CN105655552B - 一种镁离子电池及其制备方法 - Google Patents

一种镁离子电池及其制备方法 Download PDF

Info

Publication number
CN105655552B
CN105655552B CN201610008380.2A CN201610008380A CN105655552B CN 105655552 B CN105655552 B CN 105655552B CN 201610008380 A CN201610008380 A CN 201610008380A CN 105655552 B CN105655552 B CN 105655552B
Authority
CN
China
Prior art keywords
ion battery
magnesium ion
magnesium
red phosphorus
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610008380.2A
Other languages
English (en)
Other versions
CN105655552A (zh
Inventor
李震祺
刘立君
宋翠环
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201610008380.2A priority Critical patent/CN105655552B/zh
Publication of CN105655552A publication Critical patent/CN105655552A/zh
Application granted granted Critical
Publication of CN105655552B publication Critical patent/CN105655552B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本发明公开一种镁离子电池及其制备方法,包括正极、负极和电解液,其中,所述正极为红磷‑三维石墨复合材料,所述负极为镁锂合金,所述电解液为离子液体电解液。本发明采用红磷‑三维石墨复合材料作为正极,提高了嵌入镁的能力,提高活性物质利用率,提高电池比容量;石墨烯超强的力学性能有利于保持充放电过程中电极结构的稳定,提高循环寿命;镁锂合金负极,控制了镁离子负极钝化膜的厚度,减轻了镁离子电池电压滞后现象,延长电池使用寿命,同时锂的加入提高了镁离子电池电压;本发明中制备的镁离子电池有较大可逆容量和较强的大电流充放能力,支持1min可充90%左右电量。

Description

一种镁离子电池及其制备方法
技术领域
本发明涉及二次电池领域,尤其涉及一种镁离子电池及其制备方法。
背景技术
锂离子电池被认为是目前最有前途的储能和动力化学电源,但是,锂离子电池安全性较差,而且全球锂资源并不富裕,锂元素在地壳丰度仅为0.006%,资源的贫乏与高昂的价格成为未来锂离子电池大规模应用的忧患。镁相对性质稳定,安全无污染,且加工处理较锂方便;镁的理论容量为2205mAh/g,适用于需要较大功率的电动车等领域。同时,相比锂资源而言,镁储量十分丰富,地壳丰度为锂的440倍,相对于锂离子电池成本优势很明显;而且每个镁原子可储存2个电荷,具有更高的能量密度,所以开发镁离子电池具有非常广阔的应用前景。
组成镁离子电池的核心是镁负极、电解质溶液及能嵌入Mg2+的正极材料。由于镁的化学活性,金属镁的表面在绝大多数溶液中会生成钝化膜,而二价镁离子难以通过这种钝化层,从而限制了镁的电化学性能;而且二价镁离子体积小,电荷密度大,极化作用强,往往以溶剂化形式嵌入,动力学嵌入活性较低,且Mg2+在嵌入材料中的移动也比较困难,使得选择合适的正极材料遇到困难。
因此,现有技术还有待于改进和发展。
发明内容
鉴于上述现有技术的不足,本发明的目的在于提供一种镁离子电池及其制备方法,旨在解决现有镁离子电池正极材料难以嵌入镁,及电池比容量低的问题。
本发明的技术方案如下:
一种镁离子电池,包括正极、负极和电解液,其中,所述正极为红磷-三维石墨复合材料,所述负极为镁锂合金,所述电解液为离子液体电解液。
一种如上所述的镁离子电池的制备方法,其中,包括步骤:
A、将红磷和石墨放入高能球磨机中进行机械球磨,制备红磷-三维石墨复合材料;
B、将红磷-三维石墨复合材料、乙炔黑、聚四氟乙烯混合均匀,涂布于处理好的铜箔上、干燥、压制成正极片;
C、配制离子液体电解液;
D、以镁锂合金为负极片,与步骤B中制备好的正极片和步骤C配制好的离子液体电解液,在充满氩气的手套箱中装配成镁离子电池。
所述的镁离子电池的制备方法,其中,所述步骤A中,红磷和石墨的质量比为1:20~80。
所述的镁离子电池的制备方法,其中,所述步骤A中,机械球磨的转速为300~400rpm,机械球磨的时间为1~3h。
所述的镁离子电池的制备方法,其中,所述步骤B中,红磷-三维石墨复合材料、乙炔黑、聚四氟乙烯的质量比为75~85:5~15:10。
所述的镁离子电池的制备方法,其中,所述步骤C中,将Mg(CF3SO3)2溶于BMIMBF4溶液,配制成离子液体电解液。
所述的镁离子电池的制备方法,其中,所述步骤C中,将Mg(CF3SO3)2溶于BMIMBF4溶液,配制成浓度为1.0mol/L的离子液体电解液。
所述的镁离子电池的制备方法,其中,所述步骤D中,所述镁锂合金为含8~13%Li的镁锂合金。
有益效果:本发明选用红磷-三维石墨复合材料作为镁离子电池的正极,有效提高了正极嵌入镁的能力,提高电池比容量。且本发明制备的镁离子电池有较大可逆容量,可快速充电。
具体实施方式
本发明提供一种镁离子电池及其制备方法,为使本发明的目的、技术方案及效果更加清楚、明确,以下对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明提供一种镁离子电池,包括正极、负极和电解液,其中,所述正极为红磷-三维石墨复合材料,所述负极为镁锂合金,所述电解液为离子液体电解液。本发明选用红磷-三维石墨复合材料作为镁离子电池的正极,提高正极嵌入镁的能力,并提高了镁离子电池的比容量。由本发明上述正极、负极和电解液装配成的镁离子电池具有可逆容量大和快速充电的优点。
基于上述镁离子电池,本发明提供一种如上所述的镁离子电池的制备方法,其包括步骤:
A、将红磷和石墨放入高能球磨机中进行机械球磨,制备红磷-三维石墨复合材料;
优选地,所述步骤A中,红磷和石墨的质量比为1:20~80。更优选地,红磷和石墨的质量比为1:40~60(如1:50)。
优选地,所述步骤A中,机械球磨的转速为300~400rpm,机械球磨的时间为1~3h。更优选地,机械球磨的时间为2h。
所述步骤A具体为,将质量比为1:20~80的红磷和石墨放入转速300~400rpm的高能球磨机中进行机械球磨1~3h,制备红磷-三维石墨复合材料。本发明选用红磷和石墨进行机械球磨,高速球磨中,石墨被剥离为大比表面积的石墨烯,石墨烯相互搭接形成紧密结合的三维导电网络;红磷颗粒被粉碎至纳米级,且均匀分散在三维导电网络中,红磷和石墨烯以P-O-C的键合形式结合,改变了石墨烯电流密度,载流子浓度增大,促进电子转移。掺磷后石墨烯与镁由无结合能转变为具有较高的吸附能,有利于Mg2+的存储。石墨烯超强的力学性能有利于保持充放电过程中电极结构的稳定,提高循环寿命。
B、将红磷-三维石墨复合材料、乙炔黑、聚四氟乙烯混合均匀,涂布于处理好的铜箔上、干燥、压制成正极片;
优选地,所述步骤B中,红磷-三维石墨复合材料、乙炔黑、聚四氟乙烯的质量比为75~85:5~15:10。更优选地,红磷-三维石墨复合材料、乙炔黑、聚四氟乙烯的质量比为80:10:10。
所述步骤B具体为,将质量比为75~85:5~15:10的红磷-三维石墨复合材料、乙炔黑、聚四氟乙烯混合均匀,涂布于处理好的铜箔上、干燥、压制成正极片;
C、配制离子液体电解液;
优选地,所述步骤C中,将Mg(CF3SO3)2溶于BMIMBF4溶液,配制成离子液体电解液。
优选地,所述步骤C中,将Mg(CF3SO3)2溶于BMIMBF4溶液,配制成浓度为1.0mol/L的离子液体电解液。
所述步骤C具体为,将Mg(CF3SO3)2溶于BMIMBF4溶液,配制成浓度为1.0mol/L的离子液体电解液。
D、以镁锂合金为负极片,与步骤B中制备好的正极片和步骤C配制好的离子液体电解液,在充满氩气的手套箱中装配成镁离子电池。
优选地,所述步骤D中,所述镁锂合金为含8~13%Li的镁锂合金。本发明采用镁锂合金作为负极,可控制钝化膜的厚度,改善镁离子电池电压滞后现象,延长电池使用寿命,同时锂的加入提高了镁离子电池电压。
本发明采用红磷-三维石墨复合材料作为正极,提高了嵌入镁的能力,提高活性物质利用率,提高电池比容量;石墨烯超强的力学性能有利于保持充放电过程中电极结构的稳定,提高循环寿命;镁锂合金负极,控制了镁离子负极钝化膜的厚度,减轻了镁离子电池电压滞后现象,延长电池使用寿命,同时锂的加入提高了镁离子电池电压;本发明中制备的镁离子电池有较大可逆容量和较强的大电流充放能力,支持1min可充90%左右电量。
下面通过具体的实施例对本发明进行详细说明。
实施例1
将红磷和石墨按照1:20质量比放入高能球磨机中,400 rpm高速机械球磨2h制备红磷-三维石墨复合材料;将红磷-三维石墨复合材料、乙炔黑、聚四氟乙烯按质量比85:5:10混合均匀,涂布于处理好的铜箔上、干燥、压制成正极片,以含13%Li的镁锂合金为负极,1.0mol/L Mg(CF3SO3)2的BMIMBF4溶液为电解液,在充满氩气的手套箱中装配成CR2016型纽扣电池(即镁离子电池)。
测试结果:充放电电流0.1C,充放电电压范围为0.5V-3.0V,首次充放电比容量为352mAh/g,首次效率为97%,循环200次,容量保持85%以上,开路电压2.13V。
实施例2
将红磷和石墨按照1:50质量比放入高能球磨机中,350 rpm高速机械球磨3h制备红磷-三维石墨复合材料;将红磷-三维石墨复合材料、乙炔黑、聚四氟乙烯按质量比80:10:10混合均匀,涂布于处理好的铜箔上、干燥、压制成正极片,以含10%Li的镁锂合金为负极,1.0mol/L Mg(CF3SO3)2的BMIMBF4溶液为电解液,在充满氩气的手套箱中装配成CR2016型纽扣电池。
测试结果:充放电电流0.1C,充放电电压范围为0.5V-3.0V,首次充放电比容量为226mAh/g,首次效率为96%,循环200次,容量保持90%以上,开路电压1.87V。
实施例3
将红磷和石墨按照1:80质量比放入高能球磨机中,300 rpm高速机械球磨1h制备红磷-三维石墨复合材料;将红磷-三维石墨复合材料、乙炔黑、聚四氟乙烯按质量比75:15:10混合均匀,涂布于处理好的铜箔上、干燥、压制成正极片,以含8%Li的镁锂合金为负极,1.0mol/L Mg(CF3SO3)2的BMIMBF4溶液为电解液,在充满氩气的手套箱中装配成CR2016型纽扣电池。
测试结果:充放电电流0.1C,充放电电压范围为0.5V-3.0V,首次充放电比容量为180mAh/g,首次效率为91%,循环200次,容量保持80%以上,开路电压1.63V。
通过本发明上述制备方法制成的镁离子电池不仅实现了金属镁的电化学可逆溶解和沉积,以及镁离子对正极可逆嵌入和脱出,并表现了良好的可逆充放电行为。本发明制备成的镁离子电池具有高效耐用、快速充电、高安全性、材料成本低和较长寿命的特点。
综上所述,本发明提供的一种镁离子电池及其制备方法,本发明采用红磷-三维石墨复合材料作为正极,提高了嵌入镁的能力,提高活性物质利用率,提高电池比容量;石墨烯超强的力学性能有利于保持充放电过程中电极结构的稳定,提高循环寿命;镁锂合金作为负极,控制了镁离子负极钝化膜的厚度,减轻了镁离子电池电压滞后现象,延长电池使用寿命,同时锂的加入提高了镁离子电池电压;本发明中制备的镁离子电池有较大可逆容量和较强的大电流充放能力,支持1min可充90%左右电量。
应当理解的是,本发明的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (8)

1.一种镁离子电池,包括正极、负极和电解液,其特征在于,所述正极为红磷-三维石墨复合材料,所述负极为镁锂合金,所述电解液为离子液体电解液;
所述红磷-三维石墨复合材料中,红磷为纳米级,三维石墨为石墨烯相互搭接形成的紧密结合的三维导电网络,红磷和三维石墨是以P-O-C的键合形式结合在一起。
2.一种如权利要求1所述的镁离子电池的制备方法,其特征在于,包括步骤:
A、将红磷和石墨放入高能球磨机中进行机械球磨,制备红磷-三维石墨复合材料;
B、将红磷-三维石墨复合材料、乙炔黑、聚四氟乙烯混合均匀,涂布于处理好的铜箔上、干燥、压制成正极片;
C、配制离子液体电解液;
D、以镁锂合金为负极片,与步骤B中制备好的正极片和步骤C配制好的离子液体电解液,在充满氩气的手套箱中装配成镁离子电池。
3.根据权利要求2所述的镁离子电池的制备方法,其特征在于,所述步骤A中,红磷和石墨的质量比为1:20~80。
4.根据权利要求2所述的镁离子电池的制备方法,其特征在于,所述步骤A中,机械球磨的转速为300~400rpm,机械球磨的时间为1~3h。
5.根据权利要求2所述的镁离子电池的制备方法,其特征在于,所述步骤B中,红磷-三维石墨复合材料、乙炔黑、聚四氟乙烯的质量比为75~85:5~15:10。
6.根据权利要求2所述的镁离子电池的制备方法,其特征在于,所述步骤C中,将Mg(CF3SO3)2溶于BMIMBF4溶液,配制成离子液体电解液。
7.根据权利要求6所述的镁离子电池的制备方法,其特征在于,所述步骤C中,将Mg(CF3SO3)2溶于BMIMBF4溶液,配制成浓度为1.0mol/L的离子液体电解液。
8.根据权利要求2所述的镁离子电池的制备方法,其特征在于,所述步骤D中,所述镁锂合金为含8~13%Li的镁锂合金。
CN201610008380.2A 2016-01-07 2016-01-07 一种镁离子电池及其制备方法 Active CN105655552B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610008380.2A CN105655552B (zh) 2016-01-07 2016-01-07 一种镁离子电池及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610008380.2A CN105655552B (zh) 2016-01-07 2016-01-07 一种镁离子电池及其制备方法

Publications (2)

Publication Number Publication Date
CN105655552A CN105655552A (zh) 2016-06-08
CN105655552B true CN105655552B (zh) 2018-01-12

Family

ID=56490494

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610008380.2A Active CN105655552B (zh) 2016-01-07 2016-01-07 一种镁离子电池及其制备方法

Country Status (1)

Country Link
CN (1) CN105655552B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108493420A (zh) * 2018-04-04 2018-09-04 天津大学 一种铝离子电池用局域石墨化的石墨烯衍生材料
CN109755553B (zh) * 2019-03-20 2021-09-24 北京航空航天大学 一种镁锂双离子电池复合正极材料及其制备方法和应用、电池体系
CN111554917B (zh) * 2020-05-19 2021-11-16 上海健康医学院 一种纳米黑磷烯在镁离子电池负极材料中的应用
CN112133964A (zh) * 2020-09-23 2020-12-25 杭州怡莱珂科技有限公司 一种镁离子电解质溶液及其制备方法
CN114864866A (zh) * 2022-06-21 2022-08-05 合肥国轩高科动力能源有限公司 一种锂镁复合负极及其制备方法及制备的锂硫电池、全固态电池

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103413905A (zh) * 2013-07-12 2013-11-27 复旦大学 一种高电压的镁充放电电池
CN105098154A (zh) * 2015-07-09 2015-11-25 天津工业大学 一种红磷包覆碳纳米管复合离子电池负极材料的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103413905A (zh) * 2013-07-12 2013-11-27 复旦大学 一种高电压的镁充放电电池
CN105098154A (zh) * 2015-07-09 2015-11-25 天津工业大学 一种红磷包覆碳纳米管复合离子电池负极材料的制备方法

Also Published As

Publication number Publication date
CN105655552A (zh) 2016-06-08

Similar Documents

Publication Publication Date Title
Lei et al. A porous network of bismuth used as the anode material for high‐energy‐density potassium‐ion batteries
Zhou et al. Durable high-rate performance of CuO hollow nanoparticles/graphene-nanosheet composite anode material for lithium-ion batteries
CN105655552B (zh) 一种镁离子电池及其制备方法
CN109103399B (zh) 一种锂硫电池用功能性隔膜及其制备方法和在锂硫电池中的应用
CN106450102A (zh) 用于锂硫电池的石墨改性隔膜及其制备方法与构成的锂硫电池
CN106654221A (zh) 用于锂离子电池负极的三维多孔碳包覆硒化锌材料及其制备方法
Jiang et al. In situ growth of CuO submicro-sheets on optimized Cu foam to induce uniform Li deposition and stripping for stable Li metal batteries
CN105633360B (zh) 无定形态四氧化三铁/石墨烯气凝胶复合材料、制备方法及其应用
CN108963317A (zh) 一种混合型全固态电池
CN105742695B (zh) 一种锂离子电池及其制备方法
CN106025194A (zh) 一种黑磷基复合负极材料及其制备方法
CN110190331B (zh) 一种稳固锂离子电池硅碳表面的电解液、制备及其应用
CN104409223A (zh) 一种锂离子电容器负极片及使用该负极片的锂离子电容器
Chang et al. Co-guiding the dendrite-free plating of lithium on lithiophilic ZnO and fluoride modified 3D porous copper for stable Li metal anode
CN106992297A (zh) 一种三元电池复合正极材料的制备方法及应用
Zuo et al. Lithiophilic silver coating on lithium metal surface for inhibiting lithium dendrites
Sun et al. Uniform deposition of Li-metal anodes guided by 3D current collectors with in situ modification of the lithiophilic matrix
Worku Engineering techniques to dendrite free Zinc-based rechargeable batteries
Li et al. In Situ Electrochemical Activation Derived LixMoOy Nanorods as the Multifunctional Interlayer for Fast Kinetics Li‐S batteries
CN108365210A (zh) 一种活性炭碳-硫材料及其制备方法和应用
Chen et al. Lithiophilic hyperbranched Cu nanostructure for stable Li metal anodes
Zhuang et al. 3D Free‐Standing Carbon Nanofibers Modified by Lithiophilic Metals Enabling Dendrite‐Free Anodes for Li Metal Batteries
Shao et al. Bilayer carbon-based structure with the promotion of homogenous nucleation for lithium metal anodes
CN101478062A (zh) 锂离子电池用复合电解液及其制备方法和应用
Kang et al. A stable protective layer toward high-performance lithium metal battery

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant