CN111850484A - 一种制备强韧化非晶碳基多相杂化薄膜的装置及方法 - Google Patents

一种制备强韧化非晶碳基多相杂化薄膜的装置及方法 Download PDF

Info

Publication number
CN111850484A
CN111850484A CN202010723691.3A CN202010723691A CN111850484A CN 111850484 A CN111850484 A CN 111850484A CN 202010723691 A CN202010723691 A CN 202010723691A CN 111850484 A CN111850484 A CN 111850484A
Authority
CN
China
Prior art keywords
amorphous carbon
source
vacuum chamber
titanium
preparing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010723691.3A
Other languages
English (en)
Other versions
CN111850484B (zh
Inventor
周兵
刘竹波
吴玉程
黑鸿君
高洁
吴艳霞
王永胜
于盛旺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyuan University of Technology
Original Assignee
Taiyuan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyuan University of Technology filed Critical Taiyuan University of Technology
Priority to CN202010723691.3A priority Critical patent/CN111850484B/zh
Publication of CN111850484A publication Critical patent/CN111850484A/zh
Application granted granted Critical
Publication of CN111850484B publication Critical patent/CN111850484B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0605Carbon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • C23C14/505Substrate holders for rotation of the substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种制备强韧化非晶碳基多相杂化薄膜的装置及方法。该装置为射频磁控溅射辅助直流和脉冲阴极电弧多激发源等离子体镀膜装置,制备方法包括:将预处理后的基体烘干,放置于多激发源等离子体镀膜装置的旋转样品台上;抽真空,通入氩气到真空室,采用离子源对基体表面进行溅射清洗;分别以高纯金属铝、钛和石墨片作为磁控溅射靶材、直流和脉冲阴极电弧的蒸发靶材,通入氩气和氮气,根据纳米晶和非晶相形成规律设计多相杂化薄膜结构,调节样品台转速,采用多激发源等离子体技术引入功能掺杂元素和梯度中间层制备非晶碳基多相杂化薄膜。本发明制备的非晶碳基多相杂化薄膜结构可调、相组成分布可控,具有高硬度、高粘附强度和强韧性。

