * 2017-05-03 2017-08-11 马鞍山市卡迈特液压机械制造有限公司 一种复合类金刚石碳膜及其制备方法
CN109898064A (zh) * 2019-03-29 2019-06-18 中南大学 一种DLC/Me-C复合薄膜及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Fabrication of textured DLC films using three-dimensional masking system;Mai TAKASHIMA et.al;《Journal of Solid Mechanicsand Materials Engineering》;20111231;第5卷(第12期);第891-897页 *

Also Published As

Publication number Publication date
CN111139430A (zh) 2020-05-12

Similar Documents

Publication Publication Date Title
Kumar et al. AFM studies on surface morphology, topography and texture of nanostructured zinc aluminum oxide thin films
CN101298656B (zh) 一种高硬度类金刚石多层薄膜的制备方法
Wang et al. Nanocomposite microstructure and environment self-adapted tribological properties of highly hard graphite-like film
CN111139430B (zh) 一种织构化类金刚石碳基薄膜及其制备方法
Pogrebnjak et al. The effect of the deposition parameters of nitrides of high-entropy alloys (TiZrHfVNb) N on their structure, composition, mechanical and tribological properties
CN112647063B (zh) 基于激光辐照的dlc-纳米金刚石复合涂层制备方法
CN1066781C (zh) 滑动部件及其制造方法
Chen et al. Precise control of surface texture on carbon film by ion etching through filter: optimization of texture size for improving tribological behavior
Guan et al. Phase transitions of doped carbon in CrCN coatings with modified mechanical and tribological properties via filtered cathodic vacuum arc deposition
CN105839070A (zh) 一种低摩擦纳米TaC增强炭基复相薄膜的制备方法
Xing et al. Angle-dependent tribological properties of AlCrN coatings with microtextures induced by nanosecond laser under dry friction
Lin et al. Micro/nanomechanical properties of aluminum-doped zinc oxide films prepared by radio frequency magnetron sputtering
Shen et al. Comparative study on effects of Ni ion implantation on amorphous carbon (aC) coating and tetrahedral amorphous carbon (ta-C) coating
Zhao et al. Microstructure and properties of Mo doped DLC nanocomposite films deposited by a hybrid sputtering system
Zhou et al. Wear-mechanism map of amorphous carbon nitride coatings sliding against silicon carbide balls in water
CN109338287A (zh) 一种织构化Ta/Ag宽温区自润滑涂层及其制备方法
Wang et al. Self-lubricating coating with zero weight loss performance on additively manufactured Ti-6Al-4V
CN109161848B (zh) 一种CrAlBCN涂层、低摩擦耐海水腐蚀纳米复合CrAlBCN涂层及其制备方法
CN104313544B (zh) Ecr离子/电子/离子交替照射工艺制备三明治碳膜及方法
Roy Nanocomposite films for wear resistance applications
El-Hossary et al. Properties of TiAlN coating deposited by MPIIID on TiN substrates
Yao et al. Effect of periods on wear performance of TiN/AlN superlattice films
WANG et al. Influence of Ti target current on microstructure and properties of Ti-doped graphite-like carbon films
Zhang et al. Low-friction MoS x coatings resistant to wear in ambient air of low and high relative humidity
Hu et al. Fabrication and tribological properties of the laser textured SiC cylinders with diamond coating

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant