CN105601652A - 一种制备金属有机骨架材料的方法 - Google Patents

一种制备金属有机骨架材料的方法 Download PDF

Info

Publication number
CN105601652A
CN105601652A CN201410585337.3A CN201410585337A CN105601652A CN 105601652 A CN105601652 A CN 105601652A CN 201410585337 A CN201410585337 A CN 201410585337A CN 105601652 A CN105601652 A CN 105601652A
Authority
CN
China
Prior art keywords
module
reaction
solution
flow velocity
micro passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410585337.3A
Other languages
English (en)
Other versions
CN105601652B (zh
Inventor
王海洋
马蕊英
赵亮
张英
王刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinopec Dalian Petrochemical Research Institute Co ltd
China Petroleum and Chemical Corp
Original Assignee
China Petroleum and Chemical Corp
Sinopec Dalian Research Institute of Petroleum and Petrochemicals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum and Chemical Corp, Sinopec Dalian Research Institute of Petroleum and Petrochemicals filed Critical China Petroleum and Chemical Corp
Priority to CN201410585337.3A priority Critical patent/CN105601652B/zh
Publication of CN105601652A publication Critical patent/CN105601652A/zh
Application granted granted Critical
Publication of CN105601652B publication Critical patent/CN105601652B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

本发明公开了一种制备金属有机骨架材料的方法,包括:(1)制备金属前驱体溶液A;(2)制备有机配体溶液B;(3)将溶液A和B分别送入微通道反应器模块I中原位生成MOFs晶种,反应一定时间后将料液送入模块II;(4)在料液进入模块II时,将溶液B送入模块II中进行晶种诱导合成,反应一定时间后将料液送入模块Ⅲ;(5)在步骤(4)所得料液进入模块Ⅲ时,将溶剂C送入模块Ⅲ中进行溶剂活化反应;(6)制得的悬浊液固液分离,固体用乙醇洗涤,干燥后制得产品。本发明采用多模块微通道反应器,在模块I中原位生成MOFs晶种,在模块II中进行晶种诱导合成,在模块Ⅲ中完成溶剂活化反应,具有制备过程简单快速、产品粒径分布窄、分散性好等优点。

Description

一种制备金属有机骨架材料的方法
技术领域
本发明涉及制备金属有机骨架材料的方法,具体涉及一种利用微通道反应器制备金属有机骨架材料的方法。
背景技术
金属有机骨架材料(MOFs),又称金属配位聚合物,是指以无机金属或金属簇与含氮氧多齿有机配体通过配位键连接而形成的晶体材料,是一类具有高比表面积、可调变孔道尺寸,有机功能化的多孔材料。目前常用的制备方法包括水热法、溶剂热法、回流法、微波法、声波法、电化学法等方法。
在MOFs材料合成制备过程中,在材料孔道中存在大量的有机溶剂、未反应的金属离子与有机配体,而MOFs材料在实际应用前,需经过活化去除上述杂质,而MOFs材料活化程度的高低,直接影响着其应用性能的好坏。大多数MOFs材料的活化方法是溶剂交换活化,该方法利用有机溶剂的相似相溶原理,使用低沸点溶剂替换MOFs材料内高沸点溶剂。溶剂交换法多在常温常压下进行,操作简单,其缺点是处理时间长,消耗溶剂多。
专利CN102921377A公开了一种重氮ZMOF类型金属有机骨架多孔材料的制备方法,该方法后处理过程中,将反应产物放入N,N-二甲基甲酰胺超声浸泡12h后倒掉上层浑浊液,如此反复2-3次,然后换成无水乙醇,再重复2-3次,得到处理后的产物。
专利CN101516894A公开了一种含有铜的金属有机骨架材料的制备方法,在反应溶液中过滤出蓝色沉淀物,放入溶解了三亚乙基二胺的甲醇溶液在70℃回流搅拌16h,过滤后再次用甲醇洗涤多次。
上述专利对产品的后处理方法不仅耗费了大量的有机溶剂,还消耗了很长的处理时间,严重影响了该材料的生产效率与使用性能。
发明内容
针对现有技术存在的不足,本发明的目的在于提供一种制备金属有机骨架材料的方法。本发明采用多模块微通道反应器,在微通道反应器模块I中原位生成MOFs晶种,在模块II中进行晶种诱导连续制备MOFs材料,在模块Ⅲ中完成溶剂活化反应,具有制备过程简单快速、产品粒径分布窄、分散性好等优点。
本发明制备金属有机骨架材料的方法,包括如下步骤:
(1)将金属前驱体加入有机溶剂中搅拌溶解,制得溶液A;
(2)将有机配体加入有机溶剂中搅拌溶解,制得溶液B;
(3)将溶液A和B按照一定的流速分别送入微通道反应器模块I中原位生成MOFs晶种,反应一定时间后将产物料液送入微通道反应器模块II中;
(4)在上述产物料液进入微通道反应器模块II中时,将溶液B按照一定的流速送入模块II中进行晶种诱导合成MOFs材料,反应一定时间后将产物料液送入微通道反应器模块Ⅲ中;
(5)在步骤(4)所得料液进入微通道反应器模块Ⅲ中时,将有机溶剂C按照一定流速送入模块Ⅲ中进行溶剂活化反应;
(6)将步骤(5)制得的MOFs悬浊液进行固液分离,固体用乙醇洗涤,在80~120℃下干燥8~24h。
本发明步骤(1)所述金属前驱体是铜、铁、锆、锌、镁、铝、钴、铬、镍、钙、钛的硫酸盐、硝酸盐、醋酸盐、碳酸盐、卤化盐或其水合物中的一种或几种,优选为硝酸锌、硫酸锌、硝酸铜、硫酸铜或硫酸镁,更优选为硝酸铜。步骤(1)所述有机溶剂为水、甲醇、乙醇、异丙醇、乙二醇、异丁醇、丙三醇、N,N-二甲基甲酰胺、N,N-二乙基甲酰胺、N,N-二乙基乙酰胺中的一种或几种,优选为水、甲醇或乙醇,更优选乙醇。所述溶液A中金属前驱体的浓度为0.01-5.0mol/L,优选为0.1-1.0mol/L。
本发明步骤(2)所述有机配体为多齿有机化合物,优选为双齿、三齿羧酸配体化合物及其衍生物,包括对苯二甲酸、间苯二甲酸、均苯三甲酸、1,4-萘二羧酸、1,5-萘二羧酸、2,6-萘二羧酸等,优选为均苯三甲酸,衍生物是指羧酸配体化合物中一个或多个羧酸官能团被硝基基团、羟基基团、甲基基团、氰基基团等官能团取代。步骤(2)所述有机溶剂为甲醇、乙醇、异丙醇、乙二醇、异丁醇、丙三醇、N,N-二甲基甲酰胺、N,N-二乙基甲酰胺、N,N-二乙基乙酰胺中的一种或几种,优选为甲醇、乙醇或异丙醇,更优选为乙醇。所述溶液B中有机配体的浓度为0.01-10mol/L,优选为0.1-2.0mol/L。
本发明步骤(3)所述溶液A的流速为0.1-2000μl/min,优选为5-200μl/min。溶液B的流速为0.1-2000μl/min,优选为5-200μl/min。步骤(3)所述溶液A和B进入微通道反应器模块I后,反应温度为30-80℃,优选为40-70℃,反应压力为0.1-2.0MPa,优选为0.1-1.0MPa,反应时间为1-600s,优选为30-180s。
本发明步骤(4)所述溶液B的流速为0.1-2000μl/min,优选为5-200μl/min。含有MOFs晶种的料液送入微通道反应器模块II的流速为0.2-2000μl/min,优选为10-400μl/min。步骤(4)所述晶种诱导合成MOFs材料的反应温度为50-200℃,优选为80-150℃,反应压力为0.1-2.0MPa,优选为0.1-1.0MPa,反应时间为1-600s,优选为60-200s。
本发明步骤(5)所述有机溶剂C是甲醇、乙醇、乙二醇、丙二醇、丙醇、丙酮、二氯甲烷、去离子水中的一种或几种,优选为乙醇。有机溶剂C的流速为0.1-2000μl/min,优选为100-500μl/min。产物料液送入微通道反应器模块Ⅲ的流速为0.2-2000μl/min,优选为15-600μl/min。步骤(5)所述微通道反应器模块Ⅲ的反应温度为50-200℃,优选为100-150℃;反应压力为0.1-2.0MPa,优选为0.1-1.0MPa;反应时间为1-600s,优选为60-300s。溶剂活化反应是指有机溶剂C在微通道反应器模块Ⅲ中进入MOFs材料孔道内,溶解未完全反应的金属和有机配体等杂质,交换MOFs材料孔道内的有机溶剂。
本发明步骤(3)和步骤(4)中向溶液B中加入酸或碱调节反应体系的pH值为2-7,优选为4-5。所述的酸可以是盐酸、醋酸、柠檬酸等;所述的碱可以是氢氧化钠、氢氧化钾、乙二胺、三乙胺等。
本发明所述的微通道反应器可以采用市售或者自制的微通道反应器。反应器的材质为特种玻璃、陶瓷、聚四氟乙烯、不锈钢或合金等,反应器结构为心型、菱形、长方形等可以增强反应物物流混合的形状,反应器内径为10-2000微米。所述微通道反应器模块包括至少两个进料口和一个出料口,可以根据反应要求改变进料口数量与位置。
与现有技术相比,本发明方法具有如下突出优点:
(1)微通道反应器是由多个微通道模块组成的反应器,具有高传质、高传热的特点,用于制备有机金属骨架材料,不仅可以获得粒径分布窄、分散性好、比表面积高的纳米级MOFs材料,而且可以显著缩短反应时间至几十秒至几分钟,大大提高了反应效率和生产效率。与同类产品的制备方法相比,具有制备过程简单,周期短的特点,更适合于工业化批量生产;
(2)采用多模块微通道反应器,首先在微通道反应器模块I中原位生成MOFs晶种,然后在微通道反应器模块II中进行晶种诱导连续制备MOFs材料,最后在模块Ⅲ中完成溶剂活化反应,不需要外加晶种,而且制备的MOFs产品性能更好。同时,微通道反应器模块可根据生产需求灵活的进行微通道反应器模块的增减,并且无放大效应,占地少,操作简单,易于实现规模化扩大生产;
(3)本发明首次利用微通道反应器溶剂交换活化新鲜制备的金属有机骨架材料,处理过程简单,具有高效的材料处理效率,经过真空烘干后具有良好的活化效果,大大提高了原料的利用效率,降低了原料的消耗量,降低了生产成本,具有良好的工业规模化生产前景;
(4)在原位生成MOFs晶种及晶种诱导过程中调节反应体系的pH值在2-7之间,保持合成的反应溶液的pH值,有助于模块I中MOFs晶种、模块II中MOFs晶体的生成与生长。
附图说明
图1是本发明方法采用的三模块微通道反应器的结构示意图;
其中1、2是模块I的进料口,3是模块I的出料口,4、5是模块II的进料口,6是模块II的出料口,7、8是模块Ⅲ的进料口,9是模块Ⅲ的出料口。
图2是本发明方法实施例1-6与比较例1-3合成样品的XRD图。
具体实施方式
下面结合实施例和比较例对本发明作进一步的说明,但本专利的保护范围并不受实施例的限制。下述实施例和比较例中所述试剂和材料,如无特殊说明,均可从商业途径获得。
本发明实施例采用的是三模块微通道反应器,如附图1所示。具体流程是将金属前驱体溶解于有机溶剂中形成溶液A,将有机配体溶解于有机溶剂中形成溶液B,两者按照一定的流速由进料口1、2进入模块I中混合反应,在一定温度、压力下形成含有MOFs晶种的料液,从出料口3流出按照一定的流速从进料口4进入模块II中,与进料口5进入的B溶液混合反应,在一定温度、压力下生成MOFs材料,反应结束后,从模块II的出料口6流出按照一定的流速从进料口7进入模块Ⅲ,与进料口8进入的有机溶剂C混合反应,在一定温度、压力下进行MOFs材料溶剂活化反应,最后由出料口9排出。
本发明实施例采用的微通道反应器是市售的微通道反应器,反应器的材质不锈钢,结构为心型,反应器内径为10-2000微米。
本发明实施例所述反应溶液的输送设备为高压输液泵,采用305SFM01Ⅲ型,压力范围0-6000psi,流量控制精度为0.2%,流速范围0.001-5ml/min。
实施例1
将12.1g三水合硝酸铜溶解于500ml乙醇中形成A液,将10.5g均苯三甲酸溶解于500ml乙醇中形成B液。A液的流速为5μl/min,由进料口1送入模块I中,同时B液的流速为5μl/min,由进料口2注入模块I中,其中模块I的温度为40℃,压力为0.1MPa,A液与B液在模块I中均匀混合生成含有Cu-MOFs晶种的料液,停留时间是180s。含有Cu-MOFs晶种的料液由进料口4送入微通道反应器模块II,其流速为10μl/min,将剩余的B液以流速为5μl/min由进料口5送入微通道反应器模块II中,其中模块II的温度为80℃,压力为0.1MPa,停留时间是200s。反应一定时间后,产物料液由进料口7送入模块Ⅲ中,其流速为15μl/min,与由进料口8注入的有机溶剂C混合反应,有机溶剂C的流速是100μl/min,其中模块Ⅲ的温度为100℃,压力为0.1MPa,停留时间是300s。反应结束后,收集产物Cu-MOFs悬浊液,进行离心,固体用乙醇洗涤,在100℃下干燥24h。经XRD表征显示该样品为Cu-MOFs材料,获得的产品平均粒径为8μm,比表面积为1835m2/g。
实施例2
将121g三水合硝酸铜溶解于500ml乙醇中形成A液,将210g均苯三甲酸溶解于500ml乙醇中形成B液。A液的流速为200μl/min,由进料口1送入模块I中,同时B液的流速为200μl/min,由进料口2注入模块I中,其中模块I的温度为70℃,压力为1.0MPa,A液与B液在模块I中均匀混合生成含有Cu-MOFs晶种的料液,停留时间是30s。含有Cu-MOFs晶种的料液由进料口4送入微通道反应器模块II,其流速为400μl/min,将剩余的B液以流速为200μl/min由进料口5送入微通道反应器模块II中,其中模块II的温度为150℃,压力为1MPa,停留时间是60s。反应一定时间后,产物料液由进料口7送入模块Ⅲ中,其流速为600μl/min,与由进料口8注入的有机溶剂C混合反应,有机溶剂C的流速是500μl/min,其中模块Ⅲ的温度为150℃,压力为1.0MPa,停留时间是60s。反应结束后,收集产物Cu-MOFs悬浊液,进行离心,固体用乙醇洗涤,在100℃下干燥24h。经XRD表征显示该样品为Cu-MOFs材料,获得的产品平均粒径为7μm,比表面积为1912m2/g。
实施例3
将60.5g三水合硝酸铜溶解于500ml乙醇中形成A液,将105g均苯三甲酸溶解于500ml乙醇中形成B液。A液的流速为100μl/min,由进料口1送入模块I中,同时B液的流速为100μl/min,由进料口2注入模块I中,其中模块I的温度为60℃,压力为0.5MPa,A液与B液在模块I中均匀混合生成含有Cu-MOFs晶种的料液,停留时间是120s。含有Cu-MOFs晶种的料液由进料口4送入微通道反应器模块II,其流速为200μl/min,将剩余的B液以流速为100μl/min由进料口5送入模块II中,其中模块II的温度为120℃,压力为0.5MPa,停留时间是150s。反应一定时间后,产物料液由进料口7送入模块Ⅲ中,其流速为300μl/min,与由进料口8注入的有机溶剂C混合反应,有机溶剂C的流速是300μl/min,其中模块Ⅲ的温度为120℃,压力为0.5MPa,停留时间是180s。反应结束后,收集产物Cu-MOFs悬浊液,进行离心,固体用乙醇洗涤,在100℃下干燥24h。经XRD表征显示该样品为Cu-MOFs材料,获得的产品平均粒径为5μm,比表面积为1970m2/g。
实施例4
处理流程及操作条件与实施例1相同,不同之处在于:向溶液B液中加入盐酸调节反应体系的pH值为4。反应结束后,收集Cu-MOFs悬浊液,进行离心,固体用乙醇洗涤,在100℃下干燥24h。经XRD表征显示该样品为Cu-MOFs材料,获得的产品平均粒径为7.3μm,比表面积为1895m2/g。
实施例5
处理流程及操作条件与实施例2相同,不同之处在于:向B液中加入醋酸调节反应体系的pH值为5。反应结束后,收集负载金属的Cu-MOFs悬浊液,进行离心,用乙醇洗涤,在100℃下干燥24h。经XRD表征显示该样品为Cu-MOFs材料,获得的产品平均粒径为6.5μm,比表面积为1946m2/g。
实施例6
将62.5g五水合硫酸铜溶解于500ml去离子水中形成A液,108g的2,6-萘二羧酸溶解于500ml甲醇中形成B液。A液的流速为100μl/min,由进料口1送入模块I中,同时B液的流速为100μl/min,由进料口2注入模块I中,其中模块I的温度为60℃,压力为0.5MPa,A液与B液在模块I中均匀混合生成含有Cu-MOFs晶种的料液,停留时间是120s。含有Cu-MOFs晶种的料液由进料口4送入微通道反应器模块II,其流速为200μl/min,将剩余的B液以流速为100μl/min由进料口5送入微通道反应器模块II中,其中模块II的温度为120℃,压力为1.0MPa,停留时间是150s。反应一定时间后,产物料液由进料口7送入模块Ⅲ中,其流速为300μl/min,与由进料口8注入的有机溶剂C混合反应,有机溶剂C的流速是300μl/min,其中模块Ⅲ的温度为120℃,压力为0.5MPa,停留时间是180s。反应结束后,收集产物Cu-MOFs悬浊液,进行离心,固体用乙醇洗涤,在100℃下干燥24h。经XRD表征显示该样品为Cu-MOFs材料,获得的产品平均粒径为6.8μm,比表面积为1810m2/g。
实施例7
将74.5g硝酸锌溶解于500ml甲醇中形成A液,83g对苯二甲酸溶解于500ml异丙醇中形成B液。A液的流速为100μl/min,由进料口1送入模块I中,同时B液的流速为100μl/min,由进料口2注入模块I中,其中模块I的温度为60℃,压力为0.5MPa,A液与B液在模块I中均匀混合生成含有Zn-MOFs晶种的料液,停留时间是120s。含有Zn-MOFs晶种的料液由进料口4送入微通道反应器模块II,其流速为200μl/min,将剩余的B液以流速为100μl/min由进料口5送入微通道反应器模块II中,其中模块II的温度为120℃,压力为1.0MPa,停留时间是150s,反应一定时间后,产物料液由进料口7送入模块Ⅲ中,其流速为300μl/min,与由进料口8注入的有机溶剂C混合反应,有机溶剂C的流速是300μl/min,其中模块Ⅲ的温度为120℃,压力为0.5MPa,停留时间是180s。反应结束后,收集产物Zn-MOFs悬浊液,进行离心,固体用乙醇洗涤,在100℃下干燥24h。经XRD表征显示该样品为Zn-MOFs材料,获得的产品平均粒径为8.6μm,比表面积为1635m2/g。
比较例1
不采用本发明所述的溶剂活化反应,模块II的产物采用专利CN101516894所述的方法进行处理,首先进行抽滤,收集蓝色晶体,然后放入溶解了三亚乙基二胺的甲醇溶液在70℃回流搅拌16h,过滤后再次用甲醇滤洗三次,得到Cu-MOFs材料,获得的产品平均粒径为6.5μm,比表面积为1810m2/g。
比较例2
处理流程及操作条件与实施例3相同,不同之处在于:微通道反应器模块I、模块II、模块Ⅲ中的反应条件相同,反应温度均为120℃,压力为1.0MPa。反应结束后,收集产物,进行离心,固体用乙醇洗涤,在100℃下干燥24h,获得的产品平均粒径为7μm,比表面积为1258m2/g。
比较例3
处理流程及操作条件与实施例3相同,不同之处在于:微通道反应器模块I、模块II、模块Ⅲ中的反应条件相同,反应温度均为60℃,压力为0.5MPa。反应结束后,收集产物,进行离心,固体用乙醇洗涤,在100℃下干燥24h,获得的产品平均粒径为50nm,比表面积为570m2/g。

Claims (13)

1.一种制备金属有机骨架材料的方法,其特征在于包括如下步骤:
(1)将金属前驱体加入有机溶剂中搅拌溶解,制得溶液A;
(2)将有机配体加入有机溶剂中搅拌溶解,制得溶液B;
(3)将溶液A和B按照一定的流速分别送入微通道反应器模块I中原位生成MOFs晶种,反应一定时间后将产物料液送入微通道反应器模块II中;
(4)在上述产物料液进入微通道反应器模块II中时,将溶液B按照一定的流速送入模块II中进行晶种诱导合成MOFs材料,反应一定时间后将产物料液送入微通道反应器模块Ⅲ中;
(5)在步骤(4)所得料液进入微通道反应器模块Ⅲ中时,将有机溶剂C按照一定流速送入模块Ⅲ中进行溶剂活化反应;
(6)将步骤(5)制得的MOFs悬浊液进行固液分离,固体用乙醇洗涤,在80~120℃下干燥8~24h。
2.根据权利要求1所述的方法,其特征在于:步骤(1)所述金属前驱体是铜、铁、锆、锌、镁、铝、钴、铬、镍、钙、钛的硫酸盐、硝酸盐、醋酸盐、碳酸盐、卤化盐或其水合物中的一种或几种;有机溶剂为水、甲醇、乙醇、异丙醇、乙二醇、异丁醇、丙三醇、N,N-二甲基甲酰胺、N,N-二乙基甲酰胺、N,N-二乙基乙酰胺中的一种或几种;溶液A中金属前驱体的浓度为0.01-5.0mol/L。
3.根据权利要求2所述的方法,其特征在于:所述金属前驱体为硝酸锌、硫酸锌、硝酸铜、硫酸铜或硫酸镁,优选为硝酸铜;有机溶剂为水、甲醇或乙醇、优选为乙醇;溶液A中金属前驱体的浓度为0.1-1.0mol/L。
4.根据权利要求1所述的方法,其特征在于:步骤(2)所述有机配体为双齿、三齿羧酸配体化合物及其衍生物,包括对苯二甲酸、间苯二甲酸、均苯三甲酸、1,4-萘二羧酸、1,5-萘二羧酸或2,6-萘二羧酸,衍生物是指羧酸配体化合物中一个或多个羧酸官能团被硝基基团、羟基基团、甲基基团、氰基基团等官能团取代;有机溶剂为甲醇、乙醇、异丙醇、乙二醇、异丁醇、丙三醇、N,N-二甲基甲酰胺、N,N-二乙基甲酰胺、N,N-二乙基乙酰胺中的一种或几种;溶液B中有机配体的浓度为0.01-10mol/L。
5.根据权利要求4所述的方法,其特征在于:所述有机配体为均苯三甲酸,有机溶剂为甲醇、乙醇或异丙醇,优选为乙醇;溶液B中有机配体的浓度为0.1-2.0mol/L。
6.根据权利要求1所述的方法,其特征在于:步骤(3)所述溶液A的流速为0.1-2000μl/min,溶液B的流速为0.1-2000μl/min;溶液A和B进入微通道反应器模块I后,反应温度为30-80℃,反应压力为0.1-2.0MPa,反应时间为1-600s。
7.根据权利要求6所述的方法,其特征在于:步骤(3)所述溶液A的流速为0.1-2000μl/min,溶液B的流速为0.1-2000μl/min;溶液A和B进入微通道反应器模块I后,反应温度为30-80℃,反应压力为0.1-2.0MPa,反应时间为1-600s。
8.根据权利要求1所述的方法,其特征在于:步骤(4)所述溶液B的流速为0.1-2000μl/min,产物料液送入微通道反应器模块II的流速为0.2-2000μl/min,晶种诱导合成MOFs材料的反应温度为50-200℃,反应压力为0.1-2.0MPa,反应时间为1-600s。
9.根据权利要求8所述的方法,其特征在于:步骤(4)所述溶液B的流速为5-200μl/min,产物料液送入微通道反应器模块II的流速为10-400μl/min,晶种诱导合成MOFs材料的反应温度为80-150℃,反应压力为0.1-1.0MPa,反应时间为60-200s。
10.根据权利要求1所述的方法,其特征在于:步骤(5)所述有机溶剂C是甲醇、乙醇、乙二醇、丙二醇、丙醇、丙酮、二氯甲烷、去离子水中的一种或几种,有机溶剂C的流速为0.1-2000μl/min;产物料液送入微通道反应器模块Ⅲ的流速为0.2-2000μl/min;微通道反应器模块Ⅲ的反应温度为50-200℃,反应压力为0.1-2.0MPa,反应时间为1-600s。
11.根据权利要求10所述的方法,其特征在于:步骤(5)所述有机溶剂C为乙醇;有机溶剂C的流速为100-500μl/min;产物料液送入微通道反应器模块Ⅲ的流速为15-600μl/min;微通道反应器模块Ⅲ的反应温度为100-150℃,反应压力为0.1-1.0MPa,反应时间为60-300s。
12.根据权利要求1所述的方法,其特征在于:步骤(3)和步骤(4)中向溶液B中加入酸或碱调节反应体系的pH值为2-7,优选为4-5。
13.根据权利要求1所述的方法,其特征在于:所述的微通道反应器模块I、模块II、模块Ⅲ为串联形式;反应器的材质为特种玻璃、陶瓷、聚四氟乙烯、不锈钢或合金;反应器结构为心型、菱形、长方形等可以增强反应物物流混合的形状;反应器内径为10-2000微米。
CN201410585337.3A 2014-10-28 2014-10-28 一种制备金属有机骨架材料的方法 Active CN105601652B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410585337.3A CN105601652B (zh) 2014-10-28 2014-10-28 一种制备金属有机骨架材料的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410585337.3A CN105601652B (zh) 2014-10-28 2014-10-28 一种制备金属有机骨架材料的方法

Publications (2)

Publication Number Publication Date
CN105601652A true CN105601652A (zh) 2016-05-25
CN105601652B CN105601652B (zh) 2018-06-19

Family

ID=55982071

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410585337.3A Active CN105601652B (zh) 2014-10-28 2014-10-28 一种制备金属有机骨架材料的方法

Country Status (1)

Country Link
CN (1) CN105601652B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108114748A (zh) * 2016-11-29 2018-06-05 中国石油化工股份有限公司 一种磁性杂多酸催化剂及其制备方法
CN108114749A (zh) * 2016-11-29 2018-06-05 中国石油化工股份有限公司 一种杂多酸催化剂及其制备方法
CN108114697A (zh) * 2016-11-29 2018-06-05 中国石油化工股份有限公司 一种磁性金属有机骨架材料及其制备方法
CN108409982A (zh) * 2018-03-29 2018-08-17 武汉大学 尺寸可控的合成金属有机框架的方法
CN110540655A (zh) * 2019-09-19 2019-12-06 北京工业大学 一种冷冻技术制备zif-l颗粒的方法
CN112029105A (zh) * 2020-07-31 2020-12-04 南京工业大学 一种连续快速纯化MOFs的方法
CN113024829A (zh) * 2021-03-09 2021-06-25 东北大学 一种适用于多种富空隙基材的金属有机配位聚合物膜原位快速制备方法
CN114349972A (zh) * 2022-01-14 2022-04-15 哈尔滨工业大学 一种利用回流搅拌法快速合成hkust-1的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102146089A (zh) * 2010-02-05 2011-08-10 罗门哈斯公司 制备有机金属化合物的方法
CN102241694A (zh) * 2011-05-06 2011-11-16 大连理工大学 一种快速合成MOFs纳米粒子的方法
CN102921377A (zh) * 2012-06-01 2013-02-13 中国科学院宁波材料技术与工程研究所 一种富氮zmof类型金属有机骨架多孔材料的制备方法
CN102993221A (zh) * 2012-12-13 2013-03-27 江南大学 一种微反应器制备纳米类沸石金属有机骨架化合物的方法
CN103275112A (zh) * 2013-05-11 2013-09-04 济南韶远医药技术有限公司 一种利用微反应器连续合成芳基硼酸酯的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102146089A (zh) * 2010-02-05 2011-08-10 罗门哈斯公司 制备有机金属化合物的方法
CN102241694A (zh) * 2011-05-06 2011-11-16 大连理工大学 一种快速合成MOFs纳米粒子的方法
CN102921377A (zh) * 2012-06-01 2013-02-13 中国科学院宁波材料技术与工程研究所 一种富氮zmof类型金属有机骨架多孔材料的制备方法
CN102993221A (zh) * 2012-12-13 2013-03-27 江南大学 一种微反应器制备纳米类沸石金属有机骨架化合物的方法
CN103275112A (zh) * 2013-05-11 2013-09-04 济南韶远医药技术有限公司 一种利用微反应器连续合成芳基硼酸酯的方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108114748A (zh) * 2016-11-29 2018-06-05 中国石油化工股份有限公司 一种磁性杂多酸催化剂及其制备方法
CN108114749A (zh) * 2016-11-29 2018-06-05 中国石油化工股份有限公司 一种杂多酸催化剂及其制备方法
CN108114697A (zh) * 2016-11-29 2018-06-05 中国石油化工股份有限公司 一种磁性金属有机骨架材料及其制备方法
CN108114697B (zh) * 2016-11-29 2019-11-15 中国石油化工股份有限公司 一种磁性金属有机骨架材料及其制备方法
CN108114748B (zh) * 2016-11-29 2020-03-17 中国石油化工股份有限公司 一种磁性杂多酸催化剂及其制备方法
CN108114749B (zh) * 2016-11-29 2020-04-10 中国石油化工股份有限公司 一种杂多酸催化剂及其制备方法
CN108409982A (zh) * 2018-03-29 2018-08-17 武汉大学 尺寸可控的合成金属有机框架的方法
CN110540655A (zh) * 2019-09-19 2019-12-06 北京工业大学 一种冷冻技术制备zif-l颗粒的方法
CN112029105A (zh) * 2020-07-31 2020-12-04 南京工业大学 一种连续快速纯化MOFs的方法
CN113024829A (zh) * 2021-03-09 2021-06-25 东北大学 一种适用于多种富空隙基材的金属有机配位聚合物膜原位快速制备方法
CN113024829B (zh) * 2021-03-09 2022-05-17 东北大学 一种适用于多种富空隙基材的金属有机配位聚合物膜原位快速制备方法
CN114349972A (zh) * 2022-01-14 2022-04-15 哈尔滨工业大学 一种利用回流搅拌法快速合成hkust-1的方法

Also Published As

Publication number Publication date
CN105601652B (zh) 2018-06-19

Similar Documents

Publication Publication Date Title
CN105601652A (zh) 一种制备金属有机骨架材料的方法
Rubio-Martinez et al. New synthetic routes towards MOF production at scale
CN105566654B (zh) 一维结构金属有机框架化合物及其制备方法
CN102731538B (zh) 一种纳米至微米尺度沸石咪唑骨架结构材料的制备方法
CN106178982B (zh) 一种基于碱式碳酸盐自转化的金属-有机骨架膜的制备方法
CN108114749B (zh) 一种杂多酸催化剂及其制备方法
CN105622675B (zh) 一种高活性金属有机骨架材料的制备方法
CN105622639B (zh) 一种制备纳米级Cu基金属有机骨架材料的方法
CN104209514A (zh) 一种Ni@C或Co@C核壳纳米颗粒的制备方法
CN103059066A (zh) 氢氧化物纳米线和有机配体在常温下快速制备金属有机框架物薄膜的方法
CN110256698B (zh) 一种纤维素溶剂及其制备方法和用途
CN103641678A (zh) 一种降解聚对苯二甲酸乙二醇酯的方法
CN105061204B (zh) 一种磷钨酸银铵复合盐催化合成柠檬酸酯的方法
CN106315690A (zh) 一种多孔四氧化三钴纳米片的制备方法
CN105964306B (zh) 一种基于聚离子液体磁性纳米粒子、制备方法及其在三组分反应中的应用
CN104362005A (zh) 一种四氧化三钴/碳复合材料的制备方法
CN105622640B (zh) 一种金属有机骨架材料的制备方法
CN103911646B (zh) 一种氢氧化钴薄膜的制备方法
CN102500301B (zh) 一种核壳结构与空心结构聚合物微球的制备方法及其产品
CN108114748B (zh) 一种磁性杂多酸催化剂及其制备方法
CN108114697B (zh) 一种磁性金属有机骨架材料及其制备方法
CN107055500B (zh) 非水体系中制备三水磷酸氢镁
CN104195642B (zh) 一种制备单晶BiFeO3纳米片的方法
CN102659572B (zh) 一种脱氢松香酸的制备方法
CN102180779A (zh) 5-氯甲基水杨醛的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20230815

Address after: 100728 No. 22 North Main Street, Chaoyang District, Beijing, Chaoyangmen

Patentee after: CHINA PETROLEUM & CHEMICAL Corp.

Patentee after: Sinopec (Dalian) Petrochemical Research Institute Co.,Ltd.

Address before: 100728 No. 22 North Main Street, Chaoyang District, Beijing, Chaoyangmen

Patentee before: CHINA PETROLEUM & CHEMICAL Corp.

Patentee before: DALIAN RESEARCH INSTITUTE OF PETROLEUM AND PETROCHEMICALS, SINOPEC Corp.

TR01 Transfer of patent right