Description

一种制备强韧化非晶碳基多相杂化薄膜的装置及方法
技术领域
本发明涉及一种制备强韧化非晶碳基多相杂化薄膜的装置及方法,属于材料表面改性技术领域。
背景技术
摩擦磨损部件的表面涂层处理是降低资源和能源浪费的有效措施之一。非晶碳薄膜具有高硬度、高弹性模量、低摩擦系数、良好的耐腐蚀和耐磨损等优异特性,可广泛用于机械零部件、工(模)具、电子和医疗器械等摩擦单元表面的功能层和防护层。然而,非晶碳薄膜在使用过程中常因高残余应力导致低膜-基粘附强度和低韧性等问题发生剥落、失效,严重影响其使用寿命和效率。非晶碳薄膜的残余应力与粘附强度、韧性相互制约,应力释放过程通常伴随着薄膜结构、组成和性能的变化。因此,解决非晶碳薄膜的强韧化问题是决定其应用推广的关键。
非晶碳薄膜的残余应力是本征应力和热应力的综合表现,两者共同降低或相互协调是非晶碳薄膜应力释放的理想预期。目前,国内外大部分研究采用掺杂和多层膜两种工艺来改善非晶碳膜的应力及其它性能。由于掺杂元素与碳原子成键能力的差异,非晶碳基薄膜的结构和性能极大的依赖于掺杂元素的含量及其在碳基质中的分布形式;合适的中间层设计可以减少膜-基之间的物性差异,在降低界面热应力的同时保持或改善非晶碳基多层膜的硬度、韧性和摩擦磨损性能。无论是掺杂异质原子还是引入中间层,非晶碳基薄膜的结构和性能均与界面间组成原子的物理-化学作用过程有关,即碳原子与异质原子的扩散和键合能力以及异质原子之间的相互作用决定了碳杂化键结构参数,进而影响薄膜的各项性能。因此,通过设计非晶碳基多元多界面耦合结构,借助界面间原子的物理-化学作用,形成可控分布的纳米晶/非晶相和软/硬梯度层界面等非均质结构,可制备低应力、高强韧的非晶碳基多相杂化薄膜。
发明内容
本发明旨在提供一种制备强韧化非晶碳基多相杂化薄膜的装置及方法,所得薄膜产品具有高膜基结合强度和高韧性。
本发明是通过以下技术方案实现的:
本发明提供了一种制备强韧化非晶碳基多相杂化薄膜的装置,具体是一种多激发源等离子体镀膜装置,包括真空室、直流阴极电弧源和脉冲阴极电弧源、射频磁控溅射源、离子源;真空室后部左侧位置安装有上下一组相结合的磁分离单元和直流阴极电弧源,右侧位置安装脉冲阴极电弧源;真空室门上安装离子源和观察窗口;右侧壁安装射频磁控溅射源,左侧壁下方设有抽气通道和抽真空装置;真空室底部装有圆形旋转样品台,样品台下端在真空室外部连接偏压电源;真空室背部下方设有氩气进气孔和氮气进气孔,进气孔前端分别设有氩气流量计和氮气流量计;真空室内部金属阴极蒸发靶连接直流阴极电弧源,石墨阴极蒸发靶连接脉冲阴极电弧源,金属溅射靶连接射频磁控溅射源,样品台中心正对石墨阴极蒸发靶和金属溅射靶。
本发明提供了一种采用上述装置制备强韧化非晶碳基多相杂化薄膜的方法,包括以下步骤:
(1) 基体表面处理:首先将研磨、抛光后的基体用肥皂水清洗并用去离子水冲洗,然后依次放入丙酮溶液和无水乙醇溶液中分别进行超声清洗10 min,除去表面的油脂及其他污染物,然后将基体置于烘箱干燥待用;
(2) 将预处理过的硅基片固定在多激发源等离子体镀膜装置的真空室内的旋转样品台上,高纯钛靶和石墨靶分别安装在直流阴极电弧和脉冲阴极电弧的蒸发器上,高纯铝靶安装在射频磁控溅射靶头上;
(3) 用抽真空装置对真空室抽真空,使真空度达到2×10−4~5×10−4 Pa;通过进气口通入氩气到真空室内,氩气的流量由流量计控制,使真空室气压稳定在3×10−2~6×10−2 Pa;开启旋转样品台,采用离子源对硅基片进行溅射清洗,然后冷却至室温;
(4) 关闭离子源和氩气进气孔,使真空室气压稳定在2×10−4~5×10−4 Pa;对样品施加负偏压,开启直流阴极电弧蒸发电源,调节阴极电压到60~90 V,阴极电流为60~90 A,在旋转的基体表面沉积钛过渡层;
(5) 钛过渡层沉积完毕后,通过氩气进气孔通入氩气到真空室内,使真空室气压稳定在0.3~1 Pa;同时开启直流阴极电弧源和射频磁控溅射源,调节溅射功率制备钛铝复合中间层,沉积时间为1~3 min;
(6) 钛铝中间层沉积完毕后,保持直流阴极电弧源和射频磁控溅射源开启,通入氮气,调节氮气流量制备钛铝氮化物梯度层,沉积时间5~20min;
(7) 钛铝氮梯度层沉积完毕后,开启脉冲阴极电弧源,调节阴极电压在300~350 V,在预制的钛铝氮化物中间层上制备钛铝碳氮梯度层薄膜;
(8) 关闭直流阴极电弧源和射频磁控溅射源,将流量调零并关闭氩气和氮气流量计,调节阴极电压在300~350 V,在预制的钛铝碳氮梯度层薄膜上制备非晶碳膜,最终得到强韧化非晶碳基多相杂化薄膜。
上述制备方法中,所述步骤(3)中离子源溅射清洗时间为5~15 min,氩离子的能量和束流密度分别为2~4 keV和15~25 A/m2
上述制备方法中,所述步骤(4)中,直流阴极电弧沉积钛过渡层的时间为1~5 min。
上述制备方法中,所述步骤(5)中,直流阴极电弧源阴极电压为60~90 V,阴极电流为60-90 A,射频磁控溅射功率为100~200 W。
上述制备方法中,所述步骤(6)中,氮气流量为20~60 sccm,射频磁控溅射功率为150~300 W,真空室气压保持在0.5~1.2 Pa。上述制备方法中,所述步骤(7)中,脉冲阴极电弧源的脉冲频率为6~15 Hz,脉冲数为600~3000。
上述制备方法中,所述步骤(8)中,脉冲阴极电弧源的脉冲频率为3~10 Hz,脉冲数为1500~5000。
上述制备方法中,所述步骤(3)~(8)中溅射清洗和沉积薄膜时样品台的转速为2~8r/min,施加负偏压为-600~-200 V。
本发明的有益效果:
(1) 采用本发明制备的非晶碳基多相杂化薄膜,组成原子在界面间发生完全扩散,形成扩散结合界面和化学键合界面,因此界面应力低,膜基结合强度高;
(2) 采用本发明制备的非晶碳基多相杂化薄膜,可在薄膜局部区域内形成可控分布的纳米晶/非晶相和软/硬层界面结构,使薄膜具有高硬度和实现强韧化效应;
(3) 采用本发明制备的非晶碳基多相杂化薄膜,工艺操作性强,可以在很大范围内调控薄膜内多元多界面结构,进而改善其综合性能;
(4) 本发明所采用的多激发源等离子体镀膜装置,可以制备不同类型的非晶碳基多相杂化薄膜,具有较高的硬度和较好的减摩耐磨性能,能够广泛应用于机械零部件、工模具和器械等领域的表面改性,减少其表面摩擦磨损。
附图说明
图1为本发明制备非晶碳基多相杂化薄膜的多激发源等离子体镀膜装置结构示意图;
图2为本发明制备的非晶碳基多相杂化薄膜的结构示意图;
图3为本发明制备的非晶碳基多相杂化薄膜的相组成分布示意图。
图4为本发明实施例1制备的非晶碳基多相杂化薄膜的原子力显微镜照片;
图5为本发明实施例2制备的非晶碳基多相杂化薄膜的原子力显微镜照片;
图6为本发明实施例1制备的非晶碳基多相杂化薄膜的硬度-位移曲线;
图7为本发明实施例2制备的非晶碳基多相杂化薄膜的硬度-位移曲线。
图中:1、真空室;2、直流阴极电弧源;3、脉冲阴极电弧源;4、射频磁控溅射源;5、离子源;6、磁分离单元;7、观察窗;8、抽气通道;9、抽真空装置;10、旋转样品台;11、偏压电源;12、氩气进气孔;13、氮气进气孔;14、氩气流量计;15、氮气流量计;16、金属阴极蒸发靶;17、石墨阴极蒸发靶;18、金属溅射靶;19、钛合金基体;20、钛过渡层;21、钛铝中间层;22、钛铝氮梯度层;23、钛铝碳氮梯度层;24、非晶碳层;25、氮化钛结晶相;26、氮化铝结晶相;27、钛铝氮化物结晶相;28、碳化钛结晶相;29、钛铝碳氮结晶相;30、非晶相。
具体实施方式
下面通过实施例来进一步说明本发明,但不局限于以下实施例。
实施例1:
本发明采用的制备强韧化非晶碳基多相杂化薄膜的多激发源等离子体镀膜装置,结构如图1所示,包括真空室1、直流阴极电弧源2和脉冲阴极电弧源3、射频磁控溅射源4、离子源5;真空室1背部左侧位置顶部和底部安装有一组磁分离单元6和直流阴极电弧源2,右侧位置安装脉冲阴极电弧源3;真空室门上安装离子源5和观察窗口7;真空室1右侧壁安装射频磁控溅射源4,左侧壁下方设有抽气通道8,抽气通道8外侧连接抽真空装置9。真空室底部装有圆形旋转样品台10,样品台下端在真空室1外部连接偏压电源11;真空室1背部下方设有氩气进气孔12和氮气进气孔13,进气孔前端分别设有氩气流量计14和氮气流量计15;真空室内部金属阴极蒸发靶16连接直流阴极电弧源2,石墨阴极蒸发靶17连接脉冲阴极电弧源3,金属溅射靶18连接射频磁控溅射源4,样品台10中心正对石墨阴极蒸发靶17和金属溅射靶18。
本实施例提供了一种采用如上所述装置在TC4钛合金基体19上制备强韧化非晶碳基多相杂化薄膜的方法,包括以下步骤:
(1) 基体表面处理:首先将研磨、抛光后的钛合金基体用肥皂水清洗并用去离子水冲洗,然后依次放入丙酮溶液和无水乙醇溶液中分别进行超声清洗10 min,除去表面的油脂及其他污染物,然后将基体置于烘箱干燥待用;
(2) 将预处理过的钛合金基体固定在多激发源等离子体镀膜装置的真空室内的旋转样品台上,高纯钛靶和石墨靶分别安装在直流阴极电弧和脉冲阴极电弧的蒸发器上,高纯铝靶安装在射频磁控溅射靶头上;
(3) 用抽真空装置对真空室抽真空,使真空度达到2×10−4~5×10−4 Pa;通过进气口通入氩气到真空室内,氩气的流量由流量计控制,使真空室气压稳定在6×10−2 Pa;开启旋转样品台,调节转速为2 r/min,采用离子源对钛合金基体溅射清洗10 min,氩离子的能量和束流密度分别为2 keV和15 A/m2,然后冷却至室温;
(4) 关闭离子源和氩气进气孔,使真空室气压稳定在2×10−4~5×10−4 Pa;对样品施加负偏压,调节负偏压为-300V;开启直流阴极电弧蒸发电源,调节阴极电压和阴极电流分别为90 V和70 A,在旋转的基体表面沉积钛过渡层,样品台转速为4 r/min,沉积时间为2min;
(5) 钛过渡层沉积完毕后,通过氩气进气孔通入氩气到真空室内,使真空室气压稳定在0.5 Pa;同时开启直流阴极电弧源和射频磁控溅射源,调节直流阴极电压和阴极电流为90 V和70 A,调节射频溅射功率为 120 W,制备钛铝复合中间层,沉积时间为2 min;
(6) 钛铝复合中间层沉积完毕后,保持直流阴极电弧源和射频磁控溅射源开启,调节射频溅射功率为 150 W,通入氮气,调节氮气流量为30 sccm,调低氩气流量,使真空室气压稳定在0.8 Pa;制备钛铝氮化物梯度层,沉积时间10 min;
(7) 钛铝氮梯度层沉积完毕后,开启脉冲阴极电弧源,调节阴极电压为350 V、脉冲频率和脉冲数分别为10 Hz和2400,在预制的钛铝氮化物梯度层上制备钛铝碳氮梯度层薄膜;
(8) 关闭直流阴极电弧源和射频磁控溅射源,将流量调零并关闭氩气和氮气流量计,调节脉冲阴极电弧源的阴极电压为350 V、脉冲频率和脉冲数分别为3 Hz和5000。在预制的钛铝碳氮薄膜上制备非晶碳膜,最终得到强韧化非晶碳基多相杂化薄膜。
实施例2:
本实施例提供了一种采用实施例1所述装置在TC4钛合金基体上制备强韧化非晶碳基多相杂化薄膜的方法,包括以下步骤:
(1) 基体表面处理:首先将研磨、抛光后的钛合金基体用肥皂水清洗并用去离子水冲洗,然后依次放入丙酮溶液和无水乙醇溶液中分别进行超声清洗10 min,除去表面的油脂及其他污染物,然后将基体置于烘箱干燥待用;
(2) 将预处理过的钛合金基体固定在多激发源等离子体装置的真空室内的旋转样品台上,高纯钛靶和石墨靶分别安装在直流阴极电弧和脉冲阴极电弧的蒸发器上,高纯铝靶安装在射频磁控溅射靶头上;
(3) 用抽真空装置对真空室抽真空,使真空度达到2×10−4~5×10−4 Pa;通过进气口通入氩气到真空室内,氩气的流量由流量计控制,使真空室气压稳定在6×10−2 Pa;开启旋转样品台,调节转速为2 r/min,采用离子源对钛合金基体溅射清洗10 min,氩离子的能量和束流密度分别为2 keV和15 A/m2,然后冷却至室温;
(4) 关闭离子源和氩气进气孔,使真空室气压稳定在2×10−4~5×10−4 Pa;对样品施加负偏压,调节负偏压为-300V;开启直流阴极电弧蒸发电源,调节阴极电压和阴极电流分别为90 V和90 A,在旋转的基体表面沉积钛过渡层,样品台转速为4 r/min,沉积时间为2min;
(5) 钛过渡层沉积完毕后,通过氩气进气孔通入氩气到真空室内,使真空室气压稳定在0.5 Pa;同时开启直流阴极电弧源和射频磁控溅射源,调节直流阴极电压和阴极电流为90 V和90 A,调节射频溅射功率为 150 W,制备钛铝复合中间层,沉积时间为2 min;
(6) 钛铝复合中间层沉积完毕后,保持直流阴极电弧源和射频磁控溅射源开启,调节射频溅射功率为 150 W,通入氮气,调节氮气流量为30 sccm,调低氩气流量,使真空室气压稳定在0.8 Pa;制备钛铝氮化物梯度层,沉积时间10 min;
(7) 钛铝氮梯度层沉积完毕后,开启脉冲阴极电弧源,调节阴极电压为350 V、脉冲频率和脉冲数分别为6 Hz和3000,在预制的钛铝氮化物梯度层上制备钛铝碳氮梯度层薄膜;
(8) 关闭直流阴极电弧源和射频磁控溅射源,将流量调零并关闭氩气和氮气流量计,调节脉冲阴极电弧源的阴极电压为350 V、脉冲频率和脉冲数分别为3 Hz和5000。在预制的钛铝碳氮薄膜上制备非晶碳膜,最终得到强韧化非晶碳基多相杂化薄膜。
实施例1和实施例2所制备的强韧化非晶碳基多相杂化薄膜的结构如图2所示,非晶碳基多相杂化薄膜由钛过渡层20、钛铝中间层21、钛铝氮梯度层22、钛铝碳氮梯度层23、非晶碳层24多层薄膜组成,通过改变过渡层、中间层和梯度层的厚度和组成,实现调控非晶碳基多相杂化薄膜的结构和性能的目的。
图3为实施例1和实施例2所制备的非晶碳基多相杂化薄膜的相组成分布图,薄膜制备过程中,各组成层界面间原子发生交互扩散与反应,形成多元多界面耦合结构,可以减少各组成层之间的物性差异,降低非晶碳基薄膜的残余应力。非晶碳基多相杂化薄膜的内部组成包含金属氮化物氮化钛结晶相25、氮化铝结晶相26、钛铝氮化物结晶相27、碳化钛结晶相28和钛铝碳氮结晶相29的硬质结晶相以及类金刚石碳和碳氮硬质非晶相30,不同相组成的纳米晶分布在碳基非晶相结构中,可以实现不同相成分的功能复合。
图4和图5分别为实施例1和实施例2所制备的强韧化非晶碳基多相杂化薄膜的原子力显微镜形貌照片,非晶碳基薄膜表面由不同结构、尺寸、相组成的晶粒和聚集物构成,与非晶碳基多相杂化薄膜的结构和表面相组成设计对应一致。
如图6和图7分别为实施例1和实施例2所制备的强韧化非晶碳基多相杂化薄膜的硬度曲线,非晶碳基薄膜具有较高的纳米硬度,明显高于单一的非晶碳膜(~20GPa),其弹性模量分别达到380GPa和320GPa;抗磨损系数(H/E)分别为0.082和0.085,抗塑性变形指数(H3/E2)分别为0.25和0.21,表明薄膜均具有较强的韧性与结合强度。通过改变不同激发源等离子体能量来调控纳米晶/非晶相的结构、组成和含量,进而在薄膜局部区域内形成可控分布的纳米晶/非晶相和软/硬层界面结构,提高非晶碳基多相杂化薄膜的硬度和强韧性。因此,通过本发明装置和方法可以制备强韧化非晶碳基多相杂化薄膜。

Claims (10)

1.一种制备强韧化非晶碳基多相杂化薄膜的装置,其特征在于:该装置为多激发源等离子体镀膜装置,包括真空室、直流阴极电弧源和脉冲阴极电弧源、射频磁控溅射源、离子源;真空室后部左侧位置顶部和底部安装有一组磁分离单元和直流阴极电弧源,右侧位置安装脉冲阴极电弧源;真空室门上安装离子源和观察窗口;右侧壁安装射频磁控溅射源,左侧壁下方设有抽气通道,抽气通道外接抽真空装置;真空室底部装有圆形旋转样品台,样品台下端连接位于真空室外部的偏压电源;真空室后部下方设有氩气进气孔和氮气进气孔,两个进气孔前端分别设有氩气流量计和氮气流量计;真空室内部金属阴极蒸发靶连接直流阴极电弧源,石墨阴极蒸发靶连接脉冲阴极电弧源,金属溅射靶连接射频磁控溅射源,样品台中心正对石墨阴极蒸发靶和金属溅射靶。
2.一种制备强韧化非晶碳基多相杂化薄膜的方法,采用权利要求1所述的制备强韧化非晶碳基多相杂化薄膜的装置,其特征在于:采用钛合金作为基体,通过离子源对基体表面进行溅射清洗;分别以高纯金属铝、钛和石墨片作为磁控溅射靶材、直流和脉冲阴极电弧的蒸发靶材,通入氮气,采用磁控溅射及阴极电弧多激发源等离子体技术,制备非晶碳基多相杂化薄膜。
3.根据权利要求2所述的制备强韧化非晶碳基多相杂化薄膜的方法,其特征在于:包括以下步骤:
(1) 基体表面处理:首先将研磨、抛光后的基体用肥皂水清洗并用去离子水冲洗,然后依次放入丙酮溶液和无水乙醇溶液中分别进行超声清洗10 min,除去表面的油脂及其他污染物,然后将基体置于烘箱干燥待用;
(2) 将预处理过的基体固定在多激发源等离子体镀膜装置的真空室内的旋转样品台上,高纯铝靶安装在射频磁控溅射靶头上,高纯钛靶和石墨靶分别安装在直流阴极电弧和脉冲阴极电弧的蒸发器上;
(3) 用抽真空装置对真空室抽真空,使真空度达到2×10−4~5×10−4 Pa;通过氩气进气孔通入氩气到真空室内,氩气的流量由氩气流量计控制,使真空室气压稳定在3×10−2~6×10−2 Pa;开启旋转样品台,采用离子源对硅基片进行溅射清洗,然后冷却至室温;
(4) 关闭离子源和氩气进气孔,使真空室气压稳定在2×10−4~5×10−4 Pa;对样品施加负偏压,开启直流阴极电弧蒸发电源,调节阴极电压到60~90 V,阴极电流为60~90 A,在旋转的基体表面沉积钛过渡层;
(5) 钛过渡层沉积完毕后,通过氩气进气孔通入氩气到真空室内,使真空室气压稳定在0.3~1 Pa;同时开启直流阴极电弧源和射频磁控溅射源,调节溅射功率制备钛铝复合中间层,沉积时间为1~3 min;
(6) 钛铝中间层沉积完毕后,保持直流阴极电弧源和射频磁控溅射源开启,通入氮气,调节氮气流量制备钛铝氮化物梯度层,沉积时间5~20min;
(7) 钛铝氮梯度层沉积完毕后,开启脉冲阴极电弧源,调节阴极电压在300~350 V,在预制的钛铝氮化物中间层上制备钛铝碳氮梯度层薄膜;
(8) 关闭直流阴极电弧源和射频磁控溅射源,将流量调零并关闭氩气和氮气流量计,调节阴极电压在300~350 V,在预制的钛铝碳氮梯度层薄膜上制备非晶碳膜,最终得到强韧化非晶碳基多相杂化薄膜。
4.根据权利要求3所述的制备强韧化非晶碳基多相杂化薄膜的方法,其特征在于:所述步骤(3)中离子源溅射清洗时间为5~15 min,氩离子的能量为2~4 keV、束流密度为15~25A/m2
5.根据权利要求3所述的制备强韧化非晶碳基多相杂化薄膜的方法,其特征在于:所述步骤(4)中,直流阴极电弧沉积钛过渡层的时间为1~5 min。
6.根据权利要求3所述的制备强韧化非晶碳基多相杂化薄膜的方法,其特征在于:所述步骤(5)中,直流阴极电弧源阴极电压为60~90 V,阴极电流为60~90 A,磁控溅射功率为100~200 W。
7.根据权利要求3所述的制备强韧化非晶碳基多相杂化薄膜的方法,其特征在于:所述步骤(6)中,氮气流量为20~60sccm,射频磁控溅射功率为150~300 W,真空室气压保持在0.5~1.2 Pa。
8.根据权利要求3所述的制备强韧化非晶碳基多相杂化薄膜的方法,其特征在于:所述步骤(7)中,脉冲阴极电弧源的脉冲频率为6~15 Hz,脉冲数为600~3000。
9.根据权利要求3所述的制备强韧化非晶碳基多相杂化薄膜的方法,其特征在于:所述步骤(8)中,脉冲阴极电弧源的脉冲频率为3~10 Hz,脉冲数为1500~5000。
10.根据权利要求3所述的制备强韧化非晶碳基多相杂化薄膜的方法,其特征在于:所述步骤(3)~(8)中溅射清洗和沉积薄膜时样品台的转速为2~8 r/min,施加负偏压为-600~-200 V。
CN202010723691.3A 2020-07-24 2020-07-24 一种制备强韧化非晶碳基多相杂化薄膜的装置及方法 Active CN111850484B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010723691.3A CN111850484B (zh) 2020-07-24 2020-07-24 一种制备强韧化非晶碳基多相杂化薄膜的装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010723691.3A CN111850484B (zh) 2020-07-24 2020-07-24 一种制备强韧化非晶碳基多相杂化薄膜的装置及方法

Publications (2)

Publication Number Publication Date
CN111850484A true CN111850484A (zh) 2020-10-30
CN111850484B CN111850484B (zh) 2022-05-17

Family

ID=72950076

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010723691.3A Active CN111850484B (zh) 2020-07-24 2020-07-24 一种制备强韧化非晶碳基多相杂化薄膜的装置及方法

Country Status (1)

Country Link
CN (1) CN111850484B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113774344A (zh) * 2021-09-01 2021-12-10 太原理工大学 一种钛硅共掺杂非晶碳氮复合薄膜的制备方法
CN114686832A (zh) * 2022-03-30 2022-07-01 太原理工大学 一种制备减摩耐磨TiAlN/TiAlCN多层复合薄膜的方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030049083A1 (en) * 2001-06-13 2003-03-13 Satoshi Ohtani Amorphous carbon coated tool and fabrication method thereof
US20070119703A1 (en) * 2005-11-25 2007-05-31 Hon Hai Precision Industry Co., Ltd. Molds having multilayer diamond-like carbon film and method for manufacturing same
CN101081557A (zh) * 2007-06-26 2007-12-05 广州有色金属研究院 金属碳化物/类金刚石(MeC/DLC)纳米多层膜材料及其制备方法
CN101554790A (zh) * 2009-05-18 2009-10-14 浙江大学 一种超硬碳薄膜及其制备方法
JP2010202978A (ja) * 2000-02-25 2010-09-16 Sumitomo Electric Ind Ltd 非晶質炭素被覆部材
CN105132878A (zh) * 2015-09-11 2015-12-09 太原理工大学 一种在硅表面制备钛/类金刚石纳米多层薄膜的方法
CN105862002A (zh) * 2016-06-07 2016-08-17 中国科学院兰州化学物理研究所 类牡蛎壳的仿生多层强韧化薄膜
CN106893987A (zh) * 2017-04-20 2017-06-27 上海应用技术大学 一种物理气相沉积Ta‑C涂层的制备方法及Ta‑C涂层
CN108677144A (zh) * 2018-06-01 2018-10-19 太原理工大学 一种制备铝氮共掺类金刚石复合薄膜的方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010202978A (ja) * 2000-02-25 2010-09-16 Sumitomo Electric Ind Ltd 非晶質炭素被覆部材
US20030049083A1 (en) * 2001-06-13 2003-03-13 Satoshi Ohtani Amorphous carbon coated tool and fabrication method thereof
US20070119703A1 (en) * 2005-11-25 2007-05-31 Hon Hai Precision Industry Co., Ltd. Molds having multilayer diamond-like carbon film and method for manufacturing same
CN101081557A (zh) * 2007-06-26 2007-12-05 广州有色金属研究院 金属碳化物/类金刚石(MeC/DLC)纳米多层膜材料及其制备方法
CN101554790A (zh) * 2009-05-18 2009-10-14 浙江大学 一种超硬碳薄膜及其制备方法
CN105132878A (zh) * 2015-09-11 2015-12-09 太原理工大学 一种在硅表面制备钛/类金刚石纳米多层薄膜的方法
CN105862002A (zh) * 2016-06-07 2016-08-17 中国科学院兰州化学物理研究所 类牡蛎壳的仿生多层强韧化薄膜
CN106893987A (zh) * 2017-04-20 2017-06-27 上海应用技术大学 一种物理气相沉积Ta‑C涂层的制备方法及Ta‑C涂层
CN108677144A (zh) * 2018-06-01 2018-10-19 太原理工大学 一种制备铝氮共掺类金刚石复合薄膜的方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
SHUNIAN CHEN ET AL.: "Corrosion and tribological properties of TiAlCN/TiAlN/TiAl composite system depositied by magneticfliter cathode vacuum arctechnique", 《《ACTA PHYSICA SINICA-CHINESE EDITION》》 *
XIAOLU PANG ET AL.: "Microstructure and mechanical properties of Ti/AlTiN/Ti-diamondlike carbon composite coatings on steel", 《《JOURNAL OF MATERIALS RESEARCH》》 *
王德山: "类金刚石碳膜磁控溅射抗剥离结合强度的实验研究", 《廊坊师范学院学报(自然科学版)》 *
聂君兰等: "ECR结合磁控溅射――制备DLC薄膜的新方法", 《工具技术》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113774344A (zh) * 2021-09-01 2021-12-10 太原理工大学 一种钛硅共掺杂非晶碳氮复合薄膜的制备方法
CN113774344B (zh) * 2021-09-01 2023-09-19 太原理工大学 一种钛硅共掺杂非晶碳氮复合薄膜的制备方法
CN114686832A (zh) * 2022-03-30 2022-07-01 太原理工大学 一种制备减摩耐磨TiAlN/TiAlCN多层复合薄膜的方法

Also Published As

Publication number Publication date
CN111850484B (zh) 2022-05-17

Similar Documents

Publication Publication Date Title
Alami et al. High power pulsed magnetron sputtering: Fundamentals and applications
CN108677144B (zh) 一种制备铝氮共掺类金刚石复合薄膜的方法
CN107022761A (zh) 基于类金刚石薄膜的复合厚膜及其镀膜方法
CN111850484B (zh) 一种制备强韧化非晶碳基多相杂化薄膜的装置及方法
CN104746030A (zh) 提高硬质合金与金刚石涂层结合强度的方法
CN107130222A (zh) 高功率脉冲磁控溅射CrAlSiN纳米复合涂层及其制备方法
CN207313693U (zh) 基于类金刚石薄膜的复合厚膜
CN111349901B (zh) 一种切削刀具用耐高温氧化铝厚膜涂层的制备方法
CN104141109B (zh) 钛金属表面原位合成TiC‑DLC复合涂层的方法
CN107267916A (zh) 一种在硬质合金表面通过直流磁控溅射沉积w‑n硬质膜的方法
CN109628896A (zh) 一种梯度结构TiAlSiYN多元纳米涂层及其制备方法
CN110777336A (zh) 一种基于能量调控原理制备超厚硬质薄膜的方法
Fu et al. Effects of pre-treatments and interlayers on the nucleation and growth of diamond coatings on titanium substrates
CN111155064A (zh) 高功率脉冲磁控溅射制备TiAlSiN复合涂层的方法
CN111647851A (zh) 兼具高硬度和高韧性Zr-B-N纳米复合涂层及其制备方法
CN111500998A (zh) 一种AlTiN/TiAlSiN梯度纳米复合结构涂层及其一体化制备方法与应用
CN111334794A (zh) 一种在基体表面沉积含Ti过渡层及钛掺杂类金刚石的改性薄膜及方法
CN114703452B (zh) 一种CoCrFeNi高熵合金掺杂非晶碳薄膜及其制备方法
CN113774344B (zh) 一种钛硅共掺杂非晶碳氮复合薄膜的制备方法
CN108251800A (zh) 一种Cu-Al梯度薄膜材料及其制备方法
CN108823544A (zh) 基于氮化钛复合膜及其制备方法
CN110484881B (zh) 一种致密二硼化钛涂层及其制备方法和应用
CN114686832A (zh) 一种制备减摩耐磨TiAlN/TiAlCN多层复合薄膜的方法
CN111575652A (zh) 真空镀膜设备及真空镀膜方法
CN108149198B (zh) 一种wc硬质合金薄膜及其梯度层技术室温制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant