CN105555757A - 用于递送信使rna的组合物和方法 - Google Patents

用于递送信使rna的组合物和方法 Download PDF

Info

Publication number
CN105555757A
CN105555757A CN201480051596.6A CN201480051596A CN105555757A CN 105555757 A CN105555757 A CN 105555757A CN 201480051596 A CN201480051596 A CN 201480051596A CN 105555757 A CN105555757 A CN 105555757A
Authority
CN
China
Prior art keywords
lipid
alkyl
heterocycle
mole
independently
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201480051596.6A
Other languages
English (en)
Inventor
詹姆斯·海斯
洛恩·R·帕尔默
史蒂芬·P·里德
爱德华·D·亚沃尔斯基
伊恩·麦克拉克伦
马克·伍德
艾伦·D·马丁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wild strawberry bio pharmaceutical company
Original Assignee
Protiva Biotherapeutics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Protiva Biotherapeutics Inc filed Critical Protiva Biotherapeutics Inc
Priority to CN201911293252.7A priority Critical patent/CN110974981A/zh
Publication of CN105555757A publication Critical patent/CN105555757A/zh
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/0008Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'non-active' part of the composition delivered, e.g. wherein such 'non-active' part is not delivered simultaneously with the 'active' part of the composition
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C229/00Compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C229/02Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C229/04Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated
    • C07C229/06Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one amino and one carboxyl group bound to the carbon skeleton
    • C07C229/10Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one amino and one carboxyl group bound to the carbon skeleton the nitrogen atom of the amino group being further bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings
    • C07C229/12Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one amino and one carboxyl group bound to the carbon skeleton the nitrogen atom of the amino group being further bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings to carbon atoms of acyclic carbon skeletons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/7105Natural ribonucleic acids, i.e. containing only riboses attached to adenine, guanine, cytosine or uracil and having 3'-5' phosphodiester links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/10Alcohols; Phenols; Salts thereof, e.g. glycerol; Polyethylene glycols [PEG]; Poloxamers; PEG/POE alkyl ethers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/14Esters of carboxylic acids, e.g. fatty acid monoglycerides, medium-chain triglycerides, parabens or PEG fatty acid esters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/24Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing atoms other than carbon, hydrogen, oxygen, halogen, nitrogen or sulfur, e.g. cyclomethicone or phospholipids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/28Steroids, e.g. cholesterol, bile acids or glycyrrhetinic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • A61K9/1271Non-conventional liposomes, e.g. PEGylated liposomes, liposomes coated with polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • A61K9/1271Non-conventional liposomes, e.g. PEGylated liposomes, liposomes coated with polymers
    • A61K9/1272Non-conventional liposomes, e.g. PEGylated liposomes, liposomes coated with polymers with substantial amounts of non-phosphatidyl, i.e. non-acylglycerophosphate, surfactants as bilayer-forming substances, e.g. cationic lipids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/141Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers
    • A61K9/145Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers with organic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5005Wall or coating material
    • A61K9/5015Organic compounds, e.g. fats, sugars
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/88Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation using microencapsulation, e.g. using amphiphile liposome vesicle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy

Abstract

本发明提供包含包封在脂质颗粒内的mRNA分子的组合物。所述组合物颗粒包含阳离子脂质、非阳离子脂质和包封在所述脂质颗粒内的mRNA分子的脂质颗粒。所述组合物(例如)用于将所述mRNA分子引入人受试者,在所述人受试者中它们被翻译以产生用作改善一种或多种疾病的症状的多肽。本发明还提供用于制备本发明的所述组合物的阳离子脂质。

Description

用于递送信使RNA的组合物和方法
本申请要求2013年7月23日提交的美国临时申请号61/857,573和2014年2月24日提交的美国临时申请号61/943,856的优先权。每个这些临时申请的全部内容通过引用并入本文。
发明背景
人类中的一些疾病是由细胞类型中的功能性蛋白质的缺乏或损伤引起,其中蛋白质通常存在且具有活性。功能性蛋白质可能由于(例如)编码基因的转录失活,或由于编码基因中突变的存在而完全或部分缺乏,该基因使得蛋白质完全或部分非功能性的。
由蛋白质的完全或部分失活引起的人类疾病的实例包括X-连锁重症联合免疫缺陷(X-SCID)和脑白质肾上腺萎缩症(X-ALD)。X-SCID是由编码共同的γ链蛋白质的基因中的一个或多个突变引起,该蛋白质是在免疫系统内参与B和T细胞的发育和成熟的若干白介素的受体的组分。X-ALD是由称为ABCD1的过氧化物膜转运体蛋白质基因中的一个或多个突变引起。罹患X-ALD的个体在全身组织中具有非常高水平的长链脂肪酸,这引起可能导致精神损伤或死亡的各种症状。
已经尝试使用基因疗法来治疗由细胞类型中的功能性蛋白质的缺乏或损伤引起的一些疾病,其中蛋白质通常存在且具有活性。基因疗法通常涉及将包括编码受影响的蛋白质的功能性形式的基因的载体引入患病的人,和表达功能性蛋白质以治疗疾病。到目前为止,基因疗法取得了有限的成功。
因此,存在对用于在患有由功能性蛋白质的完全或部分缺乏引起的疾病的人类中表达蛋白质的功能性形式的组合物和方法的持续需求。
发明概述
按照上述内容,本发明提供可用于在活细胞(例如,人体内的细胞)中表达一种或多种mRNA分子的组合物和方法。mRNA分子编码在活细胞内表达的一种或多种多肽。在一些实施方案中,多肽在患病生物体(例如,哺乳动物,诸如人类)内表达,并且多肽的表达改善该疾病的一种或多种症状。本发明的组合物和方法尤其用于治疗由人体内功能性多肽的缺乏或水平降低引起的人类疾病。
因此,在一个方面,本发明提供包含阳离子脂质、非阳离子脂质和包封在脂质颗粒内的mRNA分子的脂质颗粒。
本发明还提供核酸-脂质颗粒,每个颗粒包括(a)包含阳离子脂质、PEG-脂质和磷脂的脂质颗粒;和(b)mRNA分子,其中该mRNA分子包封在脂质颗粒内。脂质颗粒可任选地包括胆固醇。mRNA可以完全或部分地包封在脂质颗粒内。在一些实施方案中,核酸-脂质颗粒具有约9:1至约20:1的脂质:mRNA质量比。在一个具体的实施方案中,核酸-脂质颗粒具有约12:1的脂质:mRNA质量比。mRNA可以进行化学修饰,例如通过掺入假尿苷来代替尿苷,和/或掺入5-甲基胞苷来代替胞苷。本发明还提供药物组合物,其包括本发明的核酸-脂质颗粒。通常,药物组合物包括赋形剂。
在另一个方面,本发明提供用于将编码蛋白质的mRNA引入细胞内的方法。每种方法包括以下步骤:在借此将mRNA引入细胞中并在其中表达以产生蛋白质的条件下使细胞与本发明的核酸-脂质颗粒(通常,本发明的大量核酸-脂质颗粒)接触。方法可以在体内或体外实践。例如,细胞在活体(例如,哺乳动物体,如人体)内,并且核酸-脂质颗粒可通过注射引入活体内。
在其它方面,本发明提供用于治疗和/或改善人类中一种或多种与由人的蛋白质的受损表达引起的疾病相关的症状的方法。本发明的这一方面的方法包括以下步骤:向人施用治疗有效量的本发明的核酸-脂质颗粒(通常,本发明的大量核酸-脂质颗粒),其中包封在核酸-脂质颗粒内的mRNA编码蛋白质。所编码的蛋白质在人类中表达,从而改善疾病的至少一种症状。
在一个实施方案中,用于本发明的实践的脂质颗粒中脂质对药物的比率为约13:1。
在其它方面,本发明提供具有结构式C的化合物:
X-A-Y-Z1
(式C)
或其盐,其中:
X为–N(H)R或–NR2
A为不存在、C1至C6烷基、C2至C6烯基或C2至C6炔基,其中C1至C6烷基、C2至C6烯基和C2至C6炔基任选地被一个或多个独立地选自氧代、卤素、杂环、-CN、-ORx、-NRxRy、-NRxC(=O)Ry、-NRxSO2Ry、-C(=O)Rx、-C(=O)ORx、-C(=O)NRxRy、-SOnRx和-SOnNRxRy的基团取代,其中n为0、1或2,并且Rx和Ry各自独立地为氢、烷基或杂环,其中Rx和Ry的每个烷基和杂环可进一步被一个或多个独立地选自氧代、卤素、-OH、-CN、烷基、-ORx’、杂环、-NRx’Ry’、-NRx’C(=O)Ry’、-NRx’SO2Ry’、-C(=O)Rx’、-C(=O)ORx’、-C(=O)NRx’Ry’、-SOn’Rx’和-SOn’NRx’Ry’的基团取代,其中n’为0、1或2,并且Rx’和Ry’各自独立地为氢、烷基或杂环;
Y选自由以下组成的组:不存在、–C(=O)-、-O-、-OC(=O)-、-C(=O)O-、-N(Rb)C(=O)-、-C(=O)N(Rb)-、-N(Rb)C(=O)O-和-OC(=O)N(Rb)-;
Z1为被三个或四个Rx基团取代的C1至C6烷基,其中每个Rx独立地选自C6至C11烷基、C6至C11烯基和C6至C11炔基,其中C6至C11烷基、C6至C11烯基和C6至C11炔基任选地被一个或多个独立地选自氧代、卤素、杂环、-CN、-ORx、-NRxRy、-NRxC(=O)Ry、-NRxSO2Ry、-C(=O)Rx、-C(=O)ORx、-C(=O)NRxRy、-SOnRx和-SOnNRxRy基团取代,其中n为0、1或2,并且Rx和Ry各自独立地为氢、烷基或杂环,其中Rx和Ry的任一个烷基和杂环可进一步被一个或多个独立地选自氧代、卤素、-OH、-CN、烷基、-ORx’、杂环、-NRx’Ry’、-NRx’C(=O)Ry’、-NRx’SO2Ry’、-C(=O)Rx’、-C(=O)ORx’、-C(=O)NRx’Ry’、-SOn’Rx’和-SOn’NRx’Ry’基团取代,其中n’为0、1或2,并且Rx’和Ry’各自独立地为氢、烷基或杂环;
每个R独立地为任选地被一个或多个独立地选自氧代、卤素、杂环、-CN、-ORx、-NRxRy、-NRxC(=O)Ry、-NRxSO2Ry、-C(=O)Rx、-C(=O)ORx、-C(=O)NRxRy、-SOnRx和-SOnNRxRy基团取代的烷基、烯基或炔基,其中n为0、1或2,并且Rx和Ry各自独立地为氢、烷基或杂环,其中Rx和Ry的任一个烷基和杂环可进一步被一个或多个独立地选自氧代、卤素、-OH、-CN、烷基、-ORx’、杂环、-NRx’Ry’、-NRx’C(=O)Ry’、-NRx’SO2Ry’、-C(=O)Rx’、-C(=O)ORx’、-C(=O)NRx’Ry’、-SOn’Rx’和-SOn’NRx’Ry’的基团取代,其中n’为0、1或2,并且Rx’和Ry’各自独立地为氢、烷基或杂环;并且
每个Rb是H或C1至C6烷基。
在其它方面,本发明提供本文所述的新型阳离子脂质,以及合成中间体和本文所述的用于制备阳离子脂质的合成过程。
本发明的方法和组合物可用于(例如)治疗(至少部分)由在人体细胞、组织和/或器官中多肽的缺乏、或多肽的水平降低、或多肽的非功能性(或部分功能性,或异常功能性)形式的表达引起的任何疾病。
本发明的其它目的、特征和优点将根据下面的详细描述和附图而对本领域技术人员所显而易见。
附图简述
图1示出了包括包封在脂质颗粒的内部部分内的mRNA的本发明的核酸-脂质颗粒群体的低温TEM图像。每个颗粒具有电子致密核心。
图2示出了根据一个或多个实施方案的颗粒的横截面。
发明详述
本文描述的核酸-脂质颗粒、方法和药物制剂有利地提供用于在哺乳动物生物体(诸如人类)中表达蛋白质的显著新的组合物和方法。可(例如)每天一次、每周一次、或每数周一次(例如,每两周、三周、四周、五周或六周一次)、或每月一次、或每年一次施用本发明的实施方案。脂质颗粒内包封mRNA赋予一个或多个优点,例如保护mRNA免受血流中核酸酶降解、允许mRNA在靶组织中优先积累和提供mRNA进入细胞质的方式,其中mRNA可以表达所编码的蛋白质。
定义
如本文所用,除非另外说明,否则下列术语具有属于它们的含义。
治疗性核酸如mRNA的“有效量”或“治疗有效量”是足以产生所需效应,例如,引起在其内表达蛋白质的生物体中所希望的生物效应的大量蛋白质的mRNA定向表达的量。例如,在一些实施方案中,所表达的蛋白质是通常表达于体内的细胞类型中的蛋白质的活性形式,并且治疗有效量的mRNA是产生大量所编码的蛋白质的量,所编码的蛋白质为通常表达于健康个体的细胞类型中的蛋白质的量的至少50%(例如,至少60%、或至少70%、或至少80%、或至少90%)。用于测量mRNA或蛋白质的表达的合适的测定包括但不限于斑点印迹、Northern印迹、原位杂交、ELISA、免疫沉淀、酶功能、以及为本领域技术人员已知的表型测定。
“降低(decrease)”、“降低(decreasing)”、“减少(reduce)”或“减少(reducing)”mRNA引起的免疫应答旨在意指对给定的mRNA(例如,修饰的mRNA)的免疫应答的可检测到的降低。由经修饰的mRNA引起的免疫应答的降低的量可相对于在未修饰的mRNA的存在下免疫应答的水平来确定。可检测到的降低可以比在未修饰的mRNA的存在下检测到的免疫应答低约5%、10%、15%、20%、25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、95%、100%、或更低。对mRNA的免疫应答的降低通常通过体外由应答细胞产生的细胞因子(例如,IFNγ、IFNα、TNFα、IL-6或IL-12)的降低或在施用mRNA后哺乳动物受试者的血清中产生的细胞因子的降低来测量。
“基本同一性”是指在严格条件下与参考序列杂交的序列,或是指在参考序列的特定区域上具有特定的百分比同一性的序列。
短语“严格杂交条件”是指在该条件下核酸将与其靶序列(通常在核酸的复杂混合物中)杂交,但不与其它序列杂交。严格条件是序列依赖性的并且在不同的环境中将是不同的。较长序列在较高温度下特异性杂交。对核酸杂交的广泛指导参见Tijssen,TechniquesinBiochemistryandMolecularBiology--HybridizationwithNucleicProbes,“Overviewofprinciplesofhybridizationandthestrategyofnucleicacidassays”(1993)。一般而言,严格条件被选择为在限定离子强度pH下比针对特定序列的热解链温度(Tm)低约5-10℃。Tm是(在限定的离子强度、pH和核酸浓度下)在平衡时与靶互补的50%探针与靶序列杂交(当靶序列过量存在时,在Tm下,在平衡时50%探针被占用)的温度。严格条件还可通过添加去稳定剂(如甲酰胺)来实现。对于选择性或特异性杂交,阳性信号至少是背景的2倍,优选是背景杂交的10倍。
示例性严格杂交条件可以如下:50%甲酰胺、5xSSC和1%SDS,在42℃下孵育,或者,5xSSC、1%SDS,在65℃下孵育,在65℃下在0.2xSSC和0.1%SDS中洗涤。对于PCR,约36℃的温度典型用于低严格扩增,尽管退火温度可以取决于引物长度而在约32℃和48℃之间发生变化。对于高严格PCR扩增,约62℃的温度是典型的,尽管高严格退火温度可取决于引物长度和特异性而在约50℃至约65℃的范围内。针对高和低严格扩增两者的典型的循环条件包括90℃-95℃的变性阶段30秒至2分钟、退火阶段持续30秒至2分钟、和约72℃的延伸阶段1至2分钟。提供用于低和高严格扩增反应的协议和指南,例如,在Innis等,PCRProtocols,AGuidetoMethodsandApplications,AcademicPress,Inc.N.Y.(1990)。
如果核酸编码的多肽是基本上同一的,则在严格条件下不相互杂交的核酸仍然是基本上同一的。例如,当使用遗传密码允许的最大密码子简并性产生核酸的拷贝时出现这种情况。在此类情况下,核酸通常在中等严格杂交条件下杂交。示例性“中等严格杂交条件”包括在37℃下在40%甲酰胺、1MNaCl、1%SDS的缓冲液中杂交以及在45℃下在1XSSC中洗涤。阳性杂交至少是背景的两倍。那些普通技术人员将容易认识到,替代性的杂交和洗涤条件可用于提供类似严格性的条件。用于确定杂交参数的其它指南提供于许多文献中,例如,CurrentProtocolsinMolecularBiology,Ausubel等,编。
在两种或更多种核酸的上下文中,术语“基本上同一”或“基本同一性”是指当在比较窗或者指定区域上如使用下列序列比较算法中的一种或通过人工比对和目测所测量来比较和比对最大对应性时,相同或具有相同的核苷酸的指定百分比(即,在特定区域上至少约60%,优选至少约65%、70%、75%、80%、85%、90%或95%同一性)的两个或更多个序列或子序列。此定义(当上下文指示时)也类似地是指序列的互补序列。优选地,基本同一性存在于至少约5、10、15、20、25、30、35、40、45、50、55或60个核苷酸长度的区域上。
对于序列比较而言,通常一个序列充当与测试序列进行比较的参考序列。当使用序列比较算法时,将测试序列与参考序列输入计算机中,必要时指定子序列坐标,并且指定序列算法程序参数。可使用默认程序参数,或可指定替代参数。然后,序列比较算法基于程序参数来计算测试序列相对于参考序列的百分比序列同一性。
如本文所用,“比较窗”包括参考选自由约5至约60、通常约10至约45、更通常约15至约30组成的组的许多连续位置中的任一个的区段,其中可在将序列与具有相同数目的连续位置的参考序列最佳比对后对这两个序列进行比较。用于比较的序列比对方法是本领域公知的。用于比较的序列的最佳比对可例如,通过Smith和Waterman,Adv.Appl.Math.,2:482(1981)的局部同源性算法,通过Needleman和Wunsch,J.Mol.Biol.,48:443(1970)的同源性比对算法,通过Pearson和Lipman,Proc.Natl.Acad.Sci.USA,85:2444(1988)对相似性方法的探索,通过这些算法(GAP、BESALDHIT、FASTA和ALDHASTA,在WisconsinGeneticsSoftwarePackage中,GeneticsComputerGroup,575ScienceDr.,Madison,WI)的计算机化的安装启用,或通过手动比对和目测(参加,例如,CurrentProtocolsinMolecularBiology,Ausubel等,编(1995年增刊))来进行。
适合于测定百分比序列同一性和序列相似性的算法的非限制性实例是BLAST和BLAST2.0算法,其分别描述于Altschul等,Nuc.AcidsRes.,25:3389-3402(1977)和Altschul等,J.Mol.Biol.,215:403-410(1990)。利用本文所描述的参数来使用BLAST和BLAST2.0以确定本发明核酸的百分比序列同一性。用于进行BLAST分析的软件是通过国家生物技术信息中心(http://www.ncbi.nlm.nih.gov/)公开可用的。另一个实例是用于测定百分比序列同一性的全局比对算法,如用于比对蛋白质或核苷酸(例如,RNA)序列的Needleman-Wunsch算法。
BLAST算法也进行两个序列之间相似性的统计分析(参见例如,Karlin和Altschul,Proc.Natl.Acad.Sci.USA,90:5873-5787(1993))。由BLAST算法提供的相似性的一个量度是最小和概率(P(N)),其提供两个核苷酸序列之间将偶然发生匹配的概率的指示。例如,如果在测试核酸与参考核酸的比较中最小和概率小于约0.2、更优选小于约0.01、且最优选小于约0.001,则认为该核酸与参考序列相似。
如本文所用,术语“核酸”是指含有至少两个脱氧核糖核苷酸或核糖核苷酸的单链或双链形式的聚合物,并包括DNA和RNA。DNA可以呈例如,反义分子、质粒DNA、预凝缩的DNA、PCR产物、载体(例如,P1、PAC、BAC、YAC、人工染色体)、表达盒、嵌合序列、染色体DNA、或这些组的衍生物和组合形式。RNA可以呈小干扰RNA(siRNA)、Dicer酶-底物dsRNA、小发夹RNA(shRNA)、不对称干扰RNA(aiRNA)、微RNA(miRNA)、mRNA、tRNA、rRNA、tRNA、病毒RNA(vRNA)、及其组合形式。核酸包括含有已知核苷酸类似物或修饰的主链残基或键的核酸,它们是合成的、天然存在的和非天然存在的,并且它们具有与参考核酸相似的结合特性。此类类似物的实例包括但不限于硫代磷酸酯、氨基磷酸酯、甲基膦酸酯、手性-甲基膦酸酯、2′-O-甲基核糖核苷酸和肽-核酸(PNA)。除非特别限定,该术语涵盖含有天然核苷酸的已知类似物的核酸,天然核苷酸具有与参考核酸相似的结合特性。除非另外指出,否则特定核酸序列也隐含地涵盖其保守修饰的变体(例如,简并密码子取代)、等位基因、直系同源物、SNP、和互补序列以及明确指出的序列。具体而言,简并密码子取代可通过产生序列来实现,在序列中一个或多个所选(或所有)密码子的第三位被混合碱基和/或脱氧肌苷残基取代(Batzer等,NucleicAcidRes.,19:5081(1991);Ohtsuka等,J.Biol.Chem.,260:2605-2608(1985);Rossolini等,Mol.Cell.Probes,8:91-98(1994))。
“核苷酸”含有糖脱氧核糖(DNA)或核糖(RNA)、碱和磷酸基团。核苷酸是通过磷酸基团连接在一起。“碱基”包括嘌呤和嘧啶,其还包括天然化合物腺嘌呤、胸腺嘧啶、鸟嘌呤、胞嘧啶、尿嘧啶、肌苷、和天然类似物、和嘌呤和嘧啶的合成衍生物,其包括但不限于替代新的反应性基团(例如但不限于,胺、醇、硫醇、羧酸酯和烷基卤化物)的修饰。
术语“基因”是指包含用于产生多肽或前体多肽所必需的部分长度或整个长度编码序列的核酸(例如,DNA或RNA)序列。
如本文所用,“基因产物”是指诸如RNA转录物或多肽的基因的产物。
术语“脂质”是指包括但不限于脂肪酸的酯的一组有机化合物,并且特征在于不溶于水,但可溶于许多有机溶剂。它们通常分成至少三个类别:(1)“简单脂类”,其包括脂肪和油以及蜡;(2)“复合脂质”,其包括磷脂和糖脂;和(3)“衍生脂质”如类固醇。
术语“脂质颗粒”包括可用于将治疗性核酸(例如,mRNA)递送至目标靶位点(例如,细胞、组织、器官等)的脂质制剂。在优选的实施方案中,本发明的脂质颗粒是核酸-脂质颗粒,其通常由阳离子脂质、非阳离子脂质(例如,磷脂)、防止颗粒聚集的缀合的脂质(例如,PEG-脂质)、和任选的胆固醇形成。通常,治疗性核酸(例如,mRNA)可以包封在颗粒的脂质部分中,从而保护它免受酶促降解。
当用于描述本发明的脂质颗粒时,术语“电子致密核心”是指当使用低温透射电子显微镜(“低温TEM”)可视化时脂质颗粒的内部部分的黑暗外观。具有电子致密核心的本发明的脂质颗粒的实例示于图1。本发明的一些脂质颗粒具有电子致密核心并缺乏脂质双层结构。本发明的一些脂质颗粒具有电子致密核心,缺乏脂质双层结构,并具有反六边形或立方形相结构。虽然不希望受理论的束缚,但据认为非双层脂质堆积提供在里面具有水和核酸的脂质圆柱体的三维网状物,即本质上是穿插有含有核酸的水性通道的脂滴。
如本文所用,“SNALP”是指稳定的核酸-脂质颗粒。SNALP是由脂质(例如,阳离子脂质、非阳离子脂质、和防止颗粒聚集的缀合的脂质)制成的颗粒,其中核酸(例如,mRNA)完全包封在脂质内。在某些情况下,SNALP对于全身应用而言是极为有用的,因为它们在静脉内(i.v.)注射后可表现出延长的循环生命周期,它们可以在远端位点(例如,与施用位点物理隔离的位点)积累,并且它们可以在这些远端位点介导mRNA表达。核酸可以与缩合剂复合并如PCT公布号WO00/03683所述包封在SNALP内,该专利的公开内容为了所有目的通过引用整体并入本文。
本发明的脂质颗粒(例如,SNALP)通常具有约30nm至约150nm、约40nm至约150nm、约50nm至约150nm、约60nm至约130nm、约70nm至约110nm、约70nm至约100nm、约80nm至约100nm、约90nm至约100nm、约70至约90nm、约80nm至约90nm、约70nm至约80nm,或约30nm、35nm、40nm、45nm、50nm、55nm、60nm、65nm、70nm、75nm、80nm、85nm、90nm、95nm、100nm、105nm、110nm、115nm、120nm、125nm、130nm、135nm、140nm、145nm或150nm的平均直径,并且基本上是无毒的。此外,当存在于本发明的脂质颗粒中时,核酸在水性溶液中抵抗核酸酶的降解。核酸-脂质颗粒及其制备方法公开于例如,美国专利公布号20040142025和20070042031中,这些专利的公开内容为了所有目的通过引用整体并入本文。
如本文所用,“脂质包封的”可以指提供具有完全包封、部分包封或两种包封的治疗性核酸诸如mRNA的脂质颗粒。在一个优选的实施方案中,核酸(例如,mRNA)完全包封在脂质颗粒中(例如,以形成SNALP或其它核酸-脂质颗粒)。
术语“脂质缀合物”是使指抑制脂质颗粒聚集的缀合的脂质。此类脂质缀合物包括但不限于PEG-脂质缀合物,诸如,例如,与二烷氧基丙基偶联的PEG(例如,PEG-DAA缀合物)、与二酰基甘油偶联的PEG(例如,PEG-DAG缀合物)、与胆固醇偶联的PEG、与磷脂酰乙醇胺偶联的PEG、和与神经酰胺缀合的PEG(参见,例如,美国专利号5,885,613)、阳离子PEG脂质、聚噁唑啉(POZ)-脂质缀合物、聚酰胺低聚物(例如,ATTA-脂质缀合物)、及其混合物。POZ-脂质缀合物的其它实例描述于PCT公布号WO2010/006282。PEG或POZ可直接与脂质缀合或可经由接头部分与脂质连接。可使用适合于使PEG或POZ与脂质偶联的任何接头部分,包括例如,含有非酯的接头部分和含有酯的接头部分。在某些优选的实施方案中,使用含有非酯的接头部分,诸如酰胺或氨基甲酸酯。上述各专利文献中的公开内容为了所有目的通过引用整体并入本文。
术语“两亲性脂质”部分是指任何合适的材料,其中脂质材料的疏水部分指向疏水相,而亲水部分指向水相。亲水特征源自于极性或带电基团的存在,例如碳水化合物、磷酸酯、羧酸、硫酸根、氨基、巯基、硝基、羟基和其它类似基团。疏水性可以通过包含非极性基团而赋予,非极性基团包括但不限于长链饱和和不饱和脂族烃基,并且此类基团被一个或多个芳族、脂环族或杂环基团取代。两亲性化合物的实例包括但不限于磷脂、氨基脂和鞘脂。
磷脂的代表性实例包括但不限于磷脂酰胆碱、磷脂酰乙醇胺、磷脂酰丝氨酸、磷脂酰肌醇、磷脂酸、棕榈酰油酰磷脂酰胆碱、溶血磷脂酰胆碱、溶血磷脂酰乙醇胺、二棕榈酰磷脂酰胆碱、二油酰磷脂酰胆碱、二硬脂酰磷脂酰胆碱和二亚油酰磷脂酰胆碱。缺乏磷的其它化合物,如鞘脂、鞘糖脂家族、二酰基甘油和β-酰氧基酸也在指定为两亲性脂质的组内。另外,上述的两亲性脂质可以与其它脂质(包括甘油三酯和甾醇)混合。
术语“中性脂质”是指在选定的pH下以不带电或中性两性离子形式存在的许多脂质种类中的任何一种。在生理pH下,此类脂质包括(例如)二酰基磷脂酰胆碱、二酰基磷脂酰乙醇胺、神经酰胺、鞘磷脂、脑磷脂、胆固醇、脑苷脂和二酰基甘油。
术语“非阳离子脂质”是指任一个两亲性脂质以及任一个其它中性脂质或阴离子脂质。
术语“阴离子脂质”是指在生理pH下带负电的任一个脂质。这些脂质包括但不限于磷脂酰甘油、心磷脂、二酰基磷脂酰丝氨酸、二酰基磷脂酸、N-十二烷酰基磷脂酰乙醇胺、N-琥珀酰磷脂酰乙醇胺、N-戊二酰磷脂酰乙醇胺、赖氨酰磷脂酰甘油、棕榈酰油酰磷脂酰甘油(POPG)、以及其它与中性脂质结合的阴离子修饰基团。
术语“疏水性脂质”是指具有非极性基团的化合物,该非极性基团包括但不限于长链饱和和不饱和脂族烃基,并且此类基团任选被一个或多个芳族、脂环族或杂环基团取代。合适的实例包括但不限于二酰基甘油、二烷基甘油、N-N-二烷基氨基、1,2-二酰氧基-3-氨基丙烷和1,2-二烷基-3-氨基丙烷。
术语“阳离子脂质”和“氨基脂”在本文可互换使用以包括具有一个、两个、三个或更多个脂肪酸或脂肪烷基链和pH可滴定氨基头部基团(例如,烷基氨基或二烷基氨基头部基团)的那些脂质及其盐。阳离子脂质通常在低于阳离子脂质的pKa的pH下被质子化(即,带正电荷)并且在高于pKa的pH下基本上呈中性。本发明的阳离子脂质也可被称为可滴定的阳离子脂质。在一些实施方案中,阳离子脂质包括:可被质子化的叔胺(例如,pH可滴定的)头部基团;C18烷基链,其中每个烷基链独立地具有0至3个(例如,0、1、2或3个)双键;以及头部基团和烷基链之间的醚、酯或缩酮键。此类阳离子脂质包括但不限于DSDMA、DODMA、DLinDMA、DLenDMA、γ-DLenDMA、DLin-K-DMA、DLin-K-C2-DMA(也称为DLin-C2K-DMA、XTC2和C2K)、DLin-K-C3-DMA、DLin-K-C4-DMA、DLen-C2K-DMA、γ-DLen-C2K-DMA、DLin-M-C2-DMA(也称为MC2)、DLin-M-C3-DMA(也称为MC3)和(DLin-MP-DMA)(也称为1-B11)。
术语“烷基氨基”包括式–N(H)R的基团,其中R是如本文所定义的烷基。
术语“二烷基氨基”包括式–NR2的基团,其中每个R独立地为如本文所定义的烷基。
术语“盐”包括任一个阴离子和阳离子复合物,如阳离子脂质和一种或多种阴离子之间形成的复合物。阴离子的非限制性实例包括无机和有机阴离子,例如,氢离子、氟离子、氯离子、溴离子、碘离子、草酸根(例如,半草酸根)、磷酸根、膦酸根、磷酸氢根、磷酸二氢根、氧离子、碳酸根、碳酸氢根、硝酸根、亚硝酸根、氮离子、亚硫酸氢根、硫离子、亚硫酸根、硫酸氢根、硫酸根、硫代硫酸根、硫酸氢根、硼酸根、甲酸根、乙酸根、苯甲酸根、柠檬酸根、酒石酸根、乳酸根、丙烯酸根、聚丙烯酸根、富马酸根、马来酸根、衣康酸根、乙醇酸根、葡糖酸根、苹果酸根、扁桃酸根、惕各酸根(tiglate)、抗坏血酸根、水杨酸根、聚甲基丙烯酸根、高氯酸根、氯酸根、亚氯酸根、次氯酸根、溴酸根、次溴酸根、碘酸根、烷基磺酸根、芳基磺酸根、砷酸根、亚砷酸根、铬酸根、重铬酸根、氰离子、氰酸根、硫氰酸根、氢氧根、过氧根、高锰酸根、及其混合物。在具体的实施方案中,本文公开的阳离子脂质的盐是结晶盐。
术语“烷基”包括含有1至24个碳原子的直链或支链、非环状或环状、饱和脂肪族烃。代表性的饱和直链烷基包括但不限于甲基、乙基、正丙基、正丁基、正戊基、正己基等,而饱和支链烷基包括但不限于异丙基、仲丁基、异丁基、叔丁基、异戊基等。代表性的饱和环状烷基包括但不限于环丙基、环丁基、环戊基、环己基等,而不饱和环状烷基包括但不限于环戊烯基、环己烯基等。
术语“烯基”包括如上所定义的相邻碳原子之间含有至少一个双键的烷基。烯基包括顺式和反式异构体。代表性的直链和支链烯基包括但不限于乙烯基、丙烯基、1-丁烯基、2-丁烯基、异丁烯基、1-戊烯基、2-戊烯基、3-甲基-1-丁烯基、2-甲基-2-丁烯基、2,3-二甲基-2-丁烯基等。
术语“炔基”包括如上所定义的相邻碳之间另外含有至少一个三键的任一个烷基或烯基。代表性的直链和支链炔基包括但不限于乙炔基、丙炔基、1-丁炔基、2-丁炔基、1-戊炔基、2-戊炔基、3-甲基-1-丁炔基等。
术语“酰基”包括如下所定义其中在连接点处的碳被氧代基取代的任一个烷基、烯基或炔基。以下是酰基的非限制性实例:-C(=O)烷基、-C(=O)烯基和-C(=O)炔基。
术语“杂环”包括5-至7-元单环或7-至10-元双环、杂环,其为饱和、不饱和或芳族的,并且含有独立选自氮、氧和硫的1或2个杂原子,并且其中氮和硫杂原子可以任选被氧化,并且氮杂原子可以任选被季铵化,包括其中任一个上述杂环与苯环稠合的双环。杂环可以通过任一个杂原子或碳原子连接。杂环包括但不限于如下所定义的杂芳基,以及吗啉基、吡咯烷酮基、吡咯烷基、哌啶基、哌嗪基(piperizynyl)、乙内酰脲基、戊内酰胺基、环氧乙烷基、氧杂环丁基、四氢呋喃基、四氢吡喃基、四氢吡啶基、四氢嘧啶基、四氢噻吩基、四氢噻喃基、四氢嘧啶基、四氢噻吩基、四氢噻喃基等。
术语“任选取代的烷基”、“任选取代的烯基”、“任选取代的炔基”、“任选取代的酰基”和“任选取代的杂环”意指(当取代时)至少一个氢原子被取代基替换。在氧代取代基(=O)的情况下,两个氢原子被替换。在这方面,取代基包括但不限于氧代、卤素、杂环、-CN、-ORx、-NRxRy、-NRxC(=O)Ry、-NRxSO2Ry、-C(=O)Rx、-C(=O)ORx、-C(=O)NRxRy、-SOnRx和-SOnNRxRy,其中n为0、1或2,Rx和Ry是相同的或不同的,并且独立地为氢、烷基或杂环,并且每个烷基和杂环取代基可以进一步被氧代、卤素、-OH、-CN、烷基、-ORx、杂环、-NRxRy、-NRxC(=O)Ry、-NRxSO2Ry、-C(=O)Rx、-C(=O)ORx、-C(=O)NRxRy、-SOnRx和-SOnNRxRy中的一个或多个取代。术语“任选取代的”,当在取代基列表之前使用时,意指列表中的每个取代基可如本文所述任选被取代。
术语“卤素”包括氟、氯、溴和碘。
术语“促融”是指脂质颗粒(诸如SNALP)与细胞的细胞膜融合的能力。膜可以是质膜或包围细胞器(例如,核内体、细胞核等)的膜。
如本文所用,术语“水性溶液”是指全部或部分包含组合物的水。
如本文所用,术语“有机脂质溶液”是指全部或部分包含组合物的含有脂质的有机溶剂。
如本文所用,“远端位点”是指物理隔离的位点,其并不限定于相邻的毛细血管床,而是包括广泛分布在整个生物体的位点。
关于核酸-脂质颗粒(诸如SNALP)的“血清稳定的”意指颗粒在暴露于将显著降解游离DNA或RNA的血清或核酸酶测定后没有显著降解。合适的测定包括(例如)标准血清测定、DNA酶测定或RNA酶测定。
如本文所用,“全身递送”是指在生物体内递送导致活性剂(诸如mRNA)的广泛生物分布的脂质颗粒。一些施用技术可导致某些药剂而不是其它药剂的全身递送。全身递送意指有用(优选治疗性)的量的药剂暴露于身体的大部分。为了获得广泛的生物分布通常需要血液生命周期,使得药剂在到达远离施用位点的疾病位点之前不被迅速降解或清除(例如通过首过器官(肝、肺等)或通过快速、非特异性细胞结合)。脂质颗粒的全身递送可以通过本领域已知的任何方式,包括(例如)静脉内、皮下和腹膜内。在一个优选的实施方案中,脂质颗粒的全身递送是通过静脉内递送。
如本文所用,“局部递送”是指将活性剂如mRNA直接递送至生物体内的靶位点。例如,药剂可以通过直接注射局部递送至疾病位点、其它靶位点或靶器官,如肝脏、心脏、胰腺、肾等。
术语“哺乳动物”是指任一个哺乳动物物种,如人、小鼠、大鼠、狗、猫、仓鼠、豚鼠、兔、家畜等。
当在本文中用于描述脂质:mRNA的比率时,术语“脂质”是指颗粒中的总脂质。
除非本文中另有说明,否则术语“约”,当与值或值的范围关联使用时,意指加或减该值或值的范围的5%。
实施方案描述
在一个方面,本发明提供核酸-脂质颗粒,每个颗粒包括(a)包含阳离子脂质的脂质颗粒;和(b)包封在脂质颗粒内的mRNA分子。通常,mRNA分子的群体包封在脂质颗粒内。脂质颗粒通常包括限定内部部分的外层,其中一个或多个mRNA分子位于内部部分内。一个或多个mRNA分子通常完全包封在脂质颗粒内。脂质颗粒可以是球形或非球形。当使用低温TEM可视化时脂质颗粒可具有电子致密核心。通常,电子致密核心主要由脂质组成,尽管水性材料可以以小于脂质的量的量存在。
在一个方面,本发明提供包含PEG脂质、非阳离子脂质、选自三烷基阳离子脂质和四烷基阳离子脂质的阳离子脂质、以及mRNA的脂质颗粒;其中脂质颗粒具有电子致密核心并且mRNA包封在电子致密核心内。
图2显示具有在其中具有mRNA分子120的包封电子致密核心112的外脂质层110的颗粒100。颗粒被递送至哺乳动物且用于将mRNA分子递送至哺乳动物内的活细胞。
在本发明的一些实施方案中脂质颗粒包括(a)包含阳离子脂质、PEG-脂质和磷脂的脂质颗粒;和(b)mRNA分子,其中mRNA分子包封在脂质颗粒内。脂质颗粒可任选地包括胆固醇。mRNA可以完全或部分地包封在脂质颗粒内。
在一个或多个实施方案中,颗粒100的形成包括将脂质置于第一流体(如乙醇),将mRNA置于第二流体(如水性缓冲液),并在受控的条件下使第一和第二流体混合以形成颗粒100。当通过低温透射电子显微镜观察时,所得颗粒100包括脂质颗粒内的电子致密核心。
mRNA
用于本发明实践的mRNA可以包括至少一个、两个、三个、四个、五个、六个、七个、八个、九个、十个或更多个修饰的核苷酸,如2’OMe核苷酸。优选地,mRNA中的尿苷和/或鸟苷核苷酸经2’OMe核苷酸修饰。在一些实施方案中,mRNA还可包括修饰的(例如,2’OMe修饰的)腺苷和/或修饰的(例如,2’OMe修饰的)胞嘧啶核苷酸。
在一个方面,本发明提供包括mRNA的核酸-脂质颗粒(例如,SNALP)。核酸-脂质颗粒(例如,SNALP)通常包含一种或多种(例如,混合)mRNA、阳离子脂质和非阳离子脂质。在某些情况下,核酸-脂质颗粒(例如,SNALP)还包括抑制颗粒聚集的缀合的脂质。优选地,核酸-脂质颗粒(例如,SNALP)包含一种或多种(例如,混合)mRNA、阳离子脂质、非阳离子脂质和抑制颗粒聚集的缀合的脂质。
在一些实施方案中,mRNA完全包封在核酸-脂质颗粒(例如,SNALP)中。相对于含有mRNA混合物的制剂,存在于混合物中的不同类型的mRNA种类(例如,具有不同序列的mRNA)可以共同包封在相同颗粒中,或者存在于混合物中的每种类型的mRNA种类可以包封在单独的颗粒中。在相同、相似或不同浓度或摩尔比下,可以使用两个或更多个单独的mRNA(每个具有独特序列)的混合物将mRNA混合物配制在本文所述的颗粒中。在一个实施方案中,使用相同、相似或不同浓度或摩尔比的每个mRNA种类来配制mRNA的混合物(对应于多个具有不同序列的mRNA),并且不同类型的mRNA被共同包封在相同颗粒中。在另一个实施方案中,在相同、相似或不同mRNA浓度或摩尔比下将存在于混合物中的每种类型的mRNA种类包封在不同颗粒中,并且使由此形成的颗粒(每个含有不同的mRNA有效载荷)单独施用(例如,根据治疗方案在不同的时间),或者作为单一单位剂量组合并一起施用(例如,与药学上可接受的载体)。本文所述的颗粒是血清稳定的、耐核酸酶降解的、且对哺乳动物(如人)是基本上无毒性的。
在本发明的核酸-脂质颗粒(例如,SNALP)中的阳离子脂质可以包括例如,一种或多种本文描述的式I-III的阳离子脂质或任一个其它阳离子脂质种类。在一个具体的实施方案中,阳离子脂质选自由以下组成的组:1,2-二亚油基氧基-N,N-二甲基氨基丙烷(DLinDMA)、1,2-二亚麻基氧基-N,N-二甲基氨基丙烷(DLenDMA)、1,2-二-γ-亚麻基氧基-N,N-二甲基氨基丙烷(γ-DLenDMA)、2,2-二亚油基-4-(2-二甲基氨基乙基)-[1,3]-二氧戊环(DLin-K-C2-DMA)、2,2-二亚油基-4-二甲基氨基甲基-[1,3]-二氧戊环(DLin-K-DMA)、二亚油基甲基-3-二甲基氨基丙酸酯(DLin-M-C2-DMA)、(6Z,9Z,28Z,31Z)-三十七碳-6,9,28,31-四烯-19-基4-(二甲基氨基)丁酸酯(DLin-M-C3-DMA)、其盐、及其混合物。
在本发明的核酸-脂质颗粒(例如,SNALP)中的非阳离子脂质可以包括例如,一种或多种阴离子脂质和/或中性脂质。在一些实施方案中,非阳离子脂质包括以下中性脂质组分之一:(1)磷脂和胆固醇或其衍生物的混合物;(2)胆固醇或其衍生物;或(3)磷脂。在某些优选的实施方案中,磷脂包括二棕榈酰磷脂酰胆碱(DPPC)、二硬脂酰磷脂酰胆碱(DSPC)或其混合物。在特别优选的实施方案中,非阳离子脂质是DPPC和胆固醇的混合物。
在本发明的核酸-脂质颗粒(例如,SNALP)中的脂质缀合物抑制颗粒的聚集,并且可以包括(例如)一种或多种本文所述的脂质缀合物。在一个具体的实施方案中,脂质缀合物包括PEG-脂质缀合物。PEG-脂质缀合物的实例包括但不限于PEG-DAG缀合物、PEG-DAA缀合物及其混合物。在某些实施方案中,脂质颗粒中的PEG-DAA缀合物可以包括PEG-二癸基氧基丙基(C10)缀合物、PEG-二月桂基氧基丙基(C12)缀合物、PEG-二肉豆蔻基氧基丙基(C14)缀合物、PEG-二棕榈基氧基丙基(C16)缀合物、PEG-二硬脂基氧基丙基(C18)缀合物、或其混合物。在另一个实施方案中,脂质缀合物包括POZ-脂质缀合物,如POZ-DAA缀合物。
在一些实施方案中,本发明提供核酸-脂质颗粒(例如,SNALP),其包含:(a)一种或多种(例如,混合)mRNA分子,其各自编码蛋白质;(b)一种或多种阳离子脂质或其盐,其包含约50摩尔%至约85摩尔%的存在于颗粒中的总脂质;(c)一种或多种非阳离子脂质,其包含约13摩尔%至约49.5摩尔%的存在于颗粒中的总脂质;和(d)一种或多种抑制颗粒聚集的缀合的脂质,其包含约0.5摩尔%至约2摩尔%的存在于颗粒中的总脂质。
在该实施方案的一个方面,核酸-脂质颗粒包含:(a)一种或多种(例如,混合)mRNA分子,其各自编码蛋白质;(b)阳离子脂质或其盐,其包含约52摩尔%至约62摩尔%的存在于颗粒中的总脂质;(c)磷脂和胆固醇或其衍生物的混合物,其包含约36摩尔%至约47摩尔%的存在于颗粒中的总脂质;和(d)PEG-脂质缀合物,其包含约1摩尔%至约2摩尔%的存在于颗粒中的总脂质。核酸-脂质颗粒的该实施方案通常在本文中称为“1:57”制剂。在一个具体的实施方案中,1:57制剂是四组分系统,其包括约1.4摩尔%PEG-脂质缀合物(例如,PEG2000-C-DMA)、约57.1摩尔%阳离子脂质(例如,DLin-K-C2-DMA)或其盐、约7.1摩尔%DPPC(或DSPC)和约34.3摩尔%胆固醇(或其衍生物)。
在该实施方案的另一个方面,核酸-脂质颗粒包含:(a)一种或多种(例如,混合)mRNA分子,其各自编码蛋白质;(b)阳离子脂质或其盐,其包含约56.5摩尔%至约66.5摩尔%的存在于颗粒中的总脂质;(c)胆固醇或其衍生物,其包含约31.5摩尔%至约42.5摩尔%的存在于颗粒中的总脂质;和(d)PEG-脂质缀合物,其包含约1摩尔%至约2摩尔%的存在于颗粒中的总脂质。核酸-脂质颗粒的该实施方案通常在本文中称为“1:62”制剂。在一个具体的实施方案中,1:62制剂是不含磷脂的三组分系统,并且包括约1.5摩尔%PEG-脂质缀合物(例如,PEG2000-C-DMA)、约61.5摩尔%阳离子脂质(例如,DLin-K-C2-DMA)或其盐和约36.9摩尔%胆固醇(或其衍生物)。
与1:57和1:62制剂相关的其它实施方案描述于PCT公布号WO09/127060和公布的美国专利申请公布号US2011/0071208A1,这些专利的公开内容为了所有目的通过引用整体并入本文。
在其它实施方案中,本发明提供核酸-脂质颗粒(例如,SNALP),其包含:(a)一种或多种(例如,混合)mRNA分子,其各自编码蛋白质;(b)一种或多种阳离子脂质或其盐,其包含约2摩尔%至约50摩尔%的存在于颗粒中的总脂质;(c)一种或多种非阳离子脂质,其包含约5摩尔%至约90摩尔%的存在于颗粒中的总脂质;和(d)一种或多种抑制颗粒聚集的缀合的脂质,其包含约0.5摩尔%至约20摩尔%的存在于颗粒中的总脂质。
在该实施方案的一个方面,核酸-脂质颗粒包含:(a)一种或多种(例如,混合)mRNA分子,其各自编码蛋白质;(b)阳离子脂质或其盐,其包含约30摩尔%至约50摩尔%的存在于颗粒中的总脂质;(c)磷脂和胆固醇或其衍生物的混合物,其包含约47摩尔%至约69摩尔%的存在于颗粒中的总脂质;和(d)PEG-脂质缀合物,其包含约1摩尔%至约3摩尔%的存在于颗粒中的总脂质。核酸-脂质颗粒的该实施方案通常在本文中称为“2:40”制剂。在一个具体的实施方案中,2:40制剂是四组分系统,其包括约2摩尔%PEG-脂质缀合物(例如,PEG2000-C-DMA)、约40摩尔%阳离子脂质(例如,DLin-K-C2-DMA)或其盐、约10摩尔%DPPC(或DSPC)和约48摩尔%胆固醇(或其衍生物)。
在进一步的实施方案中,本发明提供核酸-脂质颗粒(例如,SNALP),其包含:(a)一种或多种(例如,混合)mRNA分子,其各自编码蛋白质;(b)一种或多种阳离子脂质或其盐,其包含约50摩尔%至约65摩尔%的存在于颗粒中的总脂质;(c)一种或多种非阳离子脂质,其包含约25摩尔%至约45摩尔%的存在于颗粒中的总脂质;和(d)一种或多种抑制颗粒聚集的缀合的脂质,其包含约5摩尔%至约10摩尔%的存在于颗粒中的总脂质。
在该实施方案的一个方面,核酸-脂质颗粒包含:(a)一种或多种(例如,混合)mRNA分子,其各自编码蛋白质;(b)阳离子脂质或其盐,其包含约50摩尔%至约60摩尔%的存在于颗粒中的总脂质;(c)磷脂和胆固醇或其衍生物的混合物,其包含约35摩尔%至约45摩尔%的存在于颗粒中的总脂质;和(d)PEG-脂质缀合物,其包含约5摩尔%至约10摩尔%的存在于颗粒中的总脂质。核酸-脂质颗粒的该实施方案通常在本文中称为“7:54”制剂。在某些情况下,在7:54制剂中的非阳离子脂质混合物包含:(i)存在于颗粒中的总脂质的约5摩尔%至约10摩尔%的磷脂;和(ii)存在于颗粒中的总脂质的约25摩尔%至约35摩尔%的胆固醇或其衍生物。在一个具体的实施方案中,7:54制剂是四组分系统,其包括约7摩尔%PEG-脂质缀合物(例如,PEG750-C-DMA)、约54摩尔%阳离子脂质(例如,DLin-K-C2-DMA)或其盐、约7摩尔%DPPC(或DSPC)和约32摩尔%胆固醇(或其衍生物)。
在该实施方案的另一个方面,核酸-脂质颗粒包含:(a)一种或多种(例如,混合)mRNA分子,其各自编码蛋白质;(b)阳离子脂质或其盐,其包含约55摩尔%至约65摩尔%的存在于颗粒中的总脂质;(c)胆固醇或其衍生物,其包含约30摩尔%至约40摩尔%的存在于颗粒中的总脂质;和(d)PEG-脂质缀合物,其包含约5摩尔%至约10摩尔%的存在于颗粒中的总脂质。核酸-脂质颗粒的该实施方案通常在本文中称为“7:58”制剂。在一个具体的实施方案中,7:58制剂是不含磷脂的三组分系统,并且包括约7摩尔%PEG-脂质缀合物(例如,PEG750-C-DMA)、约58摩尔%阳离子脂质(例如,DLin-K-C2-DMA)或其盐和约35摩尔%胆固醇(或其衍生物)。
与7:54和7:58制剂相关的其它实施方案描述于公布的美国专利申请公布号US2011/0076335A1,该专利的公开内容为了所有目的通过引用整体并入本文。
本发明还提供包含核酸-脂质颗粒(诸如SNALP)和药学上可接受的载体的药物组合物。
本发明的核酸-脂质颗粒(例如,SNALP)是用于表达一种或多种蛋白质(如全长蛋白质、或全长蛋白质的生物活性片段)的mRNA的治疗性递送。在一些实施方案中,将表达不同蛋白质的mRNA的混合物配制于相同或不同的核酸-脂质颗粒中,并且将颗粒施用于需要此类治疗的哺乳动物(例如,人类)。在某些情况下,治疗有效量的核酸-脂质颗粒可以施用于哺乳动物。
在某些实施方案中,本发明提供一种用于通过使细胞与本文所述的核酸-脂质颗粒(例如,SNALP制剂)接触将一种或多种mRNA分子引入到细胞中的方法。在一个具体的实施方案中,细胞是网状内皮细胞(例如,单核细胞或巨噬细胞)、成纤维细胞、内皮细胞或血小板细胞。
在一些实施方案中,本文所述的核酸-脂质颗粒(例如,SNALP)通过下列施用途径之一施用:口服、鼻内、静脉内、腹膜内、肌内、关节内、病灶内、气管内、皮下和皮内。在具体实施方案中,核酸-脂质颗粒被全身施用,例如,通过施用的肠内或肠胃外途径。
在具体实施方案中,本发明的核酸-脂质颗粒(例如,SNALP)可以相比于其它组织优先地将有效载荷(如mRNA)递送至肝脏。
在某些方面,本发明提供用于在有需要的哺乳动物(例如,人)中表达蛋白质的方法,该方法包括在能够在哺乳动物中表达蛋白质的条件下向哺乳动物施用治疗有效量的核酸-脂质颗粒(例如,SNALP制剂),颗粒包含编码一种或多种蛋白质的一种或多种mRNA。例如,在其中mRNA编码通常表达于健康哺乳动物受试者中的蛋白质的实施方案中,由包封在SNALP内的mRNA编码的蛋白质的表达水平为通常表达于健康哺乳动物受试者中的蛋白质的水平的至少10%、或至少20%、或至少30%、或至少40%、或至少50%、或至少60%、或至少70%、或至少80%、或至少90%、或至少100%,或大于100%。
在其它方面,本发明提供用于在有需要的哺乳动物(例如,人)中治疗、预防、减少发展疾病的风险或可能性(例如,减少对疾病的易感性),延迟疾病发作,和/或改善一种或多种与疾病相关的症状的方法,其中疾病(至少部分地)由蛋白质表达的减少或异常引起。每种方法包括以下步骤:给哺乳动物施用治疗有效量的核酸-脂质颗粒(例如,SNALP制剂),颗粒包括一种或多种编码在经治疗的受试者中不存在、或以减少的水平存在的蛋白质的mRNA分子。
在本发明中有用的mRNA分子可以经化学修饰或未经修饰。通常mRNA分子经化学修饰以减少它们诱导引入mRNA的细胞的先天免疫应答的能力。
mRNA的修饰
用于本发明实践的mRNA可以包括一种、两种或两种以上核苷修饰。在一些实施方案中,经修饰的mRNA相对于相应的未修饰的mRNA显示出引入mRNA的细胞的降解减少。
在一些实施方案中,修饰的核苷包括吡啶-4-酮核糖核苷、5-氮杂-尿苷、2-硫代-5-氮杂-尿苷、2-硫代尿苷、4-硫代-假尿苷、2-硫代-假尿苷、5-羟基尿苷、3-甲基尿苷、5-羧甲基-尿苷、1-羧甲基-假尿苷、5-丙炔基-尿苷、1-丙炔基-假尿苷、5-牛磺甲基尿苷、1-牛磺甲基-假尿苷、5-牛磺甲基-2-硫代-尿苷、1-牛磺甲基-4-硫代-尿苷、5-甲基-尿苷、1-甲基1-假尿苷、4-硫代-1-甲基1-假尿苷、2-硫代-1-甲基1-假尿苷、1-甲基1-1-脱氮-假尿苷、2-硫代-1-甲基-1-脱氮-假尿苷、二氢尿苷、二氢假尿苷、2-硫代-二氢尿苷、2-硫代-二氢假尿苷、2-甲氧基尿苷、2-甲氧基-4-硫代-尿苷、4-甲氧基-假尿苷和4-甲氧基-2-硫代-假尿苷。
在一些实施方案中,修饰的核苷包括5-氮杂-胞苷、假异胞苷、3-甲基-胞苷、N4-乙酰基胞苷、5-甲酰基胞苷、N4-甲基胞苷、5-羟甲基胞苷、1-甲基-假异胞苷、吡咯并-胞苷、吡咯并-假异胞苷、2-硫代-胞苷、2-硫代-5-甲基-胞苷、4-硫代-假异胞苷、4-硫代-1-甲基-假异胞苷、4-硫代-1-甲基-1-脱氮-假异胞苷、1-甲基-1-脱氮-假异胞苷、嘧啶酮(zebularine)、5-氮杂-嘧啶酮、5-甲基-嘧啶酮、5-氮杂-2-硫代-嘧啶酮、2-硫代-嘧啶酮、2-甲氧基-胞苷、2-甲氧基-5-甲基-胞苷、4-甲氧基-假异胞苷和4-甲氧基-1-甲基-假异胞苷。
在其它实施方案中,修饰的核苷包括2-氨基嘌呤、2,6-二氨基嘌呤、7-脱氮-腺嘌呤、7-脱氮-8-氮杂-腺嘌呤、7-脱氮-2-氨基嘌呤、7-脱氮-8-氮杂-2-氨基嘌呤、7-脱氮-2,6-二氨基嘌呤、7-脱氮-8-氮杂-2,6-二氨基嘌呤、1-甲基腺苷、N6-甲基腺苷、N6-异戊烯基腺苷、N6-(顺式-羟基异戊烯基)腺苷、2-甲基硫基-N6-(顺式-羟基异戊烯基)腺苷、N6-甘氨酰氨基甲酰基腺苷、N6-苏氨酰氨基甲酰基腺苷、2-甲基硫基-N6-苏氨酰氨基甲酰基腺苷、N6,N6-二甲基腺苷、7-甲基腺嘌呤、2-甲基硫基-腺嘌呤和2-甲氧基-腺嘌呤。
在具体实施方案中,修饰的核苷是5′-0-(l-硫代磷酸)-腺苷、5′-0-(1-硫代磷酸)-胞苷、5′-0-(1-硫代磷酸)-鸟苷、5′-0-(1-硫代磷酸)-尿苷或5′-0-(l-硫代磷酸)-假尿苷。提供α-硫基取代的磷酸部分以通过非天然硫代磷酸酯骨架键联赋予RNA聚合物稳定性。硫代磷酸酯RNA在细胞环境下具有增加的核酸酶抗性和因此更长的半衰期。硫代磷酸酯连接的核酸预期也通过细胞先天免疫分子的较弱结合/激活来减少先天免疫应答。
在某些实施方案中,例如如果需要蛋白产生的精确计时,则期望在细胞内降解引入细胞的经修饰的核酸。因此,本发明提供含有降解结构域的经修饰的核酸,其能够在细胞内以定向的方式被作用。
在其它实施方案中,修饰的核苷包括肌苷、1-甲基-肌苷、丫苷(wyosine)、怀丁苷(wybutosine)、7-脱氮-鸟苷、7-脱氮-8-氮杂-鸟苷、6-硫代-鸟苷、6-硫代-7-脱氮-鸟苷、6-硫代-7-脱氮-8-氮杂-鸟苷、7-甲基-鸟苷、6-硫代-7-甲基-鸟苷、7-甲基肌苷、6-甲氧基-鸟苷、1-甲基鸟苷、N2-甲基鸟苷、N2,N2-二甲基鸟苷、8-氧代-鸟苷、7-甲基-8-氧代-鸟苷、1-甲基-6-硫代-鸟苷、N2-甲基-6-硫代-鸟苷和N2,N2-二甲基-6-硫代-鸟苷。
经修饰的核酸的任选组分
在进一步的实施方案中,经修饰的核酸可以包括其它任选组分,其在一些实施方案中可以是有益的。这些任选组分包括但不限于非翻译区、kozak序列、内含子核苷酸序列、内部核糖体进入位点(IRES)、帽和聚A尾巴。例如,可以提供5′非翻译区(UTR)和/或3′UTR,其中任一个或两个可独立地含有一个或多个不同的核苷修饰。在此类实施方案中,核苷修饰也可以存在于可翻译区域。还提供含有Kozak序列的核酸。
此外,提供含有一个或多个能够从核酸切除的内含子核苷酸序列的核酸。
非翻译区(UTR)
基因的非翻译区(UTR)被转录但未被翻译。5′UTR开始于转录起始位点,并延续至起始密码子,但不包括起始密码子;而3′UTR在终止密码子之后立即开始,并延续直到转录终止信号。存在日益增多的关于在核酸分子和翻译的稳定性方面由UTR发挥的调控作用的证据。UTR的调节特征可以并入本发明使用的mRNA以增加分子的稳定性。也可并入具体特征以确保转录下调受控,以防它们被错误定向至不希望的器官位点。
5′加帽
mRNA的5′帽结构参与细胞核输出,增加mRNA稳定性并结合mRNA帽结合蛋白(CBP),它通过使CBP与聚腺苷酸(poly(A))结合蛋白结合来负责细胞中mRNA稳定性和翻译能力以形成成熟的环状mRNA种类。该帽还促进mRNA剪接过程中5′近端内含子的去除。
内源性mRNA分子可以是5′末端加帽,在mRNA分子的末端鸟苷帽残基和5′-末端转录的正义核苷酸之间产生5′-ppp-5′-三磷酸酯键。然后这种5′-鸟苷酸帽可以被甲基化以生成N7-甲基-鸟苷酸残基。mRNA的5′端的末端和/或前末端(anteterminal)转录的核苷酸的核糖也可任选地被2′-0-甲基化。通过鸟苷酸帽结构的水解和裂解进行5′-脱帽可靶向核酸分子(如mRNA分子)用于降解。
IRES序列
含有内部核糖体进入位点(IRES)的mRNA也可用于本发明的实践。IRES可以作为唯一的核糖体结合位点,或可作为mRNA的多个核糖体结合位点之一。含有一个以上功能性核糖体结合位点的mRNA可以编码独立地由核糖体翻译的几种肽或多肽(“多顺反子mRNA”)。当mRNA与IRES一起提供时,还任选地提供第二可翻译区。根据本发明可使用的IRES序列的实例包括但不限于来自小核糖核酸病毒(例如FMDV)、害虫病毒(CFFV)、脊髓灰质炎病毒(PV)、脑心肌炎病毒(ECMV)、口蹄疫病病毒(FMDV)、丙型肝炎病毒(HCV)、传统猪瘟病毒(CSFV)、鼠白血病病毒(MLV)、猿猴免疫缺陷病毒(S1V)或蟋蟀麻痹病毒(CrPV)的那些。
多聚腺苷酸尾
在RNA加工过程中,长链腺嘌呤核苷酸(多聚腺苷酸尾)可以加至多核苷酸(如mRNA分子)中以增加稳定性。在转录后,可立即切割转录物的3′末端以释放3′羟基。然后聚腺苷酸聚合酶将腺嘌呤核苷酸链加至RNA中。称为多聚腺苷酸化的过程加入长度可以在100至250个残基之间的多聚腺苷酸尾。
通常,多聚腺苷酸尾的长度大于30个核苷酸长度。在另一个实施方案中,多聚腺苷酸尾大于35个核苷酸的长度(例如,至少或大于约35、40、45、50、55、60、70、80、90、100、120、140、160、180、200、250、300、350、400、450、500、600、700、800、900、1000、1100、1200、1300、1400、1500、1600、1700、1800、1900、2000、2500和3000个核苷酸)。
在这种情况下多聚腺苷酸尾的长度可以比经修饰的mRNA大10、20、30、40、50、60、70、80、90或100%。也可将多聚腺苷酸尾设计为它所属的经修饰的核酸的一部分。在这种情况下,多聚腺苷酸尾可以是经修饰的mRNA的总长度的10、20、30、40、50、60、70、80、或90%或更多,或为经修饰的mRNA的总长度减去多聚腺苷酸尾。
生成mRNA分子
用于分离RNA、合成RNA、使核酸杂交、制备和筛选cDNA文库、和进行PCR的方法是本领域公知的(参见,例如,GublerandHoffman,Gene,25:263-269(1983);Sambrook等,MolecularCloning,ALaboratoryManual(第2版,1989));PCR方法也是如此(参见,美国专利号4,683,195和4,683,202;PCRProtocols:AGuidetoMethodsandApplications(Innis等,编,1990))。表达文库也为本领域技术人员所公知。公开本发明使用的一般方法的其它基础文献包括Kriegler,GeneTransferandExpression:ALaboratoryManual(1990);和CurrentProtocolsinMolecularBiology(Ausubel等,编,1994)。这些参考文献的公开内容为了所有目的通过引用整体并入本文。
脂质颗粒
在某些方面,本发明提供包含在脂质颗粒内包封的一种或多种治疗性mRNA分子的脂质颗粒。
在一些实施方案中,mRNA被完全包封在脂质颗粒的脂质部分内,使得脂质颗粒中的mRNA在水性溶液中抵抗核酸酶降解。在其它实施方案中,本文所述的脂质颗粒对哺乳动物(如人)是基本上无毒的。本发明的脂质颗粒通常具有约30nm至约150nm、约40nm至约150nm、约50nm至约150nm、约60nm至约130nm、约70nm至约110nm、或约70至约90nm的平均直径。本发明的脂质颗粒还通常具有约1:1至约100:1、约1:1至约50:1、约2:1至约25:1、约3:1至约20:1、约5:1至约15:1、或约5:1至约10:1、或约10:1至约14:1、或约9:1至约20:1的脂质:mRNA比(质量/质量比)。在一个实施方案中,本发明的脂质颗粒具有约12:1(如12:1)的脂质:mRNA比(质量/质量比)。在另一个实施方案中,本发明的脂质颗粒具有约13:1(如13:1)的脂质:mRNA比(质量/质量比)。
在优选的实施方案中,本发明的脂质颗粒是血清稳定的核酸-脂质颗粒(SNALP),其包含mRNA、阳离子脂质(例如,一种或多种如本文所述式I-III或其盐的阳离子脂质)、磷脂、和抑制颗粒聚集的缀合的脂质(例如,一种或多种PEG-脂质缀合物)。脂质颗粒还可以包括胆固醇。SNALP可以包括至少1、2、3、4、5、6、7、8、9、10或更多种表达一种或多种多肽的未修饰的和/或经修饰的mRNA。核酸-脂质颗粒及其制备方法描述于例如,美国专利号5,753,613;5,785,992;5,705,385;5,976,567;5,981,501;6,110,745;和6,320,017;以及PCT公布号WO96/40964,这些专利的公开内容各自为了所有目的通过引用整体并入本文。
在本发明的核酸-脂质颗粒中,mRNA可以被完全包封在颗粒的脂质部分内,从而保护核酸免受核酸酶降解。在优选的实施方案中,包含mRNA的SNALP被完全包封在颗粒的脂质部分内,从而保护核酸免受核酸酶降解。在某些情况下,SNALP中的mRNA在37℃将颗粒暴露于核酸酶至少约20、30、45或60分钟之后基本上未被降解。在某些其它情况下,SNALP中的mRNA在37℃在将颗粒孵育在血清中至少约30、45或60分钟或至少约2、3、4、5、6、7、8、9、10、12、14、16、18、20、22、24、26、28、30、32、34或36小时之后基本上未被降解。在其它实施方案中,mRNA与颗粒中的脂质部分复合。本发明的制剂的优点之一在于核酸-脂质颗粒组合物对哺乳动物(如人)是基本上无毒的。
术语“完全包封的”表示核酸-脂质颗粒中的核酸(mRNA)在暴露于将显著降解游离RNA的血清或核酸酶测定之后未被显著降解。在完全包封的系统中,优选地少于约25%的颗粒中的核酸在将通常降解100%游离核酸的治疗中降解,更优选地少于约10%且最优选地少于约5%的颗粒中的核酸被降解。“完全包封的”也表示核酸-脂质颗粒是血清稳定的,也就是,它们在体内施用后不迅速分解成其组成部分。
在核酸的上下文中,完全包封可以通过进行不可透过膜的荧光染料排除测定来确定,该测定当与核酸有关时使用具有增强的荧光的染料。特定染料如(InvitrogenCorp.;Carlsbad,CA)可用于质粒DNA、单链脱氧核糖核苷酸和/或单链或双链核糖核苷酸的定量测定。包封是通过将染料加入到脂质体制剂中,测量所产生的荧光,并将其与在添加少量非离子型洗涤剂之后所观察到的荧光相比较来确定。脂质体双层的洗涤剂介导的破坏释放包封的核酸,从而允许其与不可透过膜的染料相互作用。核酸包封可以计算为E=(Io–I)/Io,其中I和Io是指加入洗涤剂前后的荧光强度(参见,Wheeler等,GeneTher.,6:271-281(1999))。
在其它实施方案中,本发明提供包含多个核酸-脂质颗粒的核酸-脂质颗粒(例如,SNALP)组合物。
在一些情况下,SNALP组合物包含完全包封在颗粒的脂质部分内的mRNA,使得约30%至约100%、约40%至约100%、约50%至约100%、约60%至约100%、约70%至约100%、约80%至约100%、约90%至约100%、约30%至约95%、约40%至约95%、约50%至约95%、约60%至约95%、约70%至约95%、约80%至约95%、约85%至约95%、约90%至约95%、约30%至约90%、约40%至约90%、约50%至约90%、约60%至约90%、约70%至约90%、约80%至约90%、或至少约30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%(或其任何部分或其中的范围)的颗粒具有包封于其中的mRNA。
根据本发明的脂质颗粒的预期用途,组分的比例可以变化并且特定制剂的递送效率可以使用例如,内体释放参数(ERP)测定来测量。
阳离子脂质
各种阳离子脂质或其盐中的任一个可单独或与一种或多种其它阳离子脂质种类或非阳离子脂质种类组合用于本发明的脂质颗粒(例如,SNALP)中。阳离子脂质包括其(R)和/或(S)对映异构体。通常,阳离子脂质含有包含不饱和和/或饱和烃链的部分(即疏水部分)。
在一个方面,具有以下结构的式I的阳离子脂质在本发明中是有用的:
或其盐,其中:
R1和R2可以相同或不同并且独立地为氢(H)或任选取代的C1-C6烷基、C2-C6烯基或C2-C6炔基,或者R1和R2可以结合以形成4至6个碳原子和1或2个选自由氮(N)、氧(O)及其混合物组成的组的杂原子的任选取代的杂环;
R3不存在或为氢(H)或C1-C6烷基以提供季胺;
R4和R5可以相同或不同,并且独立地为任选取代的C10-C24烷基、C10-C24烯基、C10-C24炔基或C10-C24酰基,其中R4和R5中至少一个包含至少两个不饱和位点;并且
n为0、1、2、3或4。
在一些实施方案中,R1和R2独立地为任选取代的C1-C4烷基、C2-C4烯基或C2-C4炔基。在一个优选的实施方案中,R1和R2均为甲基。在其它优选的实施方案中,n是1或2。在其它实施方案中,当pH高于阳离子脂质的pKa时R3不存在,并且当pH低于阳离子脂质的pKa时R3为氢,使得氨基头部基团被质子化。在替代的实施方案中,R3是任选取代的C1-C4烷基以提供季胺。在进一步的实施方案中,R4和R5独立地为任选取代的C12-C20或C14-C22烷基、C12-C20或C14-C22烯基、C12-C20或C14-C22炔基、或C12-C20或C14-C22酰基,其中R4和R5中至少一个包含至少两个不饱和位点。
在某些实施方案中,R4和R5独立地选自由以下组成的组:十二碳二烯基部分、十四碳二烯基部分、十六碳二烯基部分、十八碳二烯基部分、二十碳二烯基部分、十二碳三烯基部分、十四碳三烯基部分、十六碳三烯基部分、十八碳三烯基部分、二十碳三烯基部分、花生四烯酰基部分和二十二碳六烯酰基部分、及其酰基衍生物(例如,亚油酰基、亚麻酰基、γ-亚麻酰基,等)。在一些情况下,R4和R5中的一个包含支链烷基(例如,植烷基部分)或其酰基衍生物(例如,植烷酰基部分)。在某些情况下,十八碳二烯基部分是亚油基部分。在某些其它情况下,十八碳三烯基部分是亚麻基部分或γ-亚麻基部分。在某些实施方案中,R4和R5均为亚油基部分、亚麻基部分或γ-亚麻基部分。在具体的实施方案中,式I的阳离子脂质是1,2-二亚油基氧基-N,N-二甲基氨基丙烷(DLinDMA)、1,2-二亚麻基氧基-N,N-二甲基氨基丙烷(DLenDMA)、1,2-二亚油基氧基-(N,N-二甲基)-丁基-4-胺(C2-DLinDMA)、1,2-二亚油酰基氧基-(N,N-二甲基)-丁基-4-胺(C2-DLinDAP)、或其混合物。
在一些实施方案中,式I的阳离子脂质与一种或多种阴离子形成盐(优选地结晶盐)。在一个具体的实施方案中,式I的阳离子脂质是其草酸(例如,半草酸)盐,它优选地为结晶盐。
阳离子脂质诸如DLinDMA和DLenDMA以及另外的阳离子脂质的合成描述于美国专利公布号20060083780,该专利的公开内容为了所有目的通过引用整体并入本文。阳离子脂质诸如C2-DLinDMA和C2-DLinDAP以及另外的阳离子脂质的合成描述于国际专利申请号WO2011/000106,该专利的公开内容为了所有目的通过引用整体并入本文。
在另一个方面,具有下列结构的式II的阳离子脂质(或其盐)在本发明中是有用的:
其中R1和R2可以相同或不同,并且独立地为任选取代的C12-C24烷基、C12-C24烯基、C12-C24炔基、或C12-C24酰基;R3和R4可以相同或不同,并且独立地为任选取代的C1-C6烷基、C2-C6烯基、或C2-C6炔基,或者R3和R4可以结合以形成4至6个碳原子和1或2个选自氮和氧的杂原子的任选取代的杂环;R5不存在或为氢(H)或C1-C6烷基以提供季胺;m、n和p可以相同或不同,并且独立地为0、1或2,前提是m、n和p不同时为0;q为0、1、2、3或4;并且Y和Z可以相同或不同,并且独立地为O、S或NH。在优选的实施方案中,q为2。
在一些实施方案中,式II的阳离子脂质是2,2-二亚油基-4-(2-二甲基氨基乙基)-[1,3]-二氧戊环、2,2-二亚油基-4-(3-二甲基氨基丙基)-[1,3]-二氧戊环、2,2-二亚油基-4-(4-二甲基氨基丁基)-[1,3]-二氧戊环、2,2-二亚油基-5-二甲基氨基甲基-[1,3]-二噁烷、2,2-二亚油基-4-N-甲基哌嗪并(pepiazino)-[1,3]-二氧戊环、2,2-二亚油基-4-二甲基氨基甲基-[1,3]-二氧戊环、2,2-二油酰基-4-二甲基氨基甲基-[1,3]-二氧戊环、2,2-二硬脂酰基-4-二甲基氨基甲基-[1,3]-二氧戊环、2,2-二亚油基-4-N-吗啉代-[1,3]-二氧戊环、2,2-二亚油基-4-三甲基氨基-[1,3]-氯化二氧戊环、2,2-二亚油基-4,5-双(二甲基氨基甲基)-[1,3]-二氧戊环、2,2-二亚油基-4-甲基哌嗪(piperzine)-[1,3]-二氧戊环、或其混合物。在优选的实施方案中,式II的阳离子脂质是2,2-二亚油基-4-(2-二甲基氨基乙基)-[1,3]-二氧戊环。
在一些实施方案中,式II的阳离子脂质与一种或多种阴离子形成盐(优选地结晶盐)。在一个具体的实施方案中,式II的阳离子脂质是其草酸(例如,半草酸)盐,它优选地为结晶盐。
阳离子脂质诸如2,2-二亚油基-4-二甲基氨基甲基-[1,3]-二氧戊环以及另外的阳离子脂质的合成描述于PCT公布号WO09/086558,该专利的公开内容为了所有目的通过引用整体并入本文,以及名称为“ImprovedAminoLipidsandMethodsfortheDeliveryofNucleicAcids,”的PCT申请号PCT/US2009/060251中,该专利的公开内容为了所有目的通过引用整体并入本文。
在其它方面,具有以下结构的式III的阳离子脂质在本发明中是有用的:
或其盐,其中:R1和R2可以相同或不同,并且独立地为任选取代的C1-C6烷基、C2-C6烯基、或C2-C6炔基,或者R1和R2可以结合以形成4至6个碳原子和选自由氮(N)、氧(O)及其混合物组成的组的1或2个杂原子的任选取代的杂环;R3不存在或为氢(H)或C1-C6烷基以提供季胺;R4和R5可以不存在或存在,并且当存在时可以相同或不同,并且独立地为任选取代的C1-C10烷基或C2-C10烯基;并且n为0、1、2、3或4。
在一些实施方案中,R1和R2独立地为任选取代的C1-C4烷基、C2-C4烯基或C2-C4炔基。在优选的实施方案中,R1和R2均为甲基。在另一个优选的实施方案中,R4和R5均为丁基。在又一个优选的实施方案中,n为1。在其它实施方案中,当pH高于阳离子脂质的pKa时R3不存在,并且当pH低于阳离子脂质的pKa时R3为氢,使得氨基头部基团被质子化。在替代的实施方案中,R3是任选取代的C1-C4烷基以提供季胺。在进一步的实施方案中,R4和R5独立地为任选取代的C2-C6或C2-C4烷基或C2-C6或C2-C4烯基。
在替代的实施方案中,式III的阳离子脂质包含氨基头部基团和一条或两条烷基链之间的酯键。在一些实施方案中,式III的阳离子脂质与一种或多种阴离子形成盐(优选地为结晶盐)。在一个具体的实施方案中,式III的阳离子脂质是其草酸(例如,半草酸)盐,它优选地为结晶盐。
虽然式III中的每条烷基链在位置6、9和12处含有顺式双键(即,顺,顺,顺-Δ6912),但在替代的实施方案中,在一条或两条烷基链中的这些双键的一个、两个或三个可以呈反式构型。
在一个实施方案中,式III的阳离子脂质具有以下结构:
阳离子脂质诸如γ-DLenDMA以及另外的阳离子脂质的合成描述于国际专利申请WO2011/000106,该专利的公开内容为了所有目的通过引用整体并入本文。
在具体的实施方案中,具有以下结构的阳离子脂质在本发明中是有用的:
阳离子脂质诸如化合物7以及另外的阳离子脂质的合成描述于国际专利序列号8,158,601和国际专利申请序列号PCT/GB2011/000723,这些专利的公开内容为了所有目的通过引用整体并入本文。
可以包括于本发明的脂质颗粒中的其它阳离子脂质或其盐的实例包括但不限于诸如在WO2011/000106中描述的那些阳离子脂质(该专利的公开内容为了所有目的通过引用整体并入本文)以及如以下的阳离子脂质:N,N-二油基-N,N-二甲基氯化铵(DODAC)、1,2-二油基氧基-N,N-二甲基氨基丙烷(DODMA)、1,2-二硬脂基氧基-N,N-二甲基氨基丙烷(DSDMA)、N-(1-(2,3-二油基氧基)丙基)-N,N,N-三甲基氯化铵(DOTMA)、N,N-二硬脂基-N,N-二甲基溴化铵(DDAB)、N-(1-(2,3-二油酰基氧基)丙基)-N,N,N-三甲基氯化铵(DOTAP)、3-(N-(N′,N′-二甲基氨基乙烷)-氨基甲酰基)胆固醇(DC-Chol)、N-(1,2-二肉豆蔻基氧基丙-3-基)-N,N-二甲基-N-羟乙基溴化铵(DMRIE)、2,3-二油基氧基-N-[2(精胺-甲酰胺基)乙基]-N,N-二甲基-1-丙烷三氟乙酸铵(DOSPA)、双十八烷基酰胺基甘氨酰基精胺(DOGS)、3-二甲基氨基-2-(胆甾-5-烯-3-β-氧基丁-4-氧基)-1-(顺,顺-9-,12-十八碳二烯氧基)丙烷(CLinDMA)、2-[5′-(胆甾-5-烯-3-β-氧基)-3′-氧杂戊烷氧基)-3-二甲基-1-(顺,顺-9′,1-2′-十八碳二烯氧基)丙烷(CpLinDMA)、N,N-二甲基-3,4-二油基氧基苄胺(DMOBA)、1,2-N,N′-二油基氨基甲酰基-3-二甲基氨基丙烷(DOcarbDAP)、1,2-N,N′-二亚油基氨基甲酰基-3-二甲基氨基丙烷(DLincarbDAP)、1,2-二亚油基氨基甲酰基氧基-3-二甲基氨基丙烷(DLin-C-DAP)、1,2-二亚油基氧基-3-(二甲基氨基)乙酰氧基丙烷(DLin-DAC)、1,2-二亚油基氧基-3-吗啉代丙烷(DLin-MA)、1,2-二亚油酰基-3-二甲基氨基丙烷(DLinDAP)、1,2-二亚油基硫基-3-二甲基氨基丙烷(DLin-S-DMA)、1-亚油酰基-2-亚油基氧基-3-二甲基氨基丙烷(DLin-2-DMAP)、1,2-二亚油基氧基-3-三甲基氨基丙烷氯化物盐(DLin-TMA.Cl)、1,2-二亚油酰基-3-三甲基氨基丙烷氯化物盐(DLin-TAP.Cl)、1,2-二亚油基氧基-3-(N-甲基哌嗪子基)丙烷(DLin-MPZ)、3-(N,N-二亚油基氨基)-1,2-丙二醇(DLinAP)、3-(N,N-二油基氨基)-1,2-丙二醇(DOAP)、1,2-二亚油基氧代-3-(2-N,N-二甲基氨基)乙氧基丙烷(DLin-EG-DMA)、1,2-二油基氨基甲酰基氧基-3-二甲基氨基丙烷(DO-C-DAP)、1,2-双十四碳烯酰基-3-二甲基氨基丙烷(DMDAP)、1,2-二油酰基-3-三甲基氨基丙烷氯化物(DOTAP.Cl)、二亚油基甲基-3-二甲基氨基丙酸酯(DLin-M-C2-DMA;也被称为DLin-MK-DMA或DLin-M-DMA)、及其混合物。可以包括于本发明的脂质颗粒中的另外的阳离子脂质或其盐描述于美国专利公布号20090023673,该专利的公开内容为了所有目的通过引用整体并入本文。
在另一个实施方案中,三烷基阳离子脂质可用于制备本文所述的脂质颗粒。此类三烷基阳离子脂质通常包含每条链具有六个或更多个碳的三条饱和或不饱和烃链。可以并入本文所述的组合物的三烷基阳离子脂质可以如国际专利申请公布号WO2013/126803中所述进行制备。
例如,下式B的三烷基阳离子脂质可用于制造本发明的脂质颗粒:
X-A-Y-Z;
(式B)
或其盐,其中:
X为–N(H)R或–NR2
A为不存在、C1至C6烷基、C2至C6烯基或C2至C6炔基,其中C1至C6烷基、C2至C6烯基和C2至C6炔基任选地被一个或多个独立地选自氧代、卤素、杂环、-CN、-ORx、-NRxRy、-NRxC(=O)Ry、-NRxSO2Ry、-C(=O)Rx、-C(=O)ORx、-C(=O)NRxRy、-SOnRx和-SOnNRxRy的基团取代,其中n为0、1或2,并且Rx和Ry各自独立地为氢、烷基或杂环,其中Rx和Ry的每个烷基和杂环可进一步被一个或多个独立地选自氧代、卤素、-OH、-CN、烷基、-ORx’、杂环、-NRx’Ry’、-NRx’C(=O)Ry’、-NRx’SO2Ry’、-C(=O)Rx’、-C(=O)ORx’、-C(=O)NRx’Ry’、-SOn’Rx’和-SOn’NRx’Ry’的基团取代,其中n’为0、1或2,并且Rx’和Ry’各自独立地为氢、烷基或杂环;
Y选自由以下组成的组:不存在、–C(=O)-、-O-、-OC(=O)-、-C(=O)O-、-N(Rb)C(=O)-、-C(=O)N(Rb)-、-N(Rb)C(=O)O-和-OC(=O)N(Rb)-;
Z是包含三条链的疏水部分,其中每条链独立地选自C8至C11烷基、C8至C11烯基和C8至C11炔基,其中C8至C11烷基、C8至C11烯基和C8至C11炔基任选地被一个或多个独立地选自氧代、卤素、杂环、-CN、-ORx、-NRxRy、-NRxC(=O)Ry、-NRxSO2Ry、-C(=O)Rx、-C(=O)ORx、-C(=O)NRxRy、-SOnRx和-SOnNRxRy的基团取代,其中n为0、1或2,并且Rx和Ry各自独立地为氢、烷基或杂环,其中Rx和Ry的任一个烷基和杂环可进一步被一个或多个独立地选自氧代、卤素、-OH、-CN、烷基、-ORx’、杂环、-NRx’Ry’、-NRx’C(=O)Ry’、-NRx’SO2Ry’、-C(=O)Rx’、-C(=O)ORx’、-C(=O)NRx’Ry’、-SOn’Rx’和-SOn’NRx’Ry’的基团取代,其中n’为0、1或2,并且Rx’和Ry’各自独立地为氢、烷基或杂环;
每个R独立地为任选地被一个或多个独立地选自氧代、卤素、杂环、-CN、-ORx、-NRxRy、-NRxC(=O)Ry、-NRxSO2Ry、-C(=O)Rx、-C(=O)ORx、-C(=O)NRxRy、-SOnRx和-SOnNRxRy基团取代的烷基、烯基或炔基,其中n为0、1或2,并且Rx和Ry各自独立地为氢、烷基或杂环,其中Rx和Ry的任一个烷基和杂环可进一步被一个或多个独立地选自氧代、卤素、-OH、-CN、烷基、-ORx’、杂环、-NRx’Ry’、-NRx’C(=O)Ry’、-NRx’SO2Ry’、-C(=O)Rx’、-C(=O)ORx’、-C(=O)NRx’Ry’、-SOn’Rx’和-SOn’NRx’Ry’的基团取代,其中n’为0、1或2,并且Rx’和Ry’各自独立地为氢、烷基或杂环;并且
每个Rb是H或C1至C6烷基。
在一些实施方案中,式B中的Z具有以下结构:
其中,R1、R2和R3各自独立地为C8至C11烷基、C8至C11烯基或C8至C11炔基,其中C8至C11烷基、C8至C11烯基和C8至C11炔基任选地被一个或多个独立地选自氧代、卤素、杂环、-CN,-ORx、-NRxRy、-NRxC(=O)Ry、-NRxSO2Ry、-C(=O)Rx、-C(=O)ORx、-C(=O)NRxRy、-SOnRx和-SOnNRxRy的基团取代,其中n为0、1或2,并且Rx和Ry各自独立地为氢、烷基或杂环,其中Rx和Ry的任一个烷基和杂环可进一步被一个或多个独立地选自氧代、卤素、-OH、-CN、烷基、-ORx’、杂环、-NRx’Ry’、-NRx’C(=O)Ry’、-NRx’SO2Ry’、-C(=O)Rx’、-C(=O)ORx’、-C(=O)NRx’Ry’、-SOn’Rx’和-SOn’NRx’Ry’的基团取代,其中n’为0、1或2,并且Rx’和Ry’各自独立地为氢、烷基或杂环。
在另一个实施方案中,下面式C的阳离子脂质用于制备本发明的脂质颗粒:
X-A-Y-Z1
(式C)
或其盐,其中:
X为–N(H)R或–NR2
A为不存在、C1至C6烷基、C2至C6烯基或C2至C6炔基,其中C1至C6烷基、C2至C6烯基和C2至C6炔基任选地被一个或多个独立地选自氧代、卤素、杂环、-CN、-ORx、-NRxRy、-NRxC(=O)Ry、-NRxSO2Ry、-C(=O)Rx、-C(=O)ORx、-C(=O)NRxRy、-SOnRx和-SOnNRxRy的基团取代,其中n为0、1或2,并且Rx和Ry各自独立地为氢、烷基或杂环,其中Rx和Ry的每个烷基和杂环可进一步被一个或多个独立地选自氧代、卤素、-OH、-CN、烷基、-ORx’、杂环、-NRx’Ry’、-NRx’C(=O)Ry’、-NRx’SO2Ry’、-C(=O)Rx’、-C(=O)ORx’、-C(=O)NRx’Ry’、-SOn’Rx’和-SOn’NRx’Ry’的基团取代,其中n’为0、1或2,并且Rx’和Ry’各自独立地为氢、烷基或杂环;
Y选自由以下组成的组:不存在、–C(=O)-、-O-、-OC(=O)-、-C(=O)O-、-N(Rb)C(=O)-、-C(=O)N(Rb)-、-N(Rb)C(=O)O-和-OC(=O)N(Rb)-;
Z1为被三个或四个Rx基团取代的C1至C6烷基,其中每个Rx独立地选自C6至C11烷基、C6至C11烯基和C6至C11炔基,其中C6至C11烷基、C6至C11烯基和C6至C11炔基任选地被一个或多个独立地选自氧代、卤素、杂环、-CN、-ORx、-NRxRy、-NRxC(=O)Ry、-NRxSO2Ry、-C(=O)Rx、-C(=O)ORx、-C(=O)NRxRy、-SOnRx和-SOnNRxRy基团取代,其中n为0、1或2,并且Rx和Ry各自独立地为氢、烷基或杂环,其中Rx和Ry的任一个烷基和杂环可进一步被一个或多个独立地选自氧代、卤素、-OH、-CN、烷基、-ORx’、杂环、-NRx’Ry’、-NRx’C(=O)Ry’、-NRx’SO2Ry’、-C(=O)Rx’、-C(=O)ORx’、-C(=O)NRx’Ry’、-SOn’Rx’和-SOn’NRx’Ry’基团取代,其中n’为0、1或2,并且Rx’和Ry’各自独立地为氢、烷基或杂环;
每个R独立地为任选地被一个或多个独立地选自氧代、卤素、杂环、-CN、-ORx、-NRxRy、-NRxC(=O)Ry、-NRxSO2Ry、-C(=O)Rx、-C(=O)ORx、-C(=O)NRxRy、-SOnRx和-SOnNRxRy基团取代的烷基、烯基或炔基,其中n为0、1或2,并且Rx和Ry各自独立地为氢、烷基或杂环,其中Rx和Ry的任一个烷基和杂环可进一步被一个或多个独立地选自氧代、卤素、-OH、-CN、烷基、-ORx’、杂环、-NRx’Ry’、-NRx’C(=O)Ry’、-NRx’SO2Ry’、-C(=O)Rx’、-C(=O)ORx’、-C(=O)NRx’Ry’、-SOn’Rx’和-SOn’NRx’Ry’的基团取代,其中n’为0、1或2,并且Rx’和Ry’各自独立地为氢、烷基或杂环;并且
每个Rb是H或C1至C6烷基。
在一些实施方案中,式C中的Z1具有以下结构:
其中,R1、R2和R3各自独立地为C8至C11烷基、C8至C11烯基或C8至C11炔基,其中C8至C11烷基、C8至C11烯基和C8至C11炔基任选地被一个或多个独立地选自氧代、卤素、杂环、-CN,-ORx、-NRxRy、-NRxC(=O)Ry、-NRxSO2Ry、-C(=O)Rx、-C(=O)ORx、-C(=O)NRxRy、-SOnRx和-SOnNRxRy的基团取代,其中n为0、1或2,并且Rx和Ry各自独立地为氢、烷基或杂环,其中Rx和Ry的任一个烷基和杂环可进一步被一个或多个独立地选自氧代、卤素、-OH、-CN、烷基、-ORx’、杂环、-NRx’Ry’、-NRx’C(=O)Ry’、-NRx’SO2Ry’、-C(=O)Rx’、-C(=O)ORx’、-C(=O)NRx’Ry’、-SOn’Rx’和-SOn’NRx’Ry’的基团取代,其中n’为0、1或2,并且Rx’和Ry’各自独立地为氢、烷基或杂环。
在一些实施方案中,式C中的Z1具有以下结构:
其中R1z和R2z中的一个选自由以下组成的组:
并且
R1z和R2z中的另一个选自由以下组成的组:
其中每个R3z、R4z、R5z、R6z和R7z独立地选自C6至C11烷基、C6至C11烯基和C6至C11炔基,其中C6至C11烷基、C6至C11烯基和C6至C11炔基任选地被一个或多个独立地选自氧代、卤素、杂环、-CN,-ORx、-NRxRy、-NRxC(=O)Ry、-NRxSO2Ry、-C(=O)Rx、-C(=O)ORx、-C(=O)NRxRy、-SOnRx和-SOnNRxRy的基团取代,其中n为0、1或2,并且Rx和Ry各自独立地为氢、烷基或杂环,其中Rx和Ry的任一个烷基和杂环可进一步被一个或多个独立地选自氧代、卤素、-OH、-CN、烷基、-ORx’、杂环、-NRx’Ry’、-NRx’C(=O)Ry’、-NRx’SO2Ry’、-C(=O)Rx’、-C(=O)ORx’、-C(=O)NRx’Ry’、-SOn’Rx’和-SOn’NRx’Ry’的基团取代,其中n’为0、1或2,并且Rx’和Ry’各自独立地为氢、烷基或杂环。
在一些实施方案中,式C中的Z1具有以下结构:
其中R3z、R4z、R5z和R6z中的每一个独立地选自C6至C11烷基、C6至C11烯基和C6至C11炔基,其中C6至C11烷基、C6至C11烯基和C6至C11炔基任选地被一个或多个独立地选自氧代、卤素、杂环、-CN、-ORx、-NRxRy、-NRxC(=O)Ry、-NRxSO2Ry、-C(=O)Rx、-C(=O)ORx、-C(=O)NRxRy、-SOnRx和-SOnNRxRy的基团取代,其中n为0、1或2,并且Rx和Ry各自独立地为氢、烷基或杂环,其中Rx和Ry的任一个烷基和杂环可进一步被一个或多个独立地选自氧代、卤素、-OH、-CN、烷基、-ORx’、杂环、-NRx’Ry’、-NRx’C(=O)Ry’、-NRx’SO2Ry’、-C(=O)Rx’、-C(=O)ORx’、-C(=O)NRx’Ry’、-SOn’Rx’和-SOn’NRx’Ry’的基团取代,其中n’为0、1或2,并且Rx’和Ry’各自独立地为氢、烷基或杂环。
在一些实施方案中,阳离子脂质选自由以下组成的组:
及其盐。
阳离子脂质诸如CLinDMA以及另外的阳离子脂质的合成描述于美国专利公布号20060240554,该专利的公开内容为了所有目的通过引用整体并入本文。阳离子脂质诸如DLin-C-DAP、DLinDAC、DLinMA、DLinDAP、DLin-S-DMA、DLin-2-DMAP、DLinTMA.Cl、DLinTAP.Cl、DLinMPZ、DLinAP、DOAP和DLin-EG-DMA以及另外的阳离子脂质的合成描述于PCT公布号WO09/086558,该专利的公开内容为了所有目的通过引用整体并入本文。阳离子脂质诸如DO-C-DAP、DMDAP、DOTAP.Cl、DLin-M-C2-DMA以及另外的阳离子脂质的合成描述于2009年10月9日提交的名称为“ImprovedAminoLipidsandMethodsfortheDeliveryofNucleicAcids,”的PCT申请号PCT/US2009/060251,该专利的公开内容为了所有目的通过引用整体并入本文。一些其它阳离子脂质和相关类似物的合成已描述于美国专利号5,208,036;5,264,618;5,279,833;5,283,185;5,753,613;和5,785,992;和PCT公布号WO96/10390中,这些专利的公开内容各自为了所有目的通过引用整体并入本文。此外,一些阳离子脂质的商业制剂都可以使用,如例如,(包括DOTMA和DOPE,购自Invitrogen);(包括DOSPA和DOPE,购自Invitrogen);和(包括DOGS,购自PromegaCorp.)。
在一些实施方案中,阳离子脂质包含约50摩尔%至约90摩尔%、约50摩尔%至约85摩尔%、约50摩尔%至约80摩尔%、约50摩尔%至约75摩尔%、约50摩尔%至约70摩尔%、约50摩尔%至约65摩尔%、约50摩尔%至约60%摩尔、约55%摩尔至约65摩尔%、或约55摩尔%至约70摩尔%(或其任何部分或其中的范围)存在于颗粒中的总脂质。在具体的实施方案中,阳离子脂质包含约50摩尔%、51摩尔%、52摩尔%、53摩尔%、54摩尔%、55摩尔%、56摩尔%、57摩尔%、58摩尔%、59摩尔%、60摩尔%、61摩尔%、62摩尔%、63摩尔%、64摩尔%或65摩尔%(或其任何部分)存在于颗粒中的总脂质。
在其它实施方案中,阳离子脂质包含约2摩尔%至约60摩尔%、约5摩尔%至约50摩尔%、约10摩尔%至约50摩尔%、约20%摩尔至约50摩尔%、约20%摩尔至约40摩尔%、约30摩尔%至约40摩尔%、或约40摩尔%(或其任何部分或其中的范围)存在于颗粒中的总脂质。
适合用于本发明的脂质颗粒中的另外百分比和范围的阳离子脂质描述于PCT公布号WO09/127060、美国公布的申请号US2011/0071208、PCT公布号WO2011/000106和美国公布的申请号US2011/0076335,这些专利的公开内容为了所有目的通过引用整体并入本文。
应当理解,存在于本发明的脂质颗粒中的阳离子脂质的百分比为目标量,而存在于制剂中的阳离子脂质的实际量可以改变,例如,±5摩尔%。例如,在1:57脂质颗粒(例如,SNALP)制剂中,阳离子脂质的目标量为57.1摩尔%,但阳离子脂质的实际量可以是±5摩尔%、±4摩尔%、±3摩尔%、±2摩尔%、±1摩尔%、±0.75摩尔%、±0.5摩尔%、±0.25摩尔%或±0.1摩尔%该目标量,制剂的其余部分由其它脂质组分组成(总计达100摩尔%存在于颗粒中的总脂质)。
通过非限制性实例的方式,阳离子脂质包括以下化合物:
N,N-二甲基-2,3-双((9Z,12Z)-十八碳-9,12-二烯基氧基)丙-1-胺(5)
2-(2,2-二((9Z,12Z)-十八碳-9,12-二烯基)-1,3-二氧戊环-4-基)-N,N-二甲基乙胺(6)
(6Z,9Z,28Z,31Z)-三十七碳-6,9,28,31-四烯-19-基4-(二甲基氨基)丁酸酯(7)
3-((6Z,9Z,28Z,31Z)-三十七碳-6,9,28,31-四烯-19-基氧基)-N,N-二甲基丙-1-胺(8)
(Z)-12-((Z)-癸-4-烯基)二十二碳-16-烯-11-基5-(二甲基氨基)戊酸酯(53)
(6Z,16Z)-12-((Z)-癸-4-烯基)二十二碳-6,16-二烯-11-基6-(二甲基氨基)己酸酯(11)
(6Z,16Z)-12-((Z)-癸-4-烯基)二十二碳-6,16-二烯-11-基5-(二甲基氨基)戊酸酯(13)
12-癸基二十二碳-11-基5-(二甲基氨基)戊酸酯(14)
化合物9,
化合物19,
化合物21,
化合物22,
化合物23,
化合物24,
化合物25,
化合物26,
化合物27,
化合物28,
化合物30,
化合物31,
化合物40,
化合物42,
化合物50,
化合物62,
化合物71,
化合物74,
化合物76,
化合物79,
化合物83,
化合物89,和
化合物90
非阳离子脂质
用于本发明的脂质颗粒中的非阳离子脂质(例如,SNALP)可以是能够产生稳定的复合物的各种中性不带电荷的、两性离子或阴离子脂质中的任何一种。
非阳离子脂质的非限制性实例包括磷脂如卵磷脂、磷脂酰乙醇胺、溶血卵磷脂、溶血磷脂酰乙醇胺、磷脂酰丝氨酸、磷脂酰肌醇、鞘磷脂、卵鞘磷脂(ESM)、脑磷脂、心磷脂、磷脂酸、脑苷脂、十六烷基磷酸酯、二硬脂酰磷脂酰胆碱(DSPC)、二油酰磷脂酰胆碱(DOPC)、二棕榈酰磷脂酰胆碱(DPPC)、二油酰磷脂酰甘油(DOPG)、二棕榈酰磷脂酰甘油(DPPG)、二油酰磷脂酰乙醇胺(DOPE)、棕榈酰油酰-磷脂酰胆碱(POPC)、棕榈酰油酰-磷脂酰乙醇胺(POPE)、棕榈酰油酰-磷脂酰甘油(POPG)、二油酰磷脂酰乙醇胺4-(N-马来酰亚胺基甲基)-环己烷-1-羧酸酯(DOPE-mal)、二棕榈酰-磷脂酰乙醇胺(DPPE)、二肉豆蔻酰-磷脂酰乙醇胺(DMPE)、二硬脂酰-磷脂酰乙醇胺(DSPE)、单甲基-磷脂酰乙醇胺、二甲基-磷脂酰乙醇胺、二反油酰(dielaidoyl)-磷脂酰乙醇胺(DEPE)、硬脂酰油酰-磷脂酰乙醇胺(SOPE)、溶血磷脂酰胆碱、二亚油酰磷脂酰胆碱、及其混合物。也可以使用其它二酰基磷脂酰胆碱和二酰基磷脂酰乙醇胺磷脂。这些脂质中的酰基优选为衍生自具有C10-C24碳链,例如,月桂酰基、肉豆蔻酰基、棕榈酰基、硬脂酰基或油酰基的脂肪酸的酰基。
非阳离子脂质的其它实例包括甾醇例如胆固醇及其衍生物。胆固醇衍生物的非限制性实例包括极性类似物,如5-α-胆甾烷醇、5β-粪醇、胆甾醇基-(2′-羟基)-乙醚、胆甾醇基-(4′-羟基)-丁醚和6-酮胆甾烷醇;非极性类似物,如5α-胆甾烷、胆甾烯酮、5α-胆甾烷酮、5β-胆甾烷酮和胆甾醇基癸酸酯;及其混合物。在优选的实施方案中,胆固醇衍生物是极性类似物,如胆甾醇基-(4′-羟基)-丁醚。胆甾醇基-(2′-羟基)-乙醚的合成描述于PCT公布号WO09/127060,该专利的公开内容为了所有目的通过引用整体并入本文。
在一些实施方案中,存在于脂质颗粒(例如,SNALP)中的非阳离子脂质包含一种或多种磷脂和胆固醇或其衍生物的混合物或者由其组成。在其它实施方案中,存在于脂质颗粒(例如,SNALP)中的非阳离子脂质包含一种或多种磷脂,例如,不含胆固醇的脂质颗粒制剂或者由其组成。在又其它实施方案中,存在于脂质颗粒(例如,SNALP)中的非阳离子脂质包含胆固醇或其衍生物,例如,不含磷脂的脂质颗粒制剂或者由其组成。
适合用于本发明中的非阳离子脂质的其它实例包括含有脂质的非磷,如,例如,硬脂胺、十二胺、十六胺、乙酰基棕榈酸酯、甘油蓖麻酸酯、十六烷基硬脂酸酯、肉豆蔻酸异丙酯、两性丙烯酸聚合物、三乙醇胺-硫酸月桂酯、烷基-芳基硫酸酯聚乙氧基化脂肪酸酰胺、二十八烷基二甲基溴化铵、神经酰胺、鞘磷脂等。
在一些实施方案中,非阳离子脂质包含约10摩尔%至约60摩尔%、约20摩尔%至约55摩尔%、约20摩尔%至约45摩尔%、约20摩尔%至约40摩尔%、约25摩尔%至约50摩尔%、约25摩尔%至约45摩尔%、约30摩尔%至约50摩尔%、约30摩尔%至约45摩尔%、约30摩尔%至约40摩尔%、约35摩尔%至约45摩尔%、约37摩尔%至约42摩尔%、或约35摩尔%、36摩尔%、37摩尔%、38摩尔%、39摩尔%、40摩尔%、41摩尔%、42摩尔%、43摩尔%、44摩尔%、或45摩尔%(或其任何部分或其中的范围)存在于颗粒中的总脂质。
在实施方案中,其中脂质颗粒含有磷脂和胆固醇或胆固醇衍生物的混合物,该混合物可以包含至多约40摩尔%、45摩尔%、50摩尔%、55摩尔%或60摩尔%存在于颗粒中的总脂质。
在一些实施方案中,在混合物中的磷脂组分可以包含约2摩尔%至约20摩尔%、约2摩尔%至约15摩尔%、约2摩尔%至约12摩尔%、约4摩尔%至约15摩尔%、或约4摩尔%至约10摩尔%(或其任何部分或其中的范围)存在于颗粒中的总脂质。在某些优选的实施方案中,在混合物中的磷脂组分包含约5摩尔%至约10摩尔%、约5摩尔%至约9摩尔%、约5摩尔%至约8摩尔%、约6摩尔%至约9摩尔%、约6摩尔%至约8摩尔%、或约5摩尔%、6摩尔%、7摩尔%、8摩尔%、9摩尔%、或10摩尔%(或其任何部分或其中的范围)存在于颗粒中的总脂质。作为非限制性实例,包含磷脂和胆固醇的混合物的1:57脂质颗粒制剂可以包含存在于颗粒中的总脂质的约7摩尔%(或其任何部分)的磷脂诸如DPPC或DSPC,例如,与约34摩尔%(或其任何部分)的胆固醇或胆固醇衍生物的混合物。作为另一个非限制性实例,包含磷脂和胆固醇的混合物的7:54脂质颗粒制剂可以包含存在于颗粒中的总脂质的约7摩尔%(或其任何部分)的磷脂诸如DPPC或DSPC,例如,与约32摩尔%(或其任何部分)的胆固醇或胆固醇衍生物的混合物。
在其它实施方案中,在混合物中的胆固醇组分可以包含约25摩尔%至约45摩尔%、约25摩尔%至约40摩尔%、约30摩尔%至约45摩尔%、约30摩尔%至约40摩尔%、约27摩尔%至约37摩尔%、约25摩尔%至约30摩尔%、或约35摩尔%至约40摩尔%(或其任何部分或其中的范围)存在于颗粒中的总脂质。在某些优选的实施方案中,在混合物中的胆固醇组分包含约25摩尔%至约35摩尔%、约27摩尔%至约35摩尔%、约29摩尔%至约35摩尔%、约30摩尔%至约35摩尔%、约30摩尔%至约34摩尔%、约31摩尔%至约33摩尔%、或约30摩尔%、31摩尔%、32摩尔%、33摩尔%、34摩尔%、或35摩尔%(或其任何部分或其中的范围)存在于颗粒中的总脂质。通常,包含磷脂和胆固醇的混合物的1:57脂质颗粒制剂可以包含存在于颗粒中的总脂质的约34摩尔%(或其任何部分)的胆固醇或胆固醇衍生物,例如与约7摩尔%(或其任何部分)的磷脂诸如DPPC或DSPC的混合物。通常,包含磷脂和胆固醇的混合物的7:54脂质颗粒制剂可以包含存在于颗粒中的总脂质的约32摩尔%(或其任何部分)的胆固醇或胆固醇衍生物,例如与约7摩尔%(或其任何部分)的磷脂诸如DPPC或DSPC的混合物。
在其中脂质颗粒不含磷脂的实施方案中,胆固醇或其衍生物可以包含至多约25摩尔%、30摩尔%、35摩尔%、40摩尔%、45摩尔%、50摩尔%、55摩尔%或60摩尔%存在于颗粒中的总脂质。
在一些实施方案中,不含磷脂的脂质颗粒制剂中的胆固醇或其衍生物可以包含约25摩尔%至约45摩尔%、约25摩尔%至约40摩尔%、约30摩尔%至约45摩尔%、约30摩尔%至约40摩尔%、约31摩尔%至约39摩尔%、约32摩尔%至约38摩尔%、约33摩尔%至约37摩尔%、约35摩尔%至约45摩尔%、约30摩尔%至约35摩尔%、约35摩尔%至约40摩尔%、或约30摩尔%、31摩尔%、32摩尔%、33摩尔%、34摩尔%、35摩尔%、36摩尔%、37摩尔%、38摩尔%、39摩尔%、或40摩尔%(或其任何部分或其中的范围)存在于颗粒中的总脂质。作为非限制性实例,1:62脂质颗粒制剂可以包含存在于颗粒中的总脂质的约37摩尔%(或其任何部分)的胆固醇。作为另一个非限制性实例,7:58脂质颗粒制剂可以包含存在于颗粒中的总脂质的约35摩尔%(或其任何部分)的胆固醇。
在其它实施方案中,非阳离子脂质包含约5摩尔%至约90摩尔%、约10摩尔%至约85摩尔%、约20%摩尔至约80摩尔%、约10摩尔%(例如,仅磷脂)、或约60摩尔%(例如,磷脂和胆固醇或其衍生物)(或其任何部分或其中的范围)存在于颗粒中的总脂质。
适合用于本发明的脂质颗粒中的另外百分比和范围的非阳离子脂质描述于PCT公布号WO09/127060、美国公布的申请号US2011/0071208、PCT公布号WO2011/000106和美国公布的申请号US2011/0076335,这些专利的公开内容为了所有目的通过引用整体并入本文。
应当理解的是,存在于本发明的脂质颗粒中的非阳离子脂质的百分比为目标量,而存在于制剂中的非阳离子脂质的实际量可以改变,例如,±5摩尔%。例如,在1:57脂质颗粒(例如,SNALP)制剂中,磷脂的目标量为7.1摩尔%并且胆固醇的目标量为34.3摩尔%,但磷脂的实际量可以是±2摩尔%、±1.5摩尔%、±1摩尔%、±0.75摩尔%、±0.5摩尔%、±0.25摩尔%、或±0.1摩尔%该目标量,并且胆固醇的实际量可以是±3摩尔%、±2摩尔%、±1摩尔%、±0.75摩尔%、±0.5摩尔%、±0.25摩尔%、或±0.1摩尔%该目标量,制剂的其余部分由其它脂质组分组成(总计达100摩尔%存在于颗粒中的总脂质)。类似地,在7:54脂质颗粒(例如,SNALP)制剂中,磷脂的目标量为6.75摩尔%并且胆固醇的目标量为32.43摩尔%,但磷脂的实际量可以是±2摩尔%、±1.5摩尔%、±1摩尔%、±0.75摩尔%、±0.5摩尔%、±0.25摩尔%、或±0.1摩尔%该目标量,并且胆固醇的实际量可以是±3摩尔%、±2摩尔%、±1摩尔%、±0.75摩尔%、±0.5摩尔%、±0.25摩尔%、或±0.1摩尔%该目标量,制剂的其余部分由其它脂质组分组成(总计达100摩尔%存在于颗粒中的总脂质)。
脂质缀合物
除了阳离子和非阳离子脂质之外,本发明的脂质颗粒(例如,SNALP)还可以包含脂质缀合物。缀合的脂质是有用的,因为它防止颗粒的聚集。合适的缀合的脂质包括但不限于PEG-脂质缀合物、POZ-脂质缀合物、ATTA-脂质缀合物、阳离子-聚合物-脂质缀合物(CPL)、及其混合物。在某些实施方案中,颗粒包括PEG-脂质缀合物或ATTA-脂质缀合物连同CPL。
在优选的实施方案中,脂质缀合物是PEG-脂质。PEG-脂质的实例包括但不限于如描述于例如,PCT公布号WO05/026372中的与二烷氧基丙基偶联的PEG(PEG-DAA)、如描述于例如,美国专利公布号20030077829和2005008689中的与二酰基甘油偶联的PEG(PEG-DAG)、与磷脂如磷脂酰乙醇胺偶联的PEG(PEG-PE)、如描述于例如,美国专利号5,885,613中的与神经酰胺缀合的PEG、与胆固醇或其衍生物缀合的PEG、及其混合物。这些专利文献的公开内容为了所有目的通过引用整体并入本文。适合用于本发明的其它PEG-脂质包括但不限于mPEG2000-1,2-二-O-烷基-sn3-氨基甲酰基(carbomoyl)甘油酯(PEG-C-DOMG)。PEG-C-DOMG的合成描述于PCT公布号WO09/086558,该专利的公开内容为了所有目的通过引用整体并入本文。然而,其它合适的PEG-脂质缀合物包括但不限于1-[8′-(1,2-二肉豆蔻酰基-3-丙烷氧基)-甲酰胺基-3′,6′-二氧杂辛烷基]氨基甲酰基-ω-甲基-聚(乙二醇)(2KPEG-DMG)。2KPEG-DMG的合成描述于美国专利号7,404,969,该专利的公开内容为了所有目的通过引用整体并入本文。
PEG是具有两个末端羟基的乙烯PEG重复单元的直链、水溶性聚合物。PEG通过它们的分子量进行分类;例如,PEG2000具有约2,000道尔顿的平均分子量,并且PEG5000具有约5,000道尔顿的平均分子量。PEG可从SigmaChemicalCo.和其它公司商购获得并且包括但不限于以下:单甲氧基聚乙二醇(MePEG-OH)、单甲氧基聚乙二醇-琥珀酸酯(MePEG-S)、单甲氧基聚乙二醇-琥珀酰亚胺琥珀酸酯(MePEG-S-NHS)、单甲氧基聚乙二醇-胺(MePEG-NH2)、单甲氧基聚乙二醇-三氟乙磺酸酯(MePEG-TRES)、单甲氧基聚乙二醇-咪唑基-羰基(MePEG-IM)、以及含有末端羟基代替末端甲氧基的此类化合物(例如,HO-PEG-S、HO-PEG-S-NHS、HO-PEG-NH2等)。其它PEG如描述于美国专利号6,774,180和7,053,150的那些(例如,mPEG(20KDa)胺)也可用于制备本发明的PEG-脂质缀合物。这些专利的公开内容为了所有目的通过引用整体并入本文。此外,单甲氧基聚乙二醇-乙酸(MePEG-CH2COOH)特别用于制备PEG-脂质缀合物包括例如PEG-DAA缀合物。
本文所述的PEG-脂质缀合物的PEG部分可以包含约550道尔顿至约10,000道尔顿范围的平均分子量。在某些情况下,PEG部分具有约750道尔顿至约5,000道尔顿(例如,约1,000道尔顿至约5,000道尔顿、约1,500道尔顿至约3,000道尔顿、约750道尔顿至约3,000道尔顿、约750道尔顿至约2,000道尔顿等)的平均分子量。在优选的实施方案中,PEG部分具有约2,000道尔顿或约750道尔顿的平均分子量。
在某些情况下,PEG可以任选地被烷基、烷氧基、酰基或芳基取代。PEG可以直接与脂质缀合或可以经由接头部分与脂质连接。可以使用适用于将PEG与脂质偶联的任何接头部分,包括例如,含有非酯的接头部分和含有酯的接头部分。在优选的实施方案中,接头部分是含有非酯的接头部分。如本文所用,术语“含有非酯的接头部分”是指不含有羧酸酯键(-OC(O)-)的接头部分。合适的含有非酯的接头部分包括但不限于酰胺基(-C(O)NH-)、氨基(-NR-)、羰基(-C(O)-)、氨基甲酸酯(-NHC(O)O-)、脲(-NHC(O)NH)、二硫键(-S-S-)、醚(-O-)、琥珀酰基(-(O)CCH2CH2C(O)-)、琥珀酰胺基(succinamidyl)(-NHC(O)CH2CH2C(O)NH-)、醚、二硫化物、以及其组合(如含有氨基甲酸酯接头部分和酰胺基接头部分二者的接头)。在优选的实施方案中,氨基甲酸酯接头用于将PEG与脂质偶联。
在其它实施方案中,含有酯的接头部分用于将PEG与脂质偶联。合适的含有酯的接头部分包括例如,碳酸酯(-OC(O)O-)、琥珀酰基、磷酸酯(-O-(O)POH-O-)、磺酸酯、及其组合。
具有各种不同链长度和饱和度的酰基链基团的磷脂酰乙醇胺可以与PEG缀合以形成脂质缀合物。此类磷脂酰乙醇胺是商购获得的,或可以使用本领域技术人员已知的常规技术来分离或合成。含有具有范围为C10至C20的碳链长度的饱和或不饱和脂肪酸的磷脂酰乙醇胺是优选的。也可以使用具有单-或双不饱和脂肪酸以及饱和和不饱和脂肪酸的混合物的磷脂酰乙醇胺。合适的磷脂酰乙醇胺包括但不限于二肉豆蔻酰-磷脂酰乙醇胺(DMPE)、二棕榈酰-磷脂酰乙醇胺(DPPE)、二油酰磷脂酰乙醇胺(DOPE)和二硬脂酰-磷脂酰乙醇胺(DSPE)。
术语“ATTA”或“聚酰胺”包括但不限于描述于美国专利号6,320,017和6,586,559中的化合物,这些专利的公开内容为了所有目的通过引用整体并入本文。这些化合物包括具有下式的化合物:
其中R是选自由氢、烷基和酰基组成的组的成员;R1是选自由氢和烷基组成的组的成员;或任选地,R和R1以及它们所结合的氮形成叠氮基部分;R2是选自氢、任选取代的烷基、任选取代的芳基和氨基酸侧链的组的成员;R3是选自由氢、卤素、羟基、烷氧基、巯基、肼基、氨基和NR4R5组成的组的成员,其中R4和R5独立地为氢或烷基;n是4至80;m是2至6;p是1至4;并且q是0或1。本领域技术人员将显而易见的是其它聚酰胺可以用于本发明的化合物。
术语“二酰基甘油”或“DAG”包括具有2条脂肪酰链(R1和R2)的化合物,这两条链均独立地具有通过酯键结合至甘油的1-和2-位的2至30个之间的碳。酰基可以是饱和的或具有不同程度的不饱和。合适的酰基包括但不限于月桂酰基(C12)、肉豆蔻酰基(C14)、棕榈酰基(C16)、硬脂酰基(C18)和二十烷酰基(C20)。在优选的实施方案中,R1和R2是相同的,即,R1和R2均是肉豆蔻酰基(即,二肉豆蔻酰基),R1和R2均是硬脂酰基(即,二硬脂酰基),等。二酰基甘油具有如下通式:
术语“二烷氧基丙基”或“DAA”包括具有2条烷基链(R1和R2)的化合物,这两条链均独立地具有2至30个之间的碳。烷基可以是饱和的或具有不同程度的不饱和。二烷氧基丙基具有以下通式:
在优选的实施方案中,PEG-脂质是具有下式的PEG-DAA缀合物:
其中R1和R2是独立选择的并且是具有约10至约22个碳原子的长链烷基;PEG是聚乙二醇;并且L是如上所述含有非酯的接头部分或含有酯的接头部分。长链烷基可以是饱和的或不饱和的。合适的烷基包括但不限于癸基(C10)、月桂基(C12)、肉豆蔻基(C14)、棕榈基(C16)、硬脂基(C18)和二十烷基(C20)。在优选的实施方案中,R1和R2是相同的,即,R1和R2均是肉豆蔻基(即,二肉豆蔻基),R1和R2均是硬脂基(即,二硬脂基)等。
在上述式VII中,PEG具有约550道尔顿至约10,000道尔顿范围的平均分子量。在某些情况下,PEG具有约750道尔顿至约5,000道尔顿(例如,约1,000道尔顿至约5,000道尔顿、约1,500道尔顿至约3,000道尔顿、约750道尔顿至约3,000道尔顿、约750道尔顿至约2,000道尔顿等)的平均分子量。在优选的实施方案中,PEG具有约2,000道尔顿或约750道尔顿的平均分子量。PEG可以任选地被烷基、烷氧基、酰基或芳基取代。在某些实施方案中,末端羟基被甲氧基或甲基取代。
在优选的实施方案中,“L”是含有非酯的接头部分。合适的含有非酯的接头包括但不限于酰胺基接头部分、氨基接头部分、羰基接头部分、氨基甲酸酯接头部分、脲接头部分、醚接头部分、二硫化物接头部分、琥珀酰胺基接头部分、及其组合。在优选的实施方案中,含有非酯的接头部分是氨基甲酸酯接头部分(即,PEG-C-DAA缀合物)。在另一个优选的实施方案中,含有非酯的接头部分是酰胺基接头部分(即,PEG-A-DAA缀合物)。在又一个优选的实施方案中,含有非酯的接头部分是琥珀酰胺基接头部分(即,PEG-S-DAA缀合物)。
在具体的实施方案中,PEG-脂质缀合物选自:
(PEG-C-DMA);和
(PEG-C-DOMG)。
使用本领域技术人员已知的标准技术和试剂来合成PEG-DAA缀合物。应当认识到,PEG-DAA缀合物将含有各种酰胺、胺、醚、硫代、氨基甲酸酯和脲键。本领域的技术人员将认识到用于形成这些键的方法和试剂是公知的且容易获得。参见,例如,March,ADVANCEDORGANICCHEMISTRY(Wiley1992);Larock,COMPREHENSIVEORGANICTRANSFORMATIONS(VCH1989);和Furniss,VOGEL’STEXTBOOKOFPRACTICALORGANICCHEMISTRY,第5版(Longman1989)。还应当理解,任何存在的官能团可能需要在PEG-DAA缀合物的合成中的不同点处保护和脱保护。本领域的技术人员将认识到此类技术是公知的。参见,例如,Green和Wuts,PROTECTIVEGROUPSINORGANICSYNTHESIS(Wiley1991)。
优选地,PEG-DAA缀合物是PEG-二癸基氧基丙基(C10)缀合物、PEG-二月桂基氧基丙基(C12)缀合物、PEG-二肉豆蔻基氧基丙基(C14)缀合物、PEG-二棕榈基氧基丙基(C16)缀合物、或者PEG-二硬脂基氧基丙基(C18)缀合物。在这些实施方案中,PEG优选地具有约750或约2,000道尔顿的平均分子量。在一个特别优选的实施方案中,PEG-脂质缀合物包括PEG2000-C-DMA,其中“2000”表示PEG的平均分子量,“C”表示氨基甲酸酯接头部分,并且“DMA”表示二肉豆蔻基氧基丙基。在另一个特别优选的实施方案中,PEG-脂质缀合物包括PEG750-C-DMA,其中“750”表示PEG的平均分子量,“C”表示氨基甲酸酯接头部分,并且“DMA”表示二肉豆蔻基氧基丙基。在具体实施方案中,PEG的末端羟基被甲基取代。本领域技术人员将容易地认识到,其它二烷氧基丙基可用于本发明的PEG-DAA缀合物中。
除了上述之外,将对本领域技术人员容易显而易见的是,其它亲水性聚合物可用于代替PEG。可用于代替PEG的合适的聚合物的实例包括但不限于聚乙烯吡咯烷酮、聚甲基噁唑啉、聚乙基噁唑啉、聚羟丙基甲基丙烯酰胺、聚甲基丙烯酰胺和聚二甲基丙烯酰胺、聚乳酸、聚乙醇酸和衍生的纤维素如羟甲基纤维素或羟乙基纤维素。
除了前述组分,本发明的脂质颗粒(例如,SNALP)还可包括阳离子聚(乙二醇)(PEG)脂质或CPL(参见,例如,Chen等,Bioconj.Chem.,11:433-437(2000);美国专利号6,852,334;PCT公布号WO00/62813,这些专利的公开内容为了所有目的通过引用整体并入本文)。
合适的CPL包括式VIII的化合物:
A-W-Y(VIII),
其中A、W和Y为如下所述。
根据式VIII,“A”是脂质部分如两亲性脂质、中性脂质、或充当脂质锚的疏水性脂质。合适的脂质实例包括但不限于二酰基甘油基、二烷基甘油基、N-N-二烷基氨基、1,2-二酰氧基-3-氨基丙烷和1,2-二烷基-3-氨基丙烷。
“W”是聚合物或低聚物诸如亲水性聚合物或低聚物。优选地,亲水性聚合物是非免疫原性或具有低固有免疫原性的生物相容性聚合物。或者,如果与适当的佐剂一起使用,亲水性聚合物可具有弱抗原性。合适的非免疫原性聚合物包括但不限于PEG、聚酰胺、聚乳酸、聚乙醇酸、聚乳酸/聚乙醇酸共聚物、及其组合。在优选的实施方案中,聚合物具有约250至约7,000道尔顿的分子量。
“Y”是聚阳离子部分。术语聚阳离子部分是指在选定的pH(优选生理pH)下具有正电荷(优选至少2个正电荷)的化合物、衍生物或官能团。合适的聚阳离子部分包括碱性氨基酸及其衍生物诸如精氨酸、天冬酰胺、谷氨酰胺、赖氨酸和组氨酸;精胺;亚精胺;阳离子树状物;聚胺;聚胺糖;和氨基多糖。聚阳离子部分可以是线性(诸如线性四赖氨酸)、分支或树状结构。聚阳离子部分在选定的pH值下具有约2至约15个之间的正电荷,优选约2至约12个之间的正电荷,并且更优选约2至约8个之间的正电荷。选择采用哪个聚阳离子部分可以由期望的颗粒应用的类型来确定。
在聚阳离子部分上的电荷可以分布在整个颗粒部分周围,或者可选地,它们可以在颗粒部分的一个特定区域(例如,电荷峰(chargespike))中呈离散浓度的电荷密度。如果电荷密度分布在颗粒上,则电荷密度可以均匀分布或不均匀分布。聚阳离子部分的电荷分布的所有变化都涵盖于本发明。
脂质“A”和非免疫原性聚合物“W”可以通过各种方法且优选通过共价连接来连接。本领域技术人员已知的方法可用于使“A”和“W”共价连接。合适的键包括但不限于酰胺、胺、羧基、碳酸酯、氨基甲酸酯、酯和腙键。对本领域技术人员将显而易见的是“A”和“W”必须具有互补官能团以实现键联。这两个基团(一个在脂质上且另一个在聚合物上)的反应将提供所需键联。例如,当脂质为二酰基甘油且末端羟基例如用NHS和DCC激活以形成活性酯,并再与含有氨基的聚合物(如与聚酰胺)反应时(参见,例如,美国专利号6,320,017和6,586,559,这些专利的公开内容为了所有目的通过引用整体并入本文),将在两个基团之间形成酰胺键。
在某些情况下,聚阳离子部分可以具有连接的配体,如靶向配体或用于使钙络合的螯合部分。优选地,配体连接后,阳离子部分保持正电荷。在某些情况下,连接的配体具有正电荷。合适的配体包括但不限于具有反应性官能团的化合物或装置,并且包括脂质、两亲性脂质、载体化合物、生物亲和性化合物、生物材料、生物聚合物、生物医学装置、可分析检测的化合物、治疗活性化合物、酶、肽、蛋白质、抗体、免疫刺激剂、放射性标记、荧光团、生物素、药物、半抗原、DNA、RNA、多糖、脂质体、病毒体、微胶粒、免疫球蛋白、官能团、其它靶向部分或毒素。
在一些实施方案中,脂质缀合物(例如,PEG-脂质)包含约0.1摩尔%至约2摩尔%、约0.5摩尔%至约2摩尔%、约1摩尔%至约2摩尔%、约0.6摩尔%至约1.9摩尔%、约0.7摩尔%至约1.8摩尔%、约0.8摩尔%至约1.7摩尔%、约0.9摩尔%至约1.6摩尔%、约0.9摩尔%至约1.8摩尔%、约1摩尔%至约1.8摩尔%、约1摩尔%至约1.7摩尔%、约1.2摩尔%至约1.8摩尔%、约1.2摩尔%至约1.7摩尔%、约1.3摩尔%至约1.6摩尔%、或约1.4摩尔%至约1.5摩尔%(或其任何部分或其中的范围)存在于颗粒中的总脂质。
在其它实施方案中,脂质缀合物(例如,PEG-脂质)包含约0摩尔%至约20摩尔%、约0.5摩尔%至约20摩尔%、约2摩尔%至约20摩尔%、约1.5摩尔%至约18摩尔%、约2摩尔%至约15摩尔%、约4摩尔%至约15摩尔%、约2摩尔%至约12摩尔%、约5摩尔%至约12摩尔%、或约2摩尔%(或其任何部分或其中的范围)存在于颗粒中的总脂质。
在进一步的实施方案中,脂质缀合物(例如,PEG-脂质)包含约4摩尔%至约10摩尔%、约5摩尔%至约10摩尔%、约5摩尔%至约9摩尔%、约5摩尔%至约8摩尔%、约6摩尔%至约9摩尔%、约6摩尔%至约8摩尔%、或约5摩尔%、6摩尔%、7摩尔%、8摩尔%、9摩尔%、或10摩尔%(或其任何部分或其中的范围)存在于颗粒中的总脂质。
适合用于本发明的脂质颗粒中的另外百分比和范围的脂质缀合物描述于PCT公布号WO09/127060、美国公布的申请号US2011/0071208、PCT公布号WO2011/000106和美国公布的申请号US2011/0076335,这些专利的公开内容为了所有目的通过引用整体并入本文。
应当理解,存在于本发明的脂质颗粒中的脂质缀合物(例如,PEG-脂质)的百分比为目标量,而存在于制剂中的脂质缀合物的实际量可以改变,例如,±2摩尔%。例如,在1:57脂质颗粒(例如,SNALP)制剂中,脂质缀合物的目标量为1.4摩尔%,但脂质缀合物的实际量可以是±0.5摩尔%、±0.4摩尔%、±0.3摩尔%、±0.2摩尔%、±0.1摩尔%或±0.05摩尔%该目标量,制剂的其余部分由其它脂质组分组成(总计达100摩尔%存在于颗粒中的总脂质)。类似地,在7:54脂质颗粒(例如,SNALP)制剂中,脂质缀合物的目标量为6.76摩尔%,但脂质缀合物的实际量可以是±2摩尔%、±1.5摩尔%、±1摩尔%、±0.75摩尔%、±0.5摩尔%、±0.25摩尔%、或±0.1摩尔%该目标量,制剂的其余部分由其它脂质组分组成(总计达100摩尔%存在于颗粒中的总脂质)。
本领域普通技术人员将理解,脂质缀合物的浓度可根据所采用的脂质缀合物和脂质颗粒变得促融的速率而变化。
通过控制脂质缀合物的组成和浓度,可以控制脂质缀合物交换出脂质颗粒的速率,进而控制脂质颗粒变得促融的速率。例如,当PEG-DAA缀合物用作脂质缀合物时,脂质颗粒变得促融的速率可以变化,例如,通过改变脂质缀合物的浓度,通过改变PEG的分子量,或通过改变PEG-DAA缀合物上的链长度和烷基的饱和程度。此外,其它变量,包括(例如)pH、温度、离子强度等可用于改变和/或控制脂质颗粒变得促融的速率。可以用于控制脂质颗粒变得促融的速率的其它方法将在本领域技术人员阅读本公开内容后变得显而易见。另外,通过控制脂质缀合物的组成和浓度,可以控制脂质颗粒(例如,SNALP)粒度。
脂质颗粒的制备
可以通过本领域已知的任何方法来形成本发明的脂质颗粒,例如,SNALP,其中mRNA截留在颗粒的脂质部分内并保护免受降解,方法包括但不限于连续混合方法、直接稀释过程和在线稀释过程。
在某些实施方案中,本发明提供通过连续混合方法产生的核酸-脂质颗粒(例如,SNALP),方法例如包括以下的过程:在第一储器中提供包含核酸(例如,mRNA)的水性溶液,在第二储器中提供有机脂质溶液(其中存在于有机脂质溶液中的脂质溶解于有机溶剂,例如,低级烷醇如乙醇中),并混合水性溶液与有机脂质溶液,使得有机脂质溶液与水性溶液混合以基本上瞬时产生将核酸包封在脂质囊泡内的脂质囊泡(例如,脂质体)。该方法和用于实施该方法的装置详细描述于美国专利公布号20040142025,该专利的公开内容为了所有目的通过引用整体并入本文。
将脂质和缓冲溶液连续引入混合环境(如在混合室中)的动作导致脂质溶液用缓冲溶液的连续稀释,从而在混合后基本上瞬间产生脂质囊泡。如本文所用,短语“用缓冲溶液连续稀释脂质溶液”(及变化形式)通常意指脂质溶液在水合过程中稀释足够快以产生足够的力来实现囊泡的产生。通过使包含核酸的水性溶液与有机脂质溶液混合,将有机脂质溶液在缓冲溶液(即,水性溶液)的存在下经历连续逐步稀释以产生核酸-脂质颗粒。
使用连续混合方法形成的核酸-脂质颗粒通常具有约30nm至约150nm、约40nm至约150nm、约50nm至约150nm、约60nm至约130nm、约70nm至约110nm、约70nm至约100nm、约80nm至约100nm、约90nm至约100nm、约70至约90nm、约80nm至约90nm、约70nm至约80nm、小于约120nm、110nm、100nm、90nm、或80nm、或约30nm、35nm、40nm、45nm、50nm、55nm、60nm、65nm、70nm、75nm、80nm、85nm、90nm、95nm、100nm、105nm、110nm、115nm、120nm、125nm、130nm、135nm、140nm、145nm或150nm(或其任何部分或其中的范围)的粒度。由此形成的颗粒不聚集并且任选地按大小分类以实现均匀的粒度。
在另一个实施方案中,本发明提供经由直接稀释方法产生的核酸-脂质颗粒(例如,SNALP),该方法包括形成脂质囊泡(例如,脂质体)溶液,并立即和直接将脂质囊泡溶液引入含有控制量的稀释缓冲液的收集容器中。在优选的方面,收集容器包括配置成搅拌收集容器中的内含物以促进稀释的一个或多个部件。在一个方面,存在于收集容器中的稀释缓冲液的量基本上等于引入其中的脂质囊泡溶液的体积。作为非限制性实例,当引入含有等体积的稀释缓冲液的收集容器中时在45%乙醇中的脂质囊泡溶液将有利地得到更小的颗粒。
在又一个实施方案中,本发明提供经由在线稀释方法产生的核酸-脂质颗粒(例如,SNALP),其中含有稀释缓冲液的第三储器流体地偶联到第二混合区。在本实施方案中,在第一混合区形成的脂质囊泡(例如,脂质体)溶液立即并直接与第二混合区中的稀释缓冲液混合。在优选的方面,第二混合区包括安放的T形连接器使得脂质囊泡溶液和稀释缓冲液流以相对的180°流相遇;然而,可以使用提供较浅角度的连接器,例如,约27°至约180°(例如,约90°)。泵机构将可控制的缓冲液流递送至第二混合区。在一个方面,提供给第二混合区的稀释缓冲液的流速被控制为基本上等于从第一混合区引入其中的脂质囊泡溶液的流速。该实施方案有利地允许更好地控制稀释缓冲液流与脂质囊泡溶液在第二混合区混合,并因此也使得缓冲液中脂质囊泡溶液的浓度贯穿第二混合方法。对稀释缓冲液流速的此类控制有利地允许在降低的浓度下形成小粒度。
这些方法和用于实施这些直接稀释和在线稀释方法的装置详细描述于美国专利公布号20070042031,该专利的公开内容为了所有目的通过引用整体并入本文。
利用直接稀释和在线稀释过程形成的核酸-脂质颗粒通常具有约30nm至约150nm、约40nm至约150nm、约50nm至约150nm、约60nm至约130nm、约70nm至约110nm、约70nm至约100nm、约80nm至约100nm、约90nm至约100nm、约70至约90nm、约80nm至约90nm、约70nm至约80nm、小于约120nm、110nm、100nm、90nm、或80nm、或约30nm、35nm、40nm、45nm、50nm、55nm、60nm、65nm、70nm、75nm、80nm、85nm、90nm、95nm、100nm、105nm、110nm、115nm、120nm、125nm、130nm、135nm、140nm、145nm或150nm(或其任何部分或其中的范围)的粒度。由此形成的颗粒不聚集并且任选地按大小分类以实现均匀的粒度。
如果需要,本发明的脂质颗粒(例如,SNALP)可以通过任何可用于将脂质体按大小分类的方法按大小分类。可以进行按大小分类以获得所需粒度范围和相对窄的粒度分布。
几种技术可用于将颗粒按大小分类成所需粒度。用于脂质体并且同等地适用于本发明颗粒的一种按大小分类方法描述于美国专利号4,737,323,该专利的公开内容为了所有目的通过引用整体并入本文。通过水浴或探针超声对颗粒悬浮液进行超声处理产生尺寸逐渐降低至小于约50nm大小的颗粒。均质化是依赖于剪切能量以将较大颗粒片段化成较小颗粒的另一种方法。在典型的均质化程序中,颗粒再循环通过标准乳液均质器,直至观察到所选粒度(通常约60和约80nm之间)。在两种方法中,粒度分布可以通过常规激光束粒度判定或QELS来监测。
将颗粒挤出通过小孔聚碳酸酯膜或不对称陶瓷膜也是一种用于将粒度降低至明确限定的粒度分布的有效方法。通常,将悬浮液循环通过膜一次或多次,直至实现所需的粒度分布。颗粒可以通过较小孔隙的膜依次被挤出,以实现尺寸的逐渐降低。
在其它实施方案中,该方法还可包括加入用以使用本发明组合物来实现细胞的脂质转染的非脂质聚阳离子。合适的非脂质聚阳离子的实例包括溴化己二甲铵(以商标名销售,购自AldrichChemicalCo.,Milwaukee,Wisconsin,USA)或己二甲铵的其它盐。其它合适的聚阳离子包括(例如)聚-L-鸟氨酸、聚-L-精氨酸、聚-L-赖氨酸、聚-D-赖氨酸、聚烯丙基胺和聚乙烯亚胺的盐。优选在颗粒已经形成之后加入这些盐。
在一些实施方案中,在形成的核酸-脂质颗粒(例如,SNALP)中核酸与脂质比率(质量/质量比)范围为约0.01至约0.2、约0.05至约0.2、约0.02至约0.1、约0.03至约0.1、或约0.01至约0.08。原料(输入)的比率也落在此范围内。在其它实施方案中,颗粒制剂使用约400μg核酸/10mg总脂质或约0.01至约0.08且更优选约0.04(这对应于1.25mg总脂质/50μg核酸)的核酸与脂质质量比。在其它优选的实施方案中,颗粒具有约0.08的核酸:脂质质量比。
在其它实施方案中,在形成的核酸-脂质颗粒(例如,SNALP)中脂质与核酸比率(质量/质量比)范围为约1(1:1)至约100(100:1)、约5(5:1)至约100(100:1)、约1(1:1)至约50(50:1)、约2(2:1)至约50(50:1)、约3(3:1)至约50(50:1)、约4(4:1)至约50(50:1)、约5(5:1)至约50(50:1)、约1(1:1)至约25(25:1)、约2(2:1)至约25(25:1)、约3(3:1)至约25(25:1)、约4(4:1)至约25(25:1)、约5(5:1)至约25(25:1)、约5(5:1)至约20(20:1)、约5(5:1)至约15(15:1)、约5(5:1)至约10(10:1)、或约5(5:1)、6(6:1)、7(7:1)、8(8:1)、9(9:1)、10(10:1)、11(11:1)、12(12:1)、13(13:1)、14(14:1)、15(15:1)、16(16:1)、17(17:1)、18(18:1)、19(19:1)、20(20:1)、21(21:1)、22(22:1)、23(23:1)、24(24:1)或25(25:1)、或其任何部分或其中的范围。原料(输入)的比率也落在此范围内。
如先前所讨论,缀合的脂质还可以包括CPL。用于制备SNALP-CPL(含有CPL的SNALP)的各种一般方法在本文讨论。两种一般技术包括“后插入”技术(即,将CPL插入(例如)预先形成的SNALP)和“标准”技术(其中在(例如)SNALP形成步骤期间CPL包括在脂质混合物中)。后插入技术主要在SNALP双层膜的外表面产生具有CPL的SNALP,而标准技术在内表面和外表面上提供具有CPL的SNALP。该方法特别用于由磷脂(其可以含有胆固醇)制成的囊泡,并且还用于含有PEG-脂质(如PEG-DAA和PEG-DAG)的囊泡。制备SNALP-CPL的方法(例如)在美国专利号5,705,385;6,586,410;5,981,501;6,534,484;和6,852,334;美国专利公布号20020072121;和PCT公布号WO00/62813中教导,这些专利的公开内容为了所有目的通过引用整体并入本文。
脂质颗粒的施用
一旦形成,本发明的脂质颗粒(例如,SNALP)特别用于将核酸(例如,mRNA)引入细胞。因此,本发明还提供用于将核酸(例如,mRNA)引入细胞的方法。在具体的实施方案中,将核酸(例如,mRNA)引入受感染的细胞如网状内皮细胞(例如,巨噬细胞、单核细胞,等)以及其它细胞类型,包括成纤维细胞、内皮细胞(如衬在血管内表面的那些)和/或血小板细胞。可以体外或体内通过首先形成如本文所述的颗粒,然后使颗粒与细胞接触足以发生mRNA向细胞的递送的一段时间来实施该方法。
本发明的脂质颗粒(例如,SNALP)可以吸附到它们与之混合或与之接触的几乎任何细胞类型。一旦吸附,颗粒可以被一部分细胞内吞,与细胞膜交换脂质,或与细胞融合。转移或并入颗粒的核酸(例如,mRNA)部分可以通过这些途径中的任何一个发生。特别地,当融合发生时,颗粒膜整合进细胞膜并且颗粒的内含物与细胞内液结合。
本发明的脂质颗粒(例如,SNALP)可以单独施用或与根据施用途径和标准药学实践所选的药学上可接受的载体(例如,生理盐水或磷酸盐缓冲液)混合施用。通常,标准缓冲盐水(例如,135-150mMNaCl)将被用作药学上可接受的载体。其它合适的载体包括(例如)水、缓冲水、0.4%盐水、0.3%甘氨酸等,包括用于增强稳定性的糖蛋白,诸如白蛋白、脂蛋白、球蛋白,等。其它合适的载体描述于(例如)REMINGTON’SPHARMACEUTICALSCIENCES,MackPublishingCompany,Philadelphia,PA,第17版(1985)。如本文所用,“载体”包括任一个和所有溶剂、分散介质、媒介物、包衣、稀释剂、抗菌剂和抗真菌剂、等渗剂和吸收延迟剂、缓冲剂、载体溶液、悬浮液、胶体等。短语“药学上可接受的”是指当施用于人时不产生过敏或类似不良反应的分子实体和组合物。
药学上可接受的载体通常在脂质颗粒形成后加入。因此,脂质颗粒(例如,SNALP)形成后,可以将颗粒稀释到药学上可接受的载体(如标准缓冲盐水)中。
颗粒在药物制剂中的浓度可以广泛变化,即,从少于约0.05重量%(通常为或至少约2重量%至5重量%)至多达约10重量%至90重量%,并且将根据所选的特定施用模式主要通过流体体积、粘度等进行选择。例如,浓度可以增加以降低与治疗相关的流体负载。这可能在具有动脉粥样硬化相关的充血性心脏衰竭或严重高血压的患者中特别理想。或者,由刺激性脂质组成的颗粒可稀释到低浓度以减轻施用部位处的炎症。
本发明的药物组合物可以通过常规的、众所周知的灭菌技术进行灭菌。可将水性溶液进行包装以期使用或在无菌条件下过滤并冻干,冻干制剂在施用之前与无菌水性溶液混合。必要时组合物可以含有药学上可接受的辅助物质以接近生理条件,如pH调节剂和缓冲剂、张力调节剂等,例如,乙酸钠、乳酸钠、氯化钠、氯化钾和氯化钙。此外,颗粒悬浮液可以包括脂质保护剂,其保护脂质在储存时免受自由基和脂质过氧化损伤。亲脂性自由基淬灭剂(如α生育酚)和水溶性铁特异性螯合剂(如铁草胺)是合适的。
在一些实施方案中,本发明的脂质颗粒(例如,SNALP)在用于治疗性递送一种或多种mRNA的方法中特别有用。
体内施用
用于体内治疗的全身递送,例如,通过身体系统如循环系统将治疗性核酸递送至远端靶细胞,已经使用如描述于PCT公布号WO05/007196,WO05/121348,WO05/120152和WO04/002453的那些核酸-脂质颗粒来实现,这些专利的公开内容为了所有目的通过引用整体并入本文。本发明还提供完全包封的脂质颗粒,其保护核酸免受血清中核酸酶降解,是非免疫原性的,尺寸小,并且适合于重复给药。
对于体内施用,施用可以以本领域中已知的任何方式,例如通过注射、口服施用、吸入(例如,鼻内或气管内)、经皮应用或直肠施用。施用可以通过单次或分次剂量来完成。药物组合物可以肠胃外,即,关节内、静脉内、腹膜内、皮下或肌内施用。在一些实施方案中,药物组合物通过快速推注来静脉内或腹膜内施用(参见,例如,美国专利号5,286,634)。细胞内核酸递送也在Straubringer等,MethodsEnzymol.,101:512(1983);Mannino等,Biotechniques,6:682(1988);Nicolau等,Crit.Rev.Ther.DrugCarrierSyst.,6:239(1989);和Behr,Acc.Chem.Res.,26:274(1993)中论述。施用基于脂质的治疗剂的另外的其它方法描述于(例如)美国专利号3,993,754;4,145,410;4,235,871;4,224,179;4,522,803;和4,588,578。脂质颗粒可以通过在疾病部位直接注射或通过在远离疾病部位的位点注射施用(参见,例如,Culver,HUMANGENETHERAPY,MaryAnnLiebert,Inc.,Publishers,NewYork.第70-71页(1994))。上述参考文献的公开内容为了所有目的通过引用整体并入本文。
在静脉内施用本发明的脂质颗粒(例如,SNALP)的实施方案中,至少约5%、10%、15%、20%或25%颗粒的总注射剂量在注射后约8、12、24、36或48小时存在于血浆中。在其它实施方案中,超过约20%、30%、40%和多达约60%、70%或80%脂质颗粒的总注射剂量在注射后约8、12、24、36或48小时存在于血浆中。在某些情况下,超过约10%的多个颗粒在施用后约1小时存在于哺乳动物的血浆中。在某些其它情况下,脂质颗粒的存在在施用颗粒后至少约1小时是可检测到的。在一些实施方案中,治疗性核酸如mRNA分子的存在在施用后约8、12、24、36、48、60、72或96小时在细胞中是可检测到的。在其它实施方案中,根据本发明由引入到活体中的mRNA编码的多肽的表达在施用后约8、12、24、36、48、60、72或96小时是可检测到的。在进一步的实施方案,在接近或远离施用部位的位点mRNA在细胞中的存在或作用在施用后约12、24、48、72或96小时,或约6、8、10、12、14、16、18、19、20、22、24、26或28天是可检测到的。在另外的实施方案中,本发明的脂质颗粒(例如,SNALP)胃肠外或腹膜内施用。
本发明的组合物(单独或与其它合适的组分组合)可制成气溶胶制剂(即,它们可以被“雾化”)以通过吸入(例如,鼻内或气管内)施用(参见,Brigham等,Am.J.Sci.,298:278(1989))。气溶胶制剂可以放进加压可接受的推进剂中,如二氯二氟甲烷、丙烷、氮气等。
在某些实施方案中,药物组合物可以通过鼻内喷雾、吸入和/或其它气溶胶递送媒介物来递送。用于将核酸组合物经由鼻气溶胶喷雾剂直接递送到肺部的方法已在例如,美国专利号5,756,353和5,804,212中进行论述。同样,使用鼻内微粒树脂和溶血磷脂酰-甘油化合物来递送药物(美国专利5,725,871)在制药领域中也是已知的。类似地,以聚四氟乙烯载体介质的形式经粘膜药物递送描述于美国专利号5,780,045。上述专利的公开内容为了所有目的通过引用整体并入本文。
适用于肠胃外施用,诸如例如通过关节内(在关节中)、静脉内、肌内、皮内、腹膜内和皮下途径的制剂包括水性和非水性、等渗无菌注射溶液,其可含有抗氧化剂、缓冲剂、抑菌剂、和使得制剂与预期接受者的血液等渗的溶质、以及水性和非水性无菌悬浮液,其可包括助悬剂、增溶剂、增稠剂、稳定剂和防腐剂。在本发明的实践中,组合物优选(例如)通过静脉内输注、口服、局部、腹膜内、膀胱内或鞘内施用。
通常,当静脉内施用时,脂质颗粒制剂与合适的药物载体一起配制。许多药学上可接受的载体可以在本发明的组合物和方法中采用。用于本发明的合适的制剂见于例如REMINGTON’SPHARMACEUTICALSCIENCES,MackPublishingCompany,Philadelphia,PA,第17版(1985)。可使用多种水性载体,例如,水、缓冲水、0.4%盐水、0.3%甘氨酸等,并且可以包括用于增强稳定性的糖蛋白,诸如白蛋白、脂蛋白、球蛋白,等。通常,标准缓冲盐水(135-150mMNaCl)将被用作药学上可接受的载体,但其它合适的载体也可以满足。这些组合物可以通过常规的脂质体灭菌技术(如过滤)进行灭菌。必要时组合物可以含有药学上可接受的辅助物质以接近生理条件,如pH调节剂和缓冲剂、张力调节剂、润湿剂等,例如,乙酸钠、乳酸钠、氯化钠、氯化钾、氯化钙、脱水山梨醇单月桂酸酯、油酸三乙醇胺,等。这些组合物可以使用上面提到的技术进行灭菌或,替代地,它们可以在无菌条件下产生。可将所得水性溶液进行包装以期使用或在无菌条件下过滤并冻干,冻干制剂在施用之前与无菌水性溶液混合。
在某些应用中,本文公开的脂质颗粒可通过口服施用给个体来递送。颗粒可掺入赋形剂并以可摄取的片剂、口含片、锭剂、胶囊、丸剂、锭剂、酏剂、漱口剂、悬浮剂、口服喷雾剂、糖浆剂、糯米纸等形式使用(参见,例如,美国专利号5,641,515、5,580,579和5,792,451,这些专利的公开内容为了所有目的通过引用整体并入本文)。这些口服剂型也可包含以下:粘合剂、明胶;赋形剂、润滑剂和/或调味剂。当单位剂型是胶囊时,除了上述材料外它可以包含液体载体。各种其它材料可作为包衣存在或以其它方式改变剂量单位的物理形式。当然,用于制备任何单位剂型的任何材料应当是药学纯的并且所用的量基本上无毒性。
通常,这些口服制剂可以包含至少约0.1%脂质颗粒或更多,但颗粒的百分比当然可以变化,并且可以方便地在约1%或2%和约60%或70%或更多之间重量或体积的总制剂。自然地,在每种治疗有用的组合物中颗粒的量可以以这种方式制备以使得将以化合物的任何给定单位剂量获得合适的剂量。诸如溶解度、生物利用度、生物半衰期、施用途径、产品保质期以及其它药理学考虑因素的因素将被制备此类药物制剂的本领域技术人员所预期,正因为如此,各种剂量和治疗方案可以是合乎需要的。
适用于口服施用的制剂可由以下组成:(a)液体溶液,如有效量的悬浮在稀释剂(如水、盐水或PEG400)中的包装的治疗性核酸(例如,mRNA);(b)胶囊、药囊或片剂,各自以液体、固体、颗粒或明胶形式含有预定量的治疗性核酸(例如,mRNA);(c)在合适的液体中的悬浮剂;和(d)合适的乳剂。片剂形式可包括以下中的一种或多种:乳糖、蔗糖、甘露醇、山梨醇、磷酸钙、玉米淀粉、土豆淀粉、微晶纤维素、明胶、胶态二氧化硅、滑石、硬脂酸镁、硬脂酸和其它赋形剂、着色剂、填充剂、粘合剂、稀释剂、缓冲剂、润湿剂、防腐剂、调味剂、染料、崩解剂以及药学上相容的载体。锭剂形式可包含在调味剂(例如,蔗糖)中的治疗性核酸(例如,mRNA),以及在惰性基质中包含治疗性核酸的软锭剂,惰性基质如(除了治疗性核酸外)含有本领域中已知载体的明胶和甘油或蔗糖和阿拉伯胶乳液、凝胶等。
在它们的用途的另一实例中,脂质颗粒可并入广泛范围的局部剂型。例如,含有核酸-脂质颗粒诸如SNALP的悬浮液可以以凝胶、油、乳剂、局部用药膏、糊剂、软膏剂、洗剂、泡沫剂、摩丝等形式配制并施用。
当制备本发明的脂质颗粒的药物制剂时,优选使用已经进行纯化以减少或消除空颗粒或具有治疗剂(如与外表面有关的核酸)的颗粒的大量颗粒。
本发明的方法可以在多种宿主中实践。优选的宿主包括哺乳动物物种,例如灵长类动物(例如,人和黑猩猩以及其它非人灵长类动物)、犬、猫、马、牛、绵羊、山羊、啮齿类动物(例如,大鼠和小鼠)、兔和猪。
施用的颗粒量将取决于治疗性核酸(例如,mRNA)与脂质的比率、使用的特定治疗性核酸、治疗的疾病或病症、患者的年龄、体重和病状、以及临床医师的判断,但将通常在约0.01至约50mg/千克体重之间,优选在约0.1至约5mg/kg体重之间,或每次施用(例如,注射)约108-1010个颗粒。
体外施用
对于体外应用,治疗性核酸(例如,mRNA)可以递送至在培养物中生长的任何细胞,无论是植物或动物来源、脊椎动物或无脊椎动物、且无论是任何组织或类型。在优选的实施方案中,细胞是动物细胞,更优选哺乳动物细胞,且最优选人细胞。
细胞和脂质颗粒之间的接触,当在体外进行时,发生在生物相容性介质中。颗粒的浓度变化很大,这取决于具体应用,但通常在约1微摩尔至约10毫摩尔之间。用脂质颗粒处理细胞通常在生理温度(约37℃)下进行约1至48小时,优选约2至4小时的时间段。
在一组优选的实施方案中,将脂质颗粒悬浮液加入到60-80%具有约103至约105个细胞/ml,更优选约2×104个细胞/ml的细胞密度的汇合的涂铺细胞中。加入到细胞中的悬浮液的浓度优选为约0.01至0.2μg/ml,更优选约0.1μg/ml。
就可能需要细胞的组织培养而言,这是本领域公知的。例如,Freshney,CultureofAnimalCells,aManualofBasicTechnique,第3版,Wiley-Liss,NewYork(1994),Kuchler等,BiochemicalMethodsinCellCultureandVirology,Dowden,HutchinsonandRoss,Inc.(1977),并且其中引用的参考文献提供对细胞培养的一般指导。培养的细胞系统通常将呈细胞单层形式,但也使用细胞悬浮液。
使用内体释放参数(ERP)测定,SNALP或本发明的其它脂质颗粒的递送效率可被最优化。ERP测定详细描述于美国专利公布号20030077829,该专利的公开内容为了所有目的通过引用整体并入本文。更具体地,ERP测定的目的是为了基于SNALP或其它脂质颗粒的各种阳离子脂质和辅助脂质组分对结合/摄取或与内体膜融合/使内体膜去稳定化的相对作用来区分它们的作用。该测定允许人们定量确定SNALP或其它脂质颗粒的各组分是如何影响递送效率,从而优化SNALP或其它脂质颗粒。通常,ERP测定测量报告蛋白(例如,荧光素酶、β-半乳糖苷酶、绿色荧光蛋白(GFP),等)的表达,并且在一些情况下,为表达质粒优化的SNALP制剂也将适用于包封mRNA。通过针对各种SNALP或其它脂质颗粒中的每一种比较ERP,人们可以很容易地确定优化的系统,例如,在细胞中具有最大摄取的SNALP或其它脂质颗粒。
用于递送脂质颗粒的细胞
本发明可以在多种来自任何脊椎动物物种的细胞类型上进行实践,该物种包括哺乳动物,诸如例如,犬、猫、马、牛、绵羊、山羊、啮齿类动物(例如,小鼠、大鼠和豚鼠)、兔、猪和灵长类动物(例如猴、黑猩猩和人)。
脂质颗粒的检测
在一些实施方案中,本发明的脂质颗粒(例如,SNALP)在受试者中在约1、2、3、4、5、6、7、8小时或更长时间是可检测到的。在其它实施方案中,本发明的脂质颗粒(例如,SNALP)在受试者中在施用颗粒后约8、12、24、48、60、72或96小时、或约6、8、10、12、14、16、18、19、22、24、25或28天是可检测到的。可以在来自受试者的细胞、组织或其它生物样品中检测到颗粒的存在。例如通过直接检测颗粒、和/或检测包封在脂质颗粒内的mRNA序列、和/或检测从mRNA表达的多肽可以检测颗粒。
颗粒的检测
可以使用本领域已知的任何方法来检测本发明的脂质颗粒诸如SNALP。例如,使用本领域公知的方法可将标记直接或间接偶联到脂质颗粒的组分。可以使用广泛的各种标记,其中标记的选择取决于所需灵敏度、与脂质颗粒组分缀合的难易、稳定性要求、和可用的仪器和处置规定。合适的标记包括但不限于光谱标记如荧光染料(例如,荧光素和衍生物,如异硫氰酸荧光素(FITC)和OregonGreenTM;若丹明和衍生物如德克萨斯红(Texasred)、四甲基异硫氰酸若丹明(TRITC),等,地高辛、生物素、藻红蛋白、AMCA、CyDyesTM等;放射性标记如3H、125I、35S、14C、32P、33P,等;酶如辣根过氧化物酶、碱性磷酸酶,等;光谱比色标记如胶体金或有色玻璃或塑料珠,如聚苯乙烯、聚丙烯、乳胶,等。可以使用本领域中已知的任何手段来检测标记。
核酸的检测
本文通过本领域技术人员公知的多种手段中的任何一种来检测和定量核酸(例如,mRNA)。核酸的检测可以通过公知的方法如Southern分析、Northern分析、凝胶电泳、PCR、放射性标记、闪烁计数和亲和色谱来进行。也可以采用其它分析生化方法如分光光度法、射线照相术、电泳、毛细管电泳、高效液相色谱(HPLC)、薄层色谱(TLC)和超扩散色谱。
核酸杂交形式的选择不是关键的。各种核酸杂交形式是本领域技术人员已知的。例如,常见形式包括夹心测定和竞争或置换测定。杂交技术通常描述于例如,“NucleicAcidHybridization,APracticalApproach,”Hames和Higgins编,IRLPress(1985)。
杂交测定的敏感度可以通过使用使被检测的靶核酸倍增的核酸扩增系统来增强。适用于扩增序列以用作分子探针或产生核酸片段用于随后的亚克隆的体外扩增技术是已知的。足以指导技术人员此类体外扩增方法,包括聚合酶链式反应(PCR)、连接酶链式反应(LCR)、Qβ复制酶扩增和其它RNA聚合酶介导的技术(例如,NASBATM)的技术的实例发现于Sambrook等,在MolecularCloning:ALaboratoryManual,ColdSpringHarborLaboratoryPress(2000)中;和Ausubel等,SHORTPROTOCOLSINMOLECULARBIOLOGY,编,CurrentProtocols,GreenePublishingAssociates,Inc.和JohnWiley&Sons,Inc.(2002);以及美国专利号4,683,202;PCRProtocols,AGuidetoMethodsandApplications(Innis等编)AcademicPressInc.SanDiego,CA(1990);Arnheim&Levinson(1990年10月1日),C&EN36;TheJournalOfNIHResearch,3:81(1991);Kwoh等,Proc.Natl.Acad.Sci.USA,86:1173(1989);Guatelli等,Proc.Natl.Acad.Sci.USA,87:1874(1990);Lomell等,J.Clin.Chem.,35:1826(1989);Landegren等,Science,241:1077(1988);VanBrunt,Biotechnology,8:291(1990);Wu和Wallace,Gene,4:560(1989);Barringer等,Gene,89:117(1990);以及Sooknanan和Malek,Biotechnology,13:563(1995)。克隆体外扩增的核酸的改进方法描述于美国专利号5,426,039。在本领域中描述的其它方法是基于核酸序列的扩增(NASBATM,Cangene,Mississauga,Ontario)和Qβ复制酶系统。这些系统可用来直接鉴定突变体,其中PCR或LCR引物被设计成仅当存在选择序列时延伸或连接。或者,通常可使用(例如)非特异性PCR引物来扩增选择序列并且随后探测扩增的靶区域的指示突变的特定序列。上述参考文献的公开内容为了所有目的通过引用整体并入本文。
用作探针(例如,在体外扩增方法中)、用作基因探针、或作为抑制剂组分的核酸通常根据由Beaucage等,TetrahedronLetts.,22:18591862(1981)描述的固相亚磷酰胺三酯方法,例如使用如描述于NeedhamVanDevanter等,NucleicAcidsRes.,12:6159(1984)中的自动化合成仪来化学合成。在必要时多核苷酸的纯化通常通过天然丙烯酰胺凝胶电泳或通过阴离子交换HPLC如Pearson等,J.Chrom.,255:137149(1983)中所述来进行。合成多核苷酸的序列可以使用Maxam和Gilbert(1980)在Grossman和Moldave(编)AcademicPress,NewYork,MethodsinEnzymology,65:499中的化学降解方法来验证。
用于确定转录水平的替代装置是原位杂交。原位杂交测定是公知的并且通常描述于Angerer等,MethodsEnzymol.,152:649(1987)。在原位杂交测定中,将细胞固定在固体载体(通常是载玻片)上。如果要探测DNA,则细胞用热或碱变性。然后将细胞与杂交溶液在适中温度下接触,以允许被标记的特异性探针退火。探针优选地用放射性同位素或荧光报告子标记。
实施例
本发明将通过具体实施例进行更详细说明。提供以下实施例用于说明目的,并且不旨在以任何方式限制本发明。本领域技术人员将容易认识到可以被改变或修改以产生基本相同结果的多种非关键参数。
实施例1.
本实施例描述编码小鼠中荧光素酶报告基因的mRNA的表达。mRNA包封在被注入小鼠中的核酸-脂质颗粒(称作LNP)内。
LNP制备
本实施例中报道的实验使用萤火虫萤光素酶mRNA,其分别用替换尿苷和胞苷的假尿苷和5-甲基胞苷完全修饰。将mRNA与脂质以13:1的脂质对药物比率配制到LNP中。在这些研究中使用的LNP制剂具有下列脂质组成:PEG-脂质(PEG2000-C-DMA或PEG2000-C-DSA)(1.6摩尔%);二亚油基甲氧基丙基-N,N-二甲胺(1-B11)(54.6摩尔%);胆固醇(32.8摩尔%);和DSPC(10.9摩尔%)。使用改编自Jeffs等,PharmaceuticalResearch,第22卷,第3册,362-372(2005)的方法以3.5mg(mRNA)规模制备LNP。然后通过切向流超滤(TFU)进行缓冲液交换。将LNP浓缩至约5mL,然后用60mLPBS(12倍洗涤体积)进行渗滤。将LNP进一步浓缩至约3mL,排出,并无菌过滤。使用RiboGreen和VarianCaryEclipse荧光计来测定LNP的浓缩。使用MalvernNanoSeriesZetasizer来测定粒度和多分散性。
体内方案
在本文报道的实验中,使用两种体内小鼠模型来证明在静脉注射LNP后组织荧光素酶表达。肝模型(用于分析1.6:55(PEG2000-C-DMA)LNP)使用初次接受免疫的雌性Balb/C小鼠。远端皮下肿瘤模型(用于分析1.6:55(PEG2000-C-DSA)LNP)使用后侧翼接种Hep3B细胞的雌性scid/beige小鼠。
在肝模型中,在初次接受免疫的Balb/C小鼠中以0.5mg/kg来给药LNP(n=5)。注射后六小时,将小鼠进行安乐死并取出肝脏,称重,并置于冰上的裂解介质管(含有一种陶瓷珠)中。
在皮下肿瘤模型中,在后侧翼对Scid小鼠(n=4)皮下接种3x106个Hep3B细胞。约20天后,以1.0mg/kg来给药LNP。在时间点2、4、6、8、16、24和48小时,对小鼠进行安乐死并取出肝脏、脾脏、肺、肾、心和肿瘤,称重,并置于冰上的裂解介质管(含有一种陶瓷珠)中。
在两个模型中,将PBS处理组纳入以测定荧光素酶测定中由组织匀浆引起的荧光素酶活性淬灭的背景水平。收集后,将在1xCCLR(细胞培养裂解试剂)中的50μL100ng/mL萤光素酶溶液掺入来自这些PBS处理的动物的组织。在所有情况下,将组织储存在-80℃直到进行荧光素酶测定。
萤光素酶测定程序
所有样品处理程序在冰上进行。将组织匀浆并在Eppendorf微量离心管中在3000rpm下在4℃下离心10分钟。离心后,将20μL匀浆等分成两份放入白色96孔光度计板中。然后在EG&GBerthold微孔板光度计LB上使用Promega萤光素酶测定系统来分析萤火虫荧光素酶荧光。孔内的荧光素酶活性通过将匀浆的所得相对光单位(RLU)与由20μL萤火虫荧光素酶制备的标准曲线进行比较来确定。将淬灭因子分配给每个组织来控制从匀浆的天然淬灭。这使用来自PBS处理的小鼠的荧光素酶掺入的组织来确定。
结果
表1示出了在用包含萤光素酶mRNA的LNP注射后6小时在Balb/C小鼠的各种组织中的萤光素酶活性。结果表明,在肝脏和脾脏中表达最高。
表2和3示出在用包含萤光素酶mRNA的LNP注射后的不同时间在用Hep3B细胞接种的Scid小鼠的各种组织中的萤光素酶表达。结果表明,荧光素酶表达最初在肝脏、脾脏和Hep3B肿瘤中最高,但48小时后大部分表达在Hep3B肿瘤中观察到。
表2
表3
实施例2
一般程序
LNP制备:
在本实施例2中描述的实验使用萤火虫萤光素酶mRNA(“mLuc”),其分别用替换尿苷和胞苷的假尿苷和5-甲基胞苷完全修饰。在这些研究中使用的LNP制剂具有下列一般脂质组成(摩尔比):PEG-脂质(PEG2000-C-DMA)(1.6摩尔%);适当的氨基脂(54.6摩尔%);胆固醇(32.8摩尔%);和DSPC(10.9摩尔%)。将适当的脂质溶解于乙醇(12.6mM)中来制备脂质储液。在40mMEDTA缓冲液中以40mMEDTA中0.366mg/mL制成mLuc储液。使用Jeffs等的方法(Pharm.Research(2005),22(3),第362-372页),将两种储液混合,在t-连接器中共混并稀释到磷酸盐缓冲盐水pH7.4中。然后通过用10倍体积的PBS进行过夜袋透析进行缓冲液交换。透析后,通过在来自GEHealthcare的Vivaspin-6或Vivaspin-20单元(MWCO100k)中离心来浓缩LNP。然后将LNP进行无菌过滤(0.2μm过滤器)。使用RiboGreen和VarianCaryEclipse荧光计来测定LNP的浓缩。使用MalvernNanoSeriesZetasizer来测定粒度和多分散性。
体内方案(荧光素酶肝模型)
在初次接受免疫的Balb/C小鼠中(n=3)以0.5mg/kg给药含有萤光素酶mRNA有效载荷的LNP。注射后六小时,将小鼠进行安乐死并取出肝脏,称重,并置于冰上的裂解介质管(含有一种陶瓷珠)中。将PBS处理组纳入以测定荧光素酶测定中由组织匀浆引起的荧光素酶活性淬灭的背景水平。收集后,将在1xCCLR(细胞培养裂解试剂)中的50μL100ng/mL萤光素酶溶液掺入来自这些PBS处理的动物的组织。将组织储存在-80℃直到进行荧光素酶测定。
萤光素酶测定程序:
所有样品处理程序在冰上进行。将组织匀浆并在Eppendorf微量离心管中在3000rpm和4℃下离心10分钟。离心后,将20μL匀浆等分成两份放入白色96孔光度计板中。然后在EG&GBerthold微孔板光度计LB上使用Promega萤光素酶测定系统来分析萤火虫荧光素酶荧光。孔内的荧光素酶活性通过将匀浆的所得RLU与由20μL萤火虫荧光素酶制备的标准曲线进行比较来确定。将淬灭因子分配给每个组织来控制从匀浆的天然淬灭。这使用来自PBS处理的小鼠的荧光素酶掺入的组织来确定。
相对可配制性和效力
可配制性
检测了氨基脂的选择对mRNA制剂中诸如可配制性和效力的参数的影响。作为基准,我们选择了二亚油基脂质5、6、7和8。这些脂质已被证明在介导体内将siRNA寡核苷酸递送至肝脏中极其有效。它们结构的共同特征是,它们都具有两条亚油基链(具有两个顺式双键的18个碳)作为它们的疏水结构域。我们还选择了一系列具有由多个(3个或4个)烷基链组成的疏水结构域的脂质;10、9、11、13、14、17和18。如上所述使用12.6mM脂质储液制备制剂。基本的物理化学特征数据在表4中,其中:Zavg是平均脂质颗粒直径;PDI是脂质颗粒直径分布的量度的多分散性指数(较低的PDI值表示更均质的颗粒群体);并且%Encaps是百分比包封,其为包封在脂质颗粒内的RNA的量的量度(较高的百分比包封值表示包封更多的mRNA)。
表4
用于荧光素酶表达测定的LNP
表1
值得注意的是,发现“多烷基链”(即3个或更多)氨基脂(如13)配制mRNA有效载荷明显优于基准亚油基脂质(5、6、7和8)。特别地,具有短烷基链的多烷基链脂质得到的制剂具有更小的粒度、更好的包封,或两者兼有。
由于各种原因更好的包封是有利的;更有效的方法更具成本效益,更完全地保护有效载荷,有助于避免与血液组分不需要的有效载荷相互作用,更均质/可再现,因此用作药物产品更为适当。
小的粒度出于几个原因对于体内应用是重要的。首先,LNP往往依赖“增强渗透和保留”作用,借此在靶组织中的被动积累是由通过局部血管系统中的小膜孔的颗粒来介导。已报道在人体内肝膜孔的直径为107±1.5nm,而在小鼠中为141±1.5nm。因此小颗粒的形成应改善肝渗透和累积,最终产生更有效的制剂。此外,已知较大的脂质体制剂从血液中快速除去,并且也有用于免疫刺激的可能性。
肝活性结果
也评估了各种制剂在小鼠肝脏模型中的效力。作为另外的对照,在文献中已描述商购可获得的递送试剂TransIT(Mirus)用于递送mRNA的用途。TransIT-mRNA复合物的0.05mg/mL溶液制备如下。将50μL1mg/mLmRNA加至860μLDMEM中,并向该溶液中加入来自TransIT-mRNA试剂盒(Mirus)的试剂。按照编号顺序,加入35μLmRNABoost试剂,然后加入55μLTransIT-mRNA试剂。然后将最终溶液孵育2-5分钟,之后静脉内或腹膜内给药。
所有制剂均以0.5mg/kg总mRNA的剂量静脉内施用。如Kariko等所述,TransIT制剂另外地进行腹膜内施用。如表5所示,含有具有多个短烷基结构域的氨基脂(例如,13-B43)的制剂显然比具有基准亚油基烷基结构域的那些制剂更有效。值得注意的是,具有良好包封、适当pKa(通常6.1-6.3),并且在疏水结构域中有多个双键的那些是最有效的脂质。
表5
治疗 每克肝脏中以ng计的荧光素酶蛋白
5 30.28
6 199.06
8 264.90
7 369.85
10 203.47
17 365.04
14 864.54
9 968.83
18 1388.39
11 1604.99
13 2937.24
TransIT-mLuc(IV) 1.11
TransIT-mLuc(IP) 0.12
低温透射电子显微镜
以下LNP制剂用于制备使用低温-TEM来检测的核酸-脂质颗粒:PEG-脂质(PEG2000-C-DMA)(1.6摩尔%);13-B43脂质(54.6摩尔%);胆固醇(32.8摩尔%);和DSPC(10.9摩尔%)。使用上述一般方法以0.95mg(mRNA)规模来制备LNP。脂质储液在乙醇中制备(12.6mM总脂质)。mRNA储液以0.366mg/mL制备于40mMEDTA中。使两种储液混合,并稀释至4.9mLPBS中。然后通过用10倍体积的PBS进行过夜袋透析进行缓冲液交换。然后通过在来自GEHealthcare的Vivaspin-20单元(MWCO100k)中离心使样品浓缩成约1mg/mLmRNA。然后将LNP进行无菌过滤。使用RiboGreen和VarianCaryEclipse荧光计来测定LNP的浓缩。使用MalvernNanoSeriesZetasizer来测定粒度和多分散性。
按照上述段落的教导制备的核酸-脂质颗粒通过低温透射电子显微镜(低温-TEM)可视化。在瑞典乌普萨拉大学(UppsalaUniversity,Sweden)使用ZeissEM902A进行分析。使用前将样品在气候室(25℃,98%湿度)中孵育20-30分钟。然后样品溶液(0.5μL)沉积在铜格栅上,通过印迹除去过量,并且在液体乙烷中使样品玻璃化。捕获100,000X总放大倍数下的图像,并通过数字平均来计算颗粒的直径大小。本专利申请的图1示出了脂质颗粒的代表性低温-TEM图像。
脂质颗粒制剂的再现性
选择两种氨基脂来检测脂质颗粒制剂的再现性。将基准二亚油基氨基脂MC3与短三烷基脂质13-B43进行比较。
根据上述一般程序,使用下列组成(表示为摩尔百分比)来制成多种制剂:PEG-脂质(PEG2000-C-DMA)(1.6摩尔%);氨基脂(54.6摩尔%);胆固醇(32.8摩尔%);和DSPC(10.9摩尔%)。脂质储液在乙醇中制备(范围为8.3-19.0mM总脂质)。mRNA储液以0.366mg/mL制备于40mMEDTA中。然后通过用10倍体积的PBS进行过夜袋透析进行缓冲液交换。然后通过在来自GEHealthcare的Vivaspin-20单元(MWCO100k)中离心使样品浓缩成约1mg/mLmRNA。然后将LNP进行无菌过滤。使用RiboGreen和VarianCaryEclipse荧光计来测定LNP的浓缩。使用MalvernNanoSeriesZetasizer来测定粒度和多分散性。
如表6和7所示,化合物13颗粒(表6)比用化合物7制成的颗粒(表7)一贯较小,并且显示更好包封。
表6
表7
本文使用的PEG脂质和一些另外的氨基脂质的结构如下所示。
PEG-脂质
阳离子脂质
(Z)-9-己基二十碳-14-烯-10-基4-(二甲基氨基)丁酸酯17
(4Z,14Z)-8,11-二((Z)-庚-3-烯基)十八碳-4,14-二烯-9-基5-(二甲基氨基)戊酸酯18
(6Z,9Z,29Z,32Z)-20-羟基-20-((9Z,12Z)-十八碳-9,12-二烯基)三十八碳-6,9,29,32-四烯-19-基5-(乙基(甲基)氨基)戊酸酯10
实施例3阳离子脂质的制备(111)
将(3Z,13Z)-7-((Z)-己-3-烯-1-基)-10-((Z)-壬-3-烯-1-基)十九碳-3,13-二烯-9-醇(110,700mg,1.44毫摩尔)在CH2Cl2(10mL)中的溶液依次用5-溴戊酸(390mg,2.16毫摩尔)、EDC(413mg,2.2毫摩尔)和DMAP(10mg)处理并搅拌(30℃,18H)。将溶液用CH2Cl2稀释并用饱和NaHCO3和盐水洗涤,干燥(MgSO4),过滤并浓缩。将粗物质溶于乙醇中的二甲胺(10mL作为2M溶液)中,放置在密封容器中并加热(80℃,5H)。一旦完成将溶液浓缩并将粗物质经历色谱(EtOAc)以得到为浅黄色油状物的111(294mg,22%)。1HNMR(400MHz,CDCl3H)5.54-5.28(m,8H),5.15-5.05(m,1H),2.27-2.22(m,4H),2.20(s,6H),2.10-1.96(m,16H),1.71-1.44(m,9H),1.43-1.25(23H),0.95(t,6H),0.87(t,6H)。
中间体化合物(3Z,13Z)-7-((Z)-己-3-烯-1-基)-10-((Z)-壬-3-烯-1-基)十九碳-3,13-二烯-9-醇110如下所述制备。
a.(Z)-己-3-烯-1-基甲磺酸酯102的合成
向顺-3-己烯-1-醇101(12.9g,129毫摩尔)在二氯甲烷(300mL)中的溶液中加入三乙胺(50mL)。将溶液冷却至0℃并加入甲磺酰氯(20mL,258毫摩尔)。将溶液在室温下搅拌1.5小时,然后用饱和NaHCO3洗涤,然后将水层用二氯甲烷反萃取。将合并的有机萃取物干燥(MgSO4),过滤并真空浓缩至干。将残余物通过硅藻土衬垫(100%DCM)过滤以得到为淡黄色粗制油的(Z)-己-3-烯-1-基甲磺酸酯102(22.6g,98%)。Rf0.7(CH2Cl2)。
b.(Z)-1-溴己-3-烯103的合成
将(Z)-己-3-烯-1-基甲磺酸酯2(22.6g,127毫摩尔)在2-甲基四氢呋喃(300mL)中的溶液加热至80℃并随后用四丁基溴化铵(53.1g,165毫摩尔)处理。搅拌(40min)后,将混合物冷却至20℃并用冰水洗涤。将水层用EtOAc(3x)反萃取,并将合并的有机物用盐水洗涤,干燥(MgSO4),过滤并浓缩。将粗产物通过硅藻土衬垫(用己烷漂洗)过滤,然后浓缩以得到为黄色油状物的(Z)-1-溴己-3-烯103(20g,97%)。Rf(0.8,己烷)。
c.(3Z,10Z)-十三碳-3,10-二烯-7-醇104的合成
在氮气下将镁屑(1.82g,74.8毫摩尔)在无水四氢呋喃(10mL)中的悬浮液用(Z)-1-溴己-3-烯103(11.4g,69.9毫摩尔)在四氢呋喃(15mL)中的溶液处理。将反应在45℃下搅拌2小时。然后将溶液冷却至5-10℃并逐滴加入甲酸乙酯(5.8mL,72毫摩尔)在四氢呋喃(15mL)中的溶液。将溶液在室温下搅拌15分钟,然后冷却至5℃并用水(30mL)淬灭,随后缓慢加入6M盐酸(30mL)。将溶液在室温下搅拌直至所有镁溶解,然后用己烷(50mL)和水(50mL)处理。将合并的己烷萃取物干燥(MgSO4),过滤并真空浓缩至干。将残余物溶解于乙醇(45mL)中,然后加入氢氧化钾(3.53g,62.9mol)在水(15mL)中的溶液。将溶液在室温下剧烈搅拌5分钟,然后真空浓缩以除去乙醇。将溶液用6MHCl(40mL)制成酸性并加入水(40mL)以溶解KCl,然后将其用己烷萃取。将合并的己烷萃取物干燥(MgSO4),过滤并真空浓缩至干。将产物通过柱色谱(100%己烷至5%乙酸乙酯的己烷溶液)纯化以得到为浅黄色油状物的(3Z,10Z)-十三碳-3,10-二烯-7-醇104(4.75g,65%)。Rf0.4(10%EtOAc-己烷)。
d.(3Z,10Z)-十三碳-3,10-二烯-7-基甲磺酸酯105的合成
将醇104(4.75g,22.7毫摩尔)在二氯甲烷(100mL)和三乙胺(20mL)中的溶液冷却至0℃并用甲磺酰氯(3.5mL,45.3毫摩尔)处理。将溶液在室温下搅拌1小时,然后用饱和碳酸氢钠和水:盐水(1:1)洗涤。然后将有机物干燥(MgSO4),过滤,浓缩至干。将粗残余物通过硅藻土衬垫(CH2Cl2)过滤以得到(3Z,10Z)-十三碳-3,10-二烯-7-基甲磺酸酯105(5.95g,91%)。Rf0.9(CH2Cl2)。
e.(Z)-2-((Z)-己-3-烯-1-基)辛-5-烯腈106的合成
将甲磺酸酯105(5.95g,20.6毫摩尔)在N,N二甲基甲酰胺(125mL)中的溶液用粉末状氰化钠(2.53g,51.6毫摩尔)处理,并在60℃下搅拌过夜。将反应混合物冷却至20℃并用水处理以溶解过量NaCN并搅拌30分钟。然后通过加入盐水和EtOAc将溶液分成两层。将水层用EtOAc反萃取,并将合并的有机物用盐水(3x)洗涤,干燥(MgSO4),过滤并浓缩。将粗残余物通过硅藻土衬垫(用己烷:CH2Cl2(1:1)漂洗)过滤以得到(Z)-2-((Z)-己-3-烯-1-基)辛-5-烯腈106(3.11g,69%)。Rf0.5(1:1己烷:CH2Cl2)。
f.(Z)-2-((Z)-己-3-烯-1-基)辛-5-烯-1-醇107的合成
将腈106(3.11g,14.2毫摩尔)在二氯甲烷(80mL)中的溶液冷却至-8℃并缓慢地用DIBAL(28.3mL,28.3毫摩尔;作为1M在CH2Cl2中的溶液)处理。搅拌(2h)后,通过加入5%HCl(25mL)将反应淬灭,并用CH2Cl2萃取并浓缩。将残余物溶于甲醇(80mL)中,冷却(0℃)并用NaBH4(1.07g,28.3毫摩尔)处理。搅拌(30min)后,通过加入5%HCl将反应淬灭,并用CH2Cl2萃取。将有机物用水和盐水洗涤,干燥(MgSO4),过滤并浓缩。将粗物质通过色谱(己烷→5%EtOAc-己烷)纯化以得到(Z)-2-((Z)-己-3-烯-1-基)辛-5-烯-1-醇107(2.8g,88%)。Rf0.75(10%EtOAc-己烷)。
g.(Z)-2-((Z)-己-3-烯-1-基)辛-5-烯-1-基甲磺酸酯108的合成
向107(2.8g,12.5毫摩尔)在二氯甲烷(40mL)中的溶液中加入三乙胺(5mL)。将溶液冷却至0℃并加入甲磺酰氯(1.93mL,25毫摩尔)。将溶液在室温下搅拌1.5小时,然后用饱和NaHCO3洗涤,然后将水层用二氯甲烷反萃取。将合并的有机萃取物干燥(MgSO4),过滤并真空浓缩至干。将残余物通过硅藻土衬垫(100%DCM)过滤以得到为淡黄色粗制油的(Z)-2-((Z)-己-3-烯-1-基)辛-5-烯-1-基甲磺酸酯108(3.6g,95%)。Rf0.75(CH2Cl2)。
h.(3Z,10Z)-7-(溴甲基)十三碳-3,10-二烯109的合成
将108在2-甲基四氢呋喃(30mL)中的溶液加热至80℃并随后用四丁基溴化铵(5g,15.5毫摩尔)处理。搅拌(40min)后,将混合物冷却至20℃并用冰水洗涤。将水层用EtOAc(3x)反萃取,并将合并的有机物用盐水洗涤,干燥(MgSO4),过滤并浓缩。将粗产物通过硅藻土衬垫(用己烷漂洗)过滤,然后浓缩以得到为黄色油状物的(3Z,10Z)-7-(溴甲基)十三碳-3,10-二烯109(2.13g,62%)。Rf(0.8,己烷)。
i.(3Z,13Z)-7-((Z)-己-3-烯-1-基)-10-((Z)-壬-3-烯-1-基)十九碳-3,13-二烯-9-醇110的合成
将Mg(193mg,7.94毫摩尔)在THF(2mL)中的混合物用溴化物109(2.13g,7.42毫摩尔)在THF(4mL)中的溶液处理并加热(45℃,4h)。然后将格氏试剂冷却(20℃)并用醛(118,4.65g,15.9毫摩尔)在THF(10mL)中的溶液处理。搅拌(2h)后,将混合物冷却(5℃)并通过加入水(5mL)然后6MHCl(5mL)来淬灭并搅拌直到过量的镁被消耗掉,然后用己烷和水处理。将有机层干燥(MgSO4),过滤,浓缩并通过色谱(己烷→2%→5%EtOAc-己烷)纯化以得到(3Z,13Z)-7-((Z)-己-3-烯-1-基)-10-((Z)-壬-3-烯-1-基)十九碳-3,13-二烯-9-醇110(700mg,19%)。Rf0.6(10%EtOAc-己烷)。
中间体化合物(Z)-2-((Z)-壬-3-烯-1-基)十一碳-5-烯醛118如下说明和描述来制备。
j.(Z)-壬-3-烯-1-基甲磺酸酯113的合成。以与化合物102相同的方式,由Z-壬-3-烯-1-醇(65.5g,461毫摩尔)、甲磺酰氯(39mL,507毫摩尔)、三乙胺(78mL,576毫摩尔)来制备化合物113。
k.(Z)-1-溴壬-3-烯114的合成以。与化合物103相同的方式,由(Z)-壬-3-烯-1-基甲磺酸酯(101g,459毫摩尔)和TBAB(183g,569毫摩尔)来制备化合物114。14的收率(92g,97%)。
l.(6Z,13Z)-十九碳-6,13-二烯-10-醇115的合成。以与化合物104相同的方式,由(Z)-1-溴壬-3-烯14(45g,219.5毫摩尔)、镁(5.9g,241.5毫摩尔)、甲酸乙酯(17.1g,230.5毫摩尔)和氢氧化钾(17.1g,230.5毫摩尔)来制备化合物115。收率(11.2g,37%)。
m.(6Z,13Z)-十九碳-6,13-二烯-10-基甲磺酸酯116的合成。以与化合物105相同的方式,由(6Z,13Z)-十九碳-6,13-二烯-10-醇11.2g,40毫摩尔)、甲磺酰氯(3.4mL,44毫摩尔)和三乙胺(8.7mL,60毫摩尔)来制备化合物116。收率(14.4g,定量)。
n.(Z)-2-((Z)-壬-3-烯-1-基)十一碳-5-烯腈117的合成。以与化合物106相同的方式,由(6Z,13Z)-十九碳-6,13-二烯-10-基甲磺酸酯14.4g,40毫摩尔)和氰化钾(6.6g,100毫摩尔)来制备化合物116。收率(10g,87%)。
o.(Z)-2-((Z)-壬-3-烯-1-基)十一碳-5-烯醛118的合成。将腈117(10g,34.5毫摩尔)在二氯甲烷(350mL)中的溶液冷却至-8℃并缓慢地用DIBAL(86.3mL,86.3毫摩尔;作为1M在CH2Cl2中的溶液)处理。搅拌(2h)后,通过加入5%HCl(25mL)将反应淬灭,并用CH2Cl2萃取并浓缩。将残余物经历色谱(2%EtOAc-己烷)以得到化合物118(5.1g,50%)。
实施例4(3Z,13Z)-10-((Z)-庚-3-烯-1-基)-7-((Z)-己-3-烯-1-基)十七碳-3,13-二烯-9-基5-(二甲基氨基)戊酸酯130的制备
以与化合物111相同的方式,由(4Z,14Z)-8,11-二((Z)-庚-3-烯-1-基)十八碳-4,14-二烯-9-醇129(223mg,0.49毫摩尔)、5-溴戊酸(264mg,14.6毫摩尔)、EDC(279mg,14.6毫摩尔)然后二甲胺来制备化合物130。化合物130的收率(138mg,51%,2步)。1HNMR(400MHz,CDCl3H)5.41-5.29(m,8H),5.13-5.07(m,1H),2.38-2.249M,4h),2.22(s,6H),2.14-1.93(m,16H),1.67-1.45(m,6H),1.45-1.23(m,19H),0.92(t,6H)。
中间体(4Z,14Z)-8,11-二((Z)-庚-3-烯-1-基)十八碳-4,14-二烯-9-醇129如下所述制备。
a.(Z)-庚-3-烯-1-基甲磺酸酯120的合成。以与化合物102相同的方式,由Z-3-庚烯-1-醇(52g,455毫摩尔)、三乙胺(80mL)和甲磺酰氯(70.5mL,911毫摩尔)来制备化合物120。收率(87.4g,定量)。
b.(Z)-1-溴庚-3-烯21的合成。以与化合物103相同的方式,由(Z)-庚-3-烯-1-基甲磺酸酯120和TBAB(190.7g,592毫摩尔)来制备化合物121。收率(60.9g,76%)。
c.(4Z,11Z)-十五碳-4,11-二烯-8-醇122的合成。以与化合物104相同的方式,由(Z)-1-溴庚-3-烯21(22g,124毫摩尔)、镁(3.23g,13.3毫摩尔)、甲酸乙酯(10.3mL,128毫摩尔)和氢氧化钾(6.28g,112毫摩尔)来制备化合物122。化合物122的收率(11.83g,85%)。
d.(4Z,11Z)-十五碳-4,11-二烯-8-基甲磺酸酯123的合成。以与化合物105相同的方式,由(4Z,11Z)-十五碳-4,11-二烯-8-醇22(11.8g,50毫摩尔)、三乙胺(15mL)和甲磺酰氯(7.7mL,100毫摩尔)来制备化合物123。化合物123的收率(15.1g,定量)。
e.(Z)-2-((Z)-庚-3-烯-1-基)壬-5-烯腈124的合成。以与化合物106相同的方式,由(4Z,11Z)-十五碳-4,11-二烯-8-基甲磺酸酯123(15.1g,50毫摩尔)和氰化钠(6.4g,130毫摩尔)来制备化合物124。化合物124的收率(9.87g,85%)。
f.(Z)-2-((Z)-庚-3-烯-1-基)壬-5-烯-1-醇(125)的合成。以与化合物107相同的方式,由(Z)-2-((Z)-庚-3-烯-1-基)壬-5-烯腈124(9.87g,42毫摩尔)、DIBAL(85mL,85毫摩尔)然后NaBH4(3.2g,85毫摩尔)来制备化合物125。化合物125的收率(6g,60%)。
g.(Z)-2-((Z)-庚-3-烯-1-基)壬-5-烯-1-基甲磺酸酯126的合成。以与化合物108相同的方式,由(Z)-2-((Z)-庚-3-烯-1-基)壬-5-烯-1-醇125(6g,25毫摩尔)、三乙胺(10mL)和甲磺酰氯(3.9mL,50.3毫摩尔)来制备化合物126。化合物126的收率(7.8g,97%)。
h.(4Z,11Z)-8-(溴甲基)十五碳-4,11-二烯127的合成。以与化合物109相同的方式,由(Z)-2-((Z)-庚-3-烯-1-基)壬-5-烯-1-基甲磺酸酯126(7.8g,24.5毫摩尔)和TBAB(10.3g,31.8毫摩尔)来制备化合物127。化合物127的收率(7g,95%)。
i.(Z)-2-((Z)-庚-3-烯-1-基)壬-5-烯醛128的合成。以与化合物118相同的方式,由(Z)-2-((Z)-庚-3-烯-1-基)壬-5-烯腈124(8.6g,36.8毫摩尔)和DIBAL(44.2mL,44.2毫摩尔)来制备化合物128。化合物128的收率(5.8g,67%)。
j.(4Z,14Z)-8,11-二((Z)-庚-3-烯-1-基)十八碳-4,14-二烯-9-醇129的合成。以与化合物110相同的方式,由(4Z,11Z)-8-(溴甲基)十五碳-4,11-二烯(3.8g,12.6毫摩尔)、镁和(Z)-2-((Z)-庚-3-烯-1-基)壬-5-烯醛128(642mg,2.7毫摩尔)来制备化合物129。化合物129的收率(223mg,18%)。
实施例59,13-二己基二十一碳-11-基5-(二甲基氨基)戊酸酯135的制备
以与化合物111相同的方式,由9,13-二己基二十一碳-11-醇134(1.6g,3.3毫摩尔)、5-溴戊酸(1.81g,9.9毫摩尔)、EDC(1.92g,9.9毫摩尔)和DIPEA(1.74mL,9.9毫摩尔)然后二甲胺的乙醇溶液(8mL)来制备化合物135。收率(1.3g,65%)。1HNMR(400MHz,CDCl3H)5.08-5.00(m,1H),2.34-2.23(m,4H),2.24(s,6H),1.68-1.59(m,4H),1.54-1.44(m,4H),1.40-1.16(m,54H),0.87(t,12H)。
中间体9,13-二己基henicosan-11-醇134如下所述制备。
a.2-己基癸基甲磺酸酯132的合成。以与化合物102相同的方式,由2-己基癸-1-醇(10g,41毫摩尔)、三乙胺(6.4mL,48毫摩尔)和甲磺酰氯(6.35mL,82毫摩尔)来制备化合物132。收率(13g,定量)。
b.7-(溴甲基)十五烷133的合成。以与化合物103相同的方式,由2-己基癸基甲磺酸酯13.1g,41毫摩尔)和TBAB(17.2g,53.3毫摩尔)来制备化合物133。收率(11.9g,95%)。
c.9,13-二己基二十一碳-11-醇134的合成。以与化合物104相同的方式,由7-(溴甲基)十五烷化合物133(11.9g,39毫摩尔)、镁(1.05g,43毫摩尔)、甲酸乙酯(3.3mL,41毫摩尔)和氢氧化钾(1.98g,35毫摩尔)来制备化合物134。收率(6.1g,67%)。
实施例69,13-二己基二十一碳-11-基6-(二甲基氨基)己酸酯137的制备
以与化合物111相同的方式,由9,13-二己基二十一碳-11-醇34(1.6g,3.3毫摩尔)、6-溴己酸(1.95g,9.9毫摩尔)、EDC(1.92g,9.9毫摩尔)和DIPEA(1.74mL,9.9毫摩尔)然后二甲胺的乙醇溶液(8mL)来制备化合物137。收率(1.2g,59%)。%)。1HNMR(400MHz,CDCl3H)5.08-5.00(m,1H),2.30-2.23(m,4H),2.22(s,6H),1.68-1.59(m,4H),1.57-1.43(m,4H),1.39-1.15(m,56H),0.87(t,12H)。
实施例7(Z)-7-丁基-10-((Z)-癸-4-烯-1-基)二十碳-14-烯-9-基5-(二甲基氨基)戊酸酯143的制备
以与化合物111相同的方式,由(Z)-7-丁基-10-((Z)-癸-4-烯-1-基)二十碳-14-烯-9-醇(142,132mg,0.027毫摩尔)、N,N,二甲基-氨基丁酸盐酸盐(136mg,0.81毫摩尔)、EDC(155mg,0.81毫摩尔)和DIPEA(200μL)来制备化合物143。收率(100mg,58%)。
中间体(Z)-7-丁基-10-((Z)-癸-4-烯-1-基)二十碳-14-烯-9-醇142如下所述制备。
a.2-丁基辛基甲磺酸酯139的合成。以与化合物102相同的方式,由2-丁基辛-1-醇138(3g,16.1毫摩尔)、三乙胺(8mL)、甲磺酰氯(2.49mL,32.2毫摩尔)来制备化合物139。收率(4.2g,99%)。
b.5-(溴甲基)十一烷140的合成。以与化合物103相同的方式,由2-丁基辛基甲磺酸酯139(4.2g,16毫摩尔)和TBAB(6.75g,20.9毫摩尔)来制备化合物140。收率(3.67g,92%)。
c.(Z)-7-丁基-10-((Z)-癸-4-烯-1-基)二十碳-14-烯-9-醇142的合成。以与化合物110相同的方式,由5-(溴甲基)十一烷140(3.67g,14.7毫摩尔)和(Z)-2-((Z)-癸-4-烯-1-基)十二碳-6-烯醛141(1.6g,5毫摩尔)来制备化合物142。收率(132mg,5%)。
实施例8
表8中的数据证明,当它们用于实施例1中所述的测定时,包含代表性四烷基脂质的颗粒比包含二烷基脂质对照化合物8的颗粒提供更大的荧光素酶活性。具体地,四烷基脂质比表8所示的既定基准二烷基脂质8介导增强水平的萤光素酶mRNA至活细胞的递送。
表8
实施例9.
本实施例表明用三烷基脂质13配制的本发明的脂质颗粒相比于用参照二烷基脂质8配制的脂质颗粒在较宽范围的脂质:mRNA比率下具有较小的平均颗粒直径(Zavg)。较小的粒度通常是体内施用本发明的脂质颗粒所期望的。
使用实施例2中描述的一般配制程序来制备脂质颗粒。脂质对药物(mRNA)比率为20:1的制剂采用12.6mM脂质储液。脂质对药物比率较低(13:1、9:1、6:1)的制剂使用适当稀释的脂质储液。将包含短链三烷基化合物13的脂质颗粒稀释到大量磷酸盐缓冲盐水(PBS)中,使得在这一点乙醇的浓度为17%。如表9所示,当用化合物13配制并使用一系列总脂质:mRNA比率时,容易获得较小的脂质颗粒。然而当采用二亚油基脂质8时,需要较高浓度(25%)的乙醇,因此,将新生颗粒稀释到较少量的PBS中。随着脂质对药物比率降低,粒度变大;体内应用产生不希望的性质,因为较大粒度通常与不想要的毒性有关。短的三烷基脂质13比较长链二亚油基脂质8一贯得到更小的颗粒。针对低至9:1的脂质对药物比率,化合物13产生Zavg低于100nm的脂质颗粒。
表9

Claims (55)

1.一种脂质颗粒,其包含阳离子脂质、非阳离子脂质和包封在所述脂质颗粒内的mRNA分子。
2.根据权利要求1所述的脂质颗粒,其中所述非阳离子脂质选自PEG-脂质缀合物和磷脂。
3.根据权利要求1或2所述的脂质颗粒,其中所述脂质颗粒还包含胆固醇。
4.根据权利要求1-3中任一项所述的脂质颗粒,其中所述阳离子脂质选自由以下组成的组:1,2-二亚油基氧基-N,N-二甲基氨基丙烷、1,2-二亚麻基氧基-N,N-二甲基氨基丙烷、2,2-二亚油基-4-(2-二甲基氨基乙基)-[1,3]-二氧戊环、二亚油基甲氧基丙基N,N-二甲胺、(6Z,16Z)-12-((Z)-癸-4-烯基)二十二碳-6,16-二烯-11-基5-(二甲基氨基)戊酸酯和(6Z,9Z,28Z,31Z)-三十七烷-6,9,28,31-四烯-19-基4-(二甲基氨基)丁酸酯、或其盐。
5.根据权利要求1-3中任一项所述的脂质颗粒,其中所述阳离子脂质是二亚油基甲氧基丙基-N,N-二甲胺。
6.根据权利要求2所述的脂质颗粒,其中所述磷脂包含二棕榈酰磷脂酰胆碱(DPPC)、二硬脂酰磷脂酰胆碱(DSPC)、或其混合物。
7.根据权利要求2所述的脂质颗粒,其中所述PEG-脂质缀合物选自由以下组成的组:PEG-二酰基甘油(PEG-DAG)缀合物、PEG-二烷氧基丙基(PEG-DAA)缀合物、PEG-磷脂缀合物、PEG-神经酰胺(PEG-Cer)缀合物、及其混合物。
8.根据权利要求2所述的脂质颗粒,其中所述PEG-脂质缀合物是PEG-DAA缀合物。
9.根据权利要求7或8所述的脂质颗粒,其中所述PEG-DAA缀合物选自由以下组成的组:PEG-二癸基氧基丙基(C10)缀合物、PEG-二月桂基氧基丙基(C12)缀合物、PEG-二肉豆蔻基氧基丙基(C14)缀合物、PEG-二棕榈基氧基丙基(C16)缀合物、PEG-二硬脂基氧基丙基(C18)缀合物、及其混合物。
10.根据权利要求2所述的脂质颗粒,其中所述PEG-脂质缀合物是PEG-DMA。
11.根据权利要求2所述的脂质颗粒,其中所述PEG-脂质缀合物是PEG-DSA。
12.根据权利要求1-11中任一项所述的脂质颗粒,其中所述mRNA完全包封在所述颗粒中。
13.根据权利要求1-12中任一项所述的脂质颗粒,其中所述颗粒具有约9:1至约20:1的脂质:mRNA质量比。
14.根据权利要求1-12中任一项所述的脂质颗粒,其中所述颗粒具有约12:1的脂质:mRNA质量比。
15.根据权利要求1-14中任一项所述的脂质颗粒,其中所述颗粒具有约30nm至约150nm的平均直径。
16.根据权利要求1-5中任一项所述的脂质颗粒,其中所述阳离子脂质包含约50摩尔%至约65摩尔%的存在于所述颗粒中的所述总脂质。
17.根据权利要求2-16中任一项所述的脂质颗粒,其中所述磷脂包含约4摩尔%至约15摩尔%的存在于所述颗粒中的所述总脂质。
18.根据权利要求2-16中任一项所述的脂质颗粒,其中所述磷脂包含约6摩尔%至约11摩尔%的存在于所述颗粒中的所述总脂质。
19.根据权利要求3-5和12-18中任一项所述的脂质颗粒,其中所述胆固醇包含约30摩尔%至约40摩尔%的存在于所述颗粒中的所述总脂质。
20.根据权利要求3-5和12-18中任一项所述的脂质颗粒,其中所述胆固醇包含约32摩尔%至约37摩尔%的存在于所述颗粒中的所述总脂质。
21.根据权利要求2-20中任一项所述的脂质颗粒,其中所述PEG-脂质包含约0.5摩尔%至约2摩尔%的存在于所述颗粒中的所述总脂质。
22.根据权利要求21所述的脂质颗粒,其中所述PEG-脂质选自由PEG-DMA和PEG-DSA组成的组,并且所述阳离子脂质是1-B11。
23.根据权利要求21所述的脂质颗粒,其中所述PEG-脂质以约1.6%的量存在,所述阳离子脂质以约54.6%的量存在,所述磷脂以约10.9%的量存在,并且所述胆固醇以约32.8%的量存在。
24.根据权利要求1-23中任一项所述的脂质颗粒,其中所述mRNA经化学修饰。
25.根据权利要求1所述的脂质颗粒,其中所述脂质颗粒包含PEG2000-C-DMA(1.6摩尔%)、二亚油基甲氧基丙基-N,N-二甲胺(1-B11)(54.6摩尔%)、胆固醇(32.8摩尔%)和DSPC(10.9摩尔%)。
26.根据权利要求1所述的脂质颗粒,其中所述脂质颗粒包含PEG2000-C-DSA(1.6摩尔%);二亚油基甲氧基丙基-N,N-二甲胺(1-B11)(54.6摩尔%)、胆固醇(32.8摩尔%)和DSPC(10.9摩尔%)。
27.根据权利要求1所述的脂质颗粒,其中所述脂质颗粒包括限定内部部分的外层,其中所述mRNA分子位于所述内部部分内。
28.根据权利要求1-27中任一项所述的脂质颗粒,其中所述颗粒是球形。
29.根据权利要求1-27中任一项所述的脂质颗粒,其中所述脂质颗粒是非球形。
30.根据权利要求1-29中任一项所述的脂质颗粒,其中所述脂质颗粒包括电子致密核心并且其中所述mRNA位于所述电子致密核心内。
31.根据权利要求30所述的脂质颗粒,其中所述电子致密核心包括水性组分和脂质组分,其中所述水性组分的量小于所述脂质组分的量。
32.根据权利要求1-31中任一项所述的脂质颗粒,其包含包封在所述脂质颗粒内的大量mRNA分子。
33.根据权利要求1-32中任一项所述的脂质颗粒,其中所述阳离子脂质是三烷基脂质。
34.根据权利要求1-32中任一项所述的脂质颗粒,其中所述阳离子脂质具有式B:
X-A-Y-Z;
(式B)
或其盐,其中:
X为–N(H)R或–NR2
A为不存在、C1至C6烷基、C2至C6烯基或C2至C6炔基,其中C1至C6烷基、C2至C6烯基和C2至C6炔基任选地被一个或多个独立地选自氧代、卤素、杂环、-CN、-ORx、-NRxRy、-NRxC(=O)Ry、-NRxSO2Ry、-C(=O)Rx、-C(=O)ORx、-C(=O)NRxRy、-SOnRx和-SOnNRxRy的基团取代,其中n为0、1或2,并且Rx和Ry各自独立地为氢、烷基或杂环,其中Rx和Ry的任一个烷基和杂环可任选地被一个或多个独立地选自氧代、卤素、-OH、-CN、烷基、-ORx’、杂环、-NRx’Ry’、-NRx’C(=O)Ry’、-NRx’SO2Ry’、-C(=O)Rx’、-C(=O)ORx’、-C(=O)NRx’Ry’、-SOn’Rx’和-SOn’NRx’Ry’的基团取代,其中n’为0、1或2,并且Rx’和Ry’各自独立地为氢、烷基或杂环;
Y选自由以下组成的组:不存在、–C(=O)-、-O-、-OC(=O)-、-C(=O)O-、-N(Rb)C(=O)-、-C(=O)N(Rb)-、-N(Rb)C(=O)O-和-OC(=O)N(Rb)-;
Z是包含三条链的疏水部分,其中每条链独立地选自C8至C11烷基、C8至C11烯基和C8至C11炔基,其中C8至C11烷基、C8至C11烯基和C8至C11炔基任选地被一个或多个独立地选自氧代、卤素、杂环、-CN、-ORx、-NRxRy、-NRxC(=O)Ry、-NRxSO2Ry、-C(=O)Rx、-C(=O)ORx、-C(=O)NRxRy、-SOnRx和-SOnNRxRy的基团取代,其中n为0、1或2,并且Rx和Ry各自独立地为氢、烷基或杂环,其中Rx和Ry的任一个烷基和杂环可进一步被一个或多个独立地选自氧代、卤素、-OH、-CN、烷基、-ORx’、杂环、-NRx’Ry’、-NRx’C(=O)Ry’、-NRx’SO2Ry’、-C(=O)Rx’、-C(=O)ORx’、-C(=O)NRx’Ry’、-SOn’Rx’和-SOn’NRx’Ry’的基团取代,其中n’为0、1或2,并且Rx’和Ry’各自独立地为氢、烷基或杂环;
每个R独立地为任选地被一个或多个独立地选自氧代、卤素、杂环、-CN、-ORx、-NRxRy、-NRxC(=O)Ry、-NRxSO2Ry、-C(=O)Rx、-C(=O)ORx、-C(=O)NRxRy、-SOnRx和-SOnNRxRy基团取代的烷基、烯基或炔基,其中n为0、1或2,并且Rx和Ry各自独立地为氢、烷基或杂环,其中Rx和Ry的任一个烷基和杂环可进一步被一个或多个独立地选自氧代、卤素、-OH、-CN、烷基、-ORx’、杂环、-NRx’Ry’、-NRx’C(=O)Ry’、-NRx’SO2Ry’、-C(=O)Rx’、-C(=O)ORx’、-C(=O)NRx’Ry’、-SOn’Rx’和-SOn’NRx’Ry’的基团取代,其中n’为0、1或2,并且Rx’和Ry’各自独立地为氢、烷基或杂环;并且
每个Rb是H或C1至C6烷基。
35.根据权利要求34所述的脂质颗粒,其中Z具有下式:
其中,R1、R2和R3各自独立地为C8至C11烷基、C8至C11烯基或C8至C11炔基,其中C8至C11烷基、C8至C11烯基和C8至C11炔基任选地被一个或多个独立地选自氧代、卤素、杂环、-CN,-ORx、-NRxRy、-NRxC(=O)Ry、-NRxSO2Ry、-C(=O)Rx、-C(=O)ORx、-C(=O)NRxRy、-SOnRx和-SOnNRxRy的基团取代,其中n为0、1或2,并且Rx和Ry各自独立地为氢、烷基或杂环,其中Rx和Ry的任一个烷基和杂环可进一步被一个或多个独立地选自氧代、卤素、-OH、-CN、烷基、-ORx’、杂环、-NRx’Ry’、-NRx’C(=O)Ry’、-NRx’SO2Ry’、-C(=O)Rx’、-C(=O)ORx’、-C(=O)NRx’Ry’、-SOn’Rx’和-SOn’NRx’Ry’的基团取代,其中n’为0、1或2,并且Rx’和Ry’各自独立地为氢、烷基或杂环。
36.根据权利要求1所述的脂质颗粒,其中所述阳离子脂质选自由以下组成的组:
并且,
及其盐。
37.根据权利要求1-32中任一项所述的脂质颗粒,其中所述阳离子脂质具有结构式C:
X-A-Y-Z1
(式C)
或其盐,其中:
X为–N(H)R或–NR2
A为不存在、C1至C6烷基、C2至C6烯基或C2至C6炔基,其中C1至C6烷基、C2至C6烯基和C2至C6炔基任选地被一个或多个独立地选自氧代、卤素、杂环、-CN、-ORx、-NRxRy、-NRxC(=O)Ry、-NRxSO2Ry、-C(=O)Rx、-C(=O)ORx、-C(=O)NRxRy、-SOnRx和-SOnNRxRy的基团取代,其中n为0、1或2,并且Rx和Ry各自独立地为氢、烷基或杂环,其中Rx和Ry的每个烷基和杂环可进一步被一个或多个独立地选自氧代、卤素、-OH、-CN、烷基、-ORx’、杂环、-NRx’Ry’、-NRx’C(=O)Ry’、-NRx’SO2Ry’、-C(=O)Rx’、-C(=O)ORx’、-C(=O)NRx’Ry’、-SOn’Rx’和-SOn’NRx’Ry’的基团取代,其中n’为0、1或2,并且Rx’和Ry’各自独立地为氢、烷基或杂环;
Y选自由以下组成的组:不存在、–C(=O)-、-O-、-OC(=O)-、-C(=O)O-、-N(Rb)C(=O)-、-C(=O)N(Rb)-、-N(Rb)C(=O)O-和-OC(=O)N(Rb)-;
Z1为被三个或四个Rx基团取代的C1至C6烷基,其中每个Rx独立地选自C6至C11烷基、C6至C11烯基和C6至C11炔基,其中C6至C11烷基、C6至C11烯基和C6至C11炔基任选地被一个或多个独立地选自氧代、卤素、杂环、-CN、-ORx、-NRxRy、-NRxC(=O)Ry、-NRxSO2Ry、-C(=O)Rx、-C(=O)ORx、-C(=O)NRxRy、-SOnRx和-SOnNRxRy基团取代,其中n为0、1或2,并且Rx和Ry各自独立地为氢、烷基或杂环,其中Rx和Ry的任一个烷基和杂环可进一步被一个或多个独立地选自氧代、卤素、-OH、-CN、烷基、-ORx’、杂环、-NRx’Ry’、-NRx’C(=O)Ry’、-NRx’SO2Ry’、-C(=O)Rx’、-C(=O)ORx’、-C(=O)NRx’Ry’、-SOn’Rx’和-SOn’NRx’Ry’基团取代,其中n’为0、1或2,并且Rx’和Ry’各自独立地为氢、烷基或杂环;
每个R独立地为任选地被一个或多个独立地选自氧代、卤素、杂环、-CN、-ORx、-NRxRy、-NRxC(=O)Ry、-NRxSO2Ry、-C(=O)Rx、-C(=O)ORx、-C(=O)NRxRy、-SOnRx和-SOnNRxRy基团取代的烷基、烯基或炔基,其中n为0、1或2,并且Rx和Ry各自独立地为氢、烷基或杂环,其中Rx和Ry的任一个烷基和杂环可进一步被一个或多个独立地选自氧代、卤素、-OH、-CN、烷基、-ORx’、杂环、-NRx’Ry’、-NRx’C(=O)Ry’、-NRx’SO2Ry’、-C(=O)Rx’、-C(=O)ORx’、-C(=O)NRx’Ry’、-SOn’Rx’和-SOn’NRx’Ry’的基团取代,其中n’为0、1或2,并且Rx’和Ry’各自独立地为氢、烷基或杂环;并且
每个Rb是H或C1至C6烷基。
38.根据权利要求37所述的脂质颗粒,其中Z1具有以下结构:
其中R1z和R2z中的一个选自由以下组成的组:
并且
R1z和R2z中的另一个选自由以下组成的组:
其中每个R3z、R4z、R5z、R6z和R7z独立地选自C6至C11烷基、C6至C11烯基和C6至C11炔基,其中C6至C11烷基、C6至C11烯基和C6至C11炔基任选地被一个或多个独立地选自氧代、卤素、杂环、-CN,-ORx、-NRxRy、-NRxC(=O)Ry、-NRxSO2Ry、-C(=O)Rx、-C(=O)ORx、-C(=O)NRxRy、-SOnRx和-SOnNRxRy的基团取代,其中n为0、1或2,并且Rx和Ry各自独立地为氢、烷基或杂环,其中Rx和Ry的任一个烷基和杂环可进一步被一个或多个独立地选自氧代、卤素、-OH、-CN、烷基、-ORx’、杂环、-NRx’Ry’、-NRx’C(=O)Ry’、-NRx’SO2Ry’、-C(=O)Rx’、-C(=O)ORx’、-C(=O)NRx’Ry’、-SOn’Rx’和-SOn’NRx’Ry’的基团取代,其中n’为0、1或2,并且Rx’和Ry’各自独立地为氢、烷基或杂环。
39.根据权利要求37所述的脂质颗粒,其中Z1具有以下结构:
其中R3z、R4z、R5z和R6z中的每一个独立地选自C6至C11烷基、C6至C11烯基和C6至C11炔基,其中C6至C11烷基、C6至C11烯基和C6至C11炔基任选地被一个或多个独立地选自氧代、卤素、杂环、-CN、-ORx、-NRxRy、-NRxC(=O)Ry、-NRxSO2Ry、-C(=O)Rx、-C(=O)ORx、-C(=O)NRxRy、-SOnRx和-SOnNRxRy的基团取代,其中n为0、1或2,并且Rx和Ry各自独立地为氢、烷基或杂环,其中Rx和Ry的任一个烷基和杂环可进一步被一个或多个独立地选自氧代、卤素、-OH、-CN、烷基、-ORx’、杂环、-NRx’Ry’、-NRx’C(=O)Ry’、-NRx’SO2Ry’、-C(=O)Rx’、-C(=O)ORx’、-C(=O)NRx’Ry’、-SOn’Rx’和-SOn’NRx’Ry’的基团取代,其中n’为0、1或2,并且Rx’和Ry’各自独立地为氢、烷基或杂环。
40.根据权利要求1所述的脂质颗粒,其中所述阳离子脂质选自由以下组成的组:
及其盐。
41.一种药物组合物,其包含权利要求1-40中任一项所述的脂质颗粒和药学上可接受的载体。
42.一种用于将编码蛋白质的mRNA引入细胞的方法,所述方法包括在借此将所述mRNA引入所述细胞中并在其中表达以产生所述蛋白质的条件下使所述细胞与权利要求1-40中任一项所述的脂质颗粒接触。
43.根据权利要求42所述的方法,其中所述细胞在哺乳动物中。
44.根据权利要求42所述的方法,其中通过经由全身途径将所述颗粒施用于所述哺乳动物来接触所述细胞。
45.根据权利要求43所述的方法,其中所述哺乳动物是人。
46.一种用于治疗和/或改善人类中一种或多种与由所述人的蛋白质的受损表达引起的疾病相关的症状的方法,所述方法包括给所述人施用治疗有效量的权利要求1-40中任一项所述的脂质颗粒,其中包封在所述核酸-脂质颗粒内的所述mRNA编码所述蛋白质。
47.根据权利要求46所述的方法,其中所述颗粒经由全身途径施用。
48.如在权利要求1-40中任一项所述的脂质颗粒的用途,其用于将编码蛋白质的mRNA引入活细胞。
49.如在权利要求1-40中任一项所述的脂质颗粒的用途,其用于治疗和/或改善人类中一种或多种与由所述人的蛋白质的受损表达引起的疾病相关的症状。
50.一种包含脂质颗粒的组合物,其包括(a)包含阳离子脂质、PEG-脂质、磷脂和胆固醇的脂质颗粒;和(b)mRNA分子,其中所述mRNA分子包封在所述脂质颗粒内。
51.一种化合物,其具有结构式C:
X-A-Y-Z1
(式C)
或其盐,其中:
X为–N(H)R或–NR2
A为不存在、C1至C6烷基、C2至C6烯基或C2至C6炔基,其中C1至C6烷基、C2至C6烯基和C2至C6炔基任选地被一个或多个独立地选自氧代、卤素、杂环、-CN、-ORx、-NRxRy、-NRxC(=O)Ry、-NRxSO2Ry、-C(=O)Rx、-C(=O)ORx、-C(=O)NRxRy、-SOnRx和-SOnNRxRy的基团取代,其中n为0、1或2,并且Rx和Ry各自独立地为氢、烷基或杂环,其中Rx和Ry的每个烷基和杂环可进一步被一个或多个独立地选自氧代、卤素、-OH、-CN、烷基、-ORx’、杂环、-NRx’Ry’、-NRx’C(=O)Ry’、-NRx’SO2Ry’、-C(=O)Rx’、-C(=O)ORx’、-C(=O)NRx’Ry’、-SOn’Rx’和-SOn’NRx’Ry’的基团取代,其中n’为0、1或2,并且Rx’和Ry’各自独立地为氢、烷基或杂环;
Y选自由以下组成的组:不存在、–C(=O)-、-O-、-OC(=O)-、-C(=O)O-、-N(Rb)C(=O)-、-C(=O)N(Rb)-、-N(Rb)C(=O)O-和-OC(=O)N(Rb)-;
Z1为被三个或四个Rx基团取代的C1至C6烷基,其中每个Rx独立地选自C6至C11烷基、C6至C11烯基和C6至C11炔基,其中C6至C11烷基、C6至C11烯基和C6至C11炔基任选地被一个或多个独立地选自氧代、卤素、杂环、-CN、-ORx、-NRxRy、-NRxC(=O)Ry、-NRxSO2Ry、-C(=O)Rx、-C(=O)ORx、-C(=O)NRxRy、-SOnRx和-SOnNRxRy基团取代,其中n为0、1或2,并且Rx和Ry各自独立地为氢、烷基或杂环,其中Rx和Ry的任一个烷基和杂环可进一步被一个或多个独立地选自氧代、卤素、-OH、-CN、烷基、-ORx’、杂环、-NRx’Ry’、-NRx’C(=O)Ry’、-NRx’SO2Ry’、-C(=O)Rx’、-C(=O)ORx’、-C(=O)NRx’Ry’、-SOn’Rx’和-SOn’NRx’Ry’基团取代,其中n’为0、1或2,并且Rx’和Ry’各自独立地为氢、烷基或杂环;
每个R独立地为任选地被一个或多个独立地选自氧代、卤素、杂环、-CN、-ORx、-NRxRy、-NRxC(=O)Ry、-NRxSO2Ry、-C(=O)Rx、-C(=O)ORx、-C(=O)NRxRy、-SOnRx和-SOnNRxRy基团取代的烷基、烯基或炔基,其中n为0、1或2,并且Rx和Ry各自独立地为氢、烷基或杂环,其中Rx和Ry的任一个烷基和杂环可进一步被一个或多个独立地选自氧代、卤素、-OH、-CN、烷基、-ORx’、杂环、-NRx’Ry’、-NRx’C(=O)Ry’、-NRx’SO2Ry’、-C(=O)Rx’、-C(=O)ORx’、-C(=O)NRx’Ry’、-SOn’Rx’和-SOn’NRx’Ry’的基团取代,其中n’为0、1或2,并且Rx’和Ry’各自独立地为氢、烷基或杂环;并且
每个Rb是H或C1至C6烷基。
52.根据权利要求51所述的化合物,其中Z1具有以下结构:
其中R1z和R2z中的一个选自由以下组成的组:
并且
R1z和R2z中的另一个选自由以下组成的组:
其中每个R3z、R4z、R5z、R6z和R7z独立地选自C6至C11烷基、C6至C11烯基和C6至C11炔基,其中C6至C11烷基、C6至C11烯基和C6至C11炔基任选地被一个或多个独立地选自氧代、卤素、杂环、-CN,-ORx、-NRxRy、-NRxC(=O)Ry、-NRxSO2Ry、-C(=O)Rx、-C(=O)ORx、-C(=O)NRxRy、-SOnRx和-SOnNRxRy的基团取代,其中n为0、1或2,并且Rx和Ry各自独立地为氢、烷基或杂环,其中Rx和Ry的任一个烷基和杂环可进一步被一个或多个独立地选自氧代、卤素、-OH、-CN、烷基、-ORx’、杂环、-NRx’Ry’、-NRx’C(=O)Ry’、-NRx’SO2Ry’、-C(=O)Rx’、-C(=O)ORx’、-C(=O)NRx’Ry’、-SOn’Rx’和-SOn’NRx’Ry’的基团取代,其中n’为0、1或2,并且Rx’和Ry’各自独立地为氢、烷基或杂环。
53.根据权利要求51所述的化合物,其中Z1具有以下结构:
其中每个R3z、R4z、R5z和R6z独立地选自C6至C11烷基、C6至C11烯基和C6至C11炔基,其中C6至C11烷基、C6至C11烯基和C6至C11炔基任选地被一个或多个独立地选自氧代、卤素、杂环、-CN、-ORx、-NRxRy、-NRxC(=O)Ry、-NRxSO2Ry、-C(=O)Rx、-C(=O)ORx、-C(=O)NRxRy、-SOnRx和-SOnNRxRy的基团取代,其中n为0、1或2,并且Rx和Ry各自独立地为氢、烷基或杂环,其中Rx和Ry的任一个烷基和杂环可进一步被一个或多个独立地选自氧代、卤素、-OH、-CN、烷基、-ORx’、杂环、-NRx’Ry’、-NRx’C(=O)Ry’、-NRx’SO2Ry’、-C(=O)Rx’、-C(=O)ORx’、-C(=O)NRx’Ry’、-SOn’Rx’和-SOn’NRx’Ry’的基团取代,其中n’为0、1或2,并且Rx’和Ry’各自独立地为氢、烷基或杂环。
54.根据权利要求51所述的化合物,其选自由以下组成的组:
55.一种核酸-脂质颗粒,其包括:
(a)包括阳离子脂质、PEG-脂质和磷脂的脂质颗粒;和,
(b)mRNA分子,其中所述mRNA分子包封在所述脂质颗粒内。
CN201480051596.6A 2013-07-23 2014-07-22 用于递送信使rna的组合物和方法 Pending CN105555757A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911293252.7A CN110974981A (zh) 2013-07-23 2014-07-22 用于递送信使rna的组合物和方法

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201361857573P 2013-07-23 2013-07-23
US61/857,573 2013-07-23
US201461943856P 2014-02-24 2014-02-24
US61/943,856 2014-02-24
PCT/IB2014/063289 WO2015011633A1 (en) 2013-07-23 2014-07-22 Compositions and methods for delivering messenger rna

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201911293252.7A Division CN110974981A (zh) 2013-07-23 2014-07-22 用于递送信使rna的组合物和方法

Publications (1)

Publication Number Publication Date
CN105555757A true CN105555757A (zh) 2016-05-04

Family

ID=52392801

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201911293252.7A Pending CN110974981A (zh) 2013-07-23 2014-07-22 用于递送信使rna的组合物和方法
CN201480051596.6A Pending CN105555757A (zh) 2013-07-23 2014-07-22 用于递送信使rna的组合物和方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201911293252.7A Pending CN110974981A (zh) 2013-07-23 2014-07-22 用于递送信使rna的组合物和方法

Country Status (7)

Country Link
US (5) US20160151284A1 (zh)
EP (2) EP3677567A1 (zh)
JP (4) JP6620093B2 (zh)
CN (2) CN110974981A (zh)
CA (1) CA2919226A1 (zh)
HK (1) HK1219719A1 (zh)
WO (1) WO2015011633A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109563511A (zh) * 2016-06-30 2019-04-02 阿布特斯生物制药公司 用于递送信使rna的组合物和方法
CN111315359A (zh) * 2017-08-31 2020-06-19 摩登纳特斯有限公司 制备脂质纳米颗粒的方法
CN111542338A (zh) * 2017-12-27 2020-08-14 武田药品工业株式会社 含核酸脂质纳米粒子及其用途
CN113164379A (zh) * 2018-10-01 2021-07-23 阿尔尼拉姆医药品有限公司 用于递送活性剂的可生物降解脂质
CN113286882A (zh) * 2018-11-09 2021-08-20 阿布特斯生物制药公司 脂质纳米颗粒制剂
CN114409554A (zh) * 2022-01-27 2022-04-29 英维沃生物科技(苏州)有限公司 一种新型阳离子脂质化合物及其组合物和用途
CN114685784A (zh) * 2022-04-26 2022-07-01 北京清科胜因生物科技有限公司 一种用于核酸递送的聚(2-噁唑啉)脂质与脂质纳米颗粒及应用
CN114746398A (zh) * 2019-09-19 2022-07-12 摩登纳特斯有限公司 用于细胞内递送治疗剂的头基脂质化合物和组合物
CN114901253A (zh) * 2019-08-14 2022-08-12 爱康泰生治疗公司 用于递送核酸的改进的脂质纳米颗粒

Families Citing this family (115)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60334618D1 (de) 2002-06-28 2010-12-02 Protiva Biotherapeutics Inc Verfahren und vorrichtung zur herstellung von liposomen
SI2506857T1 (en) 2009-12-01 2018-08-31 Translate Bio, Inc. Delivery of mRNA for the enrichment of proteins and enzymes in human genetic diseases
WO2012000104A1 (en) 2010-06-30 2012-01-05 Protiva Biotherapeutics, Inc. Non-liposomal systems for nucleic acid delivery
WO2012075040A2 (en) 2010-11-30 2012-06-07 Shire Human Genetic Therapies, Inc. mRNA FOR USE IN TREATMENT OF HUMAN GENETIC DISEASES
EP3998064A1 (en) 2011-06-08 2022-05-18 Translate Bio, Inc. Cleavable lipids
IL307511A (en) 2011-06-08 2023-12-01 Shire Human Genetic Therapies Preparations of lipid nanoparticles and methods for administration of mRNA
PT2817287T (pt) 2012-02-24 2018-12-28 Arbutus Biopharma Corp Lípidos catiónicos trialquílicos e seus métodos de utilização
US9877919B2 (en) 2012-03-29 2018-01-30 Translate Bio, Inc. Lipid-derived neutral nanoparticles
BR112014024131A2 (pt) 2012-03-29 2017-07-25 Shire Human Genetic Therapies lipídios catiônicos ionizáveis
EP2858679B1 (en) 2012-06-08 2021-02-24 Translate Bio, Inc. Pulmonary delivery of mrna to non-lung target cells
WO2013185067A1 (en) 2012-06-08 2013-12-12 Shire Human Genetic Therapies, Inc. Nuclease resistant polynucleotides and uses thereof
AU2014239184B2 (en) 2013-03-14 2018-11-08 Translate Bio, Inc. Methods and compositions for delivering mRNA coded antibodies
EA201591229A1 (ru) 2013-03-14 2016-01-29 Шир Хьюман Дженетик Терапис, Инк. Способы очистки матричной рнк
DK2968586T3 (en) 2013-03-14 2018-10-08 Translate Bio Inc CFTR MRNA COMPOSITIONS AND RELATED PROCEDURES AND APPLICATIONS
DK3388834T3 (da) 2013-03-15 2020-05-04 Translate Bio Inc Synergistisk forbedring af levering af nukleinsyrer via blandede formuleringer
CA2919226A1 (en) * 2013-07-23 2015-01-29 Protiva Biotherapeutics, Inc. Compositions and methods for delivering messenger rna
CA2926218A1 (en) 2013-10-03 2015-04-09 Moderna Therapeutics, Inc. Polynucleotides encoding low density lipoprotein receptor
WO2015061500A1 (en) 2013-10-22 2015-04-30 Shire Human Genetic Therapies, Inc. Mrna therapy for argininosuccinate synthetase deficiency
EP4036241A1 (en) 2013-10-22 2022-08-03 Translate Bio, Inc. Cns delivery of mrna and uses thereof
EP3574923A1 (en) 2013-10-22 2019-12-04 Translate Bio, Inc. Mrna therapy for phenylketonuria
CN112656954A (zh) 2013-10-22 2021-04-16 夏尔人类遗传性治疗公司 用于递送信使rna的脂质制剂
CN106659803A (zh) 2014-04-23 2017-05-10 摩登纳特斯有限公司 核酸疫苗
KR20220158867A (ko) 2014-04-25 2022-12-01 샤이어 휴먼 지네틱 테라피즈 인크. 메신저 rna 의 정제 방법
ES2750686T3 (es) 2014-05-30 2020-03-26 Translate Bio Inc Lípidos biodegradables para la administración de ácidos nucleicos
KR102559979B1 (ko) 2014-06-24 2023-07-25 샤이어 휴먼 지네틱 테라피즈 인크. 핵산의 전달용 입체화학적으로 풍부한 조성물
CN114344275A (zh) 2014-07-02 2022-04-15 川斯勒佰尔公司 信使rna的包封
AU2015357562B2 (en) 2014-12-05 2021-10-21 Translate Bio, Inc. Messenger RNA therapy for treatment of articular disease
US10172924B2 (en) 2015-03-19 2019-01-08 Translate Bio, Inc. MRNA therapy for pompe disease
US10653768B2 (en) 2015-04-13 2020-05-19 Curevac Real Estate Gmbh Method for producing RNA compositions
US20180245074A1 (en) * 2015-06-04 2018-08-30 Protiva Biotherapeutics, Inc. Treating hepatitis b virus infection using crispr
WO2016197133A1 (en) * 2015-06-04 2016-12-08 Protiva Biotherapeutics, Inc. Delivering crispr therapeutics with lipid nanoparticles
WO2017019935A1 (en) * 2015-07-30 2017-02-02 Modernatx, Inc. Multimeric mrna
US11564893B2 (en) 2015-08-17 2023-01-31 Modernatx, Inc. Methods for preparing particles and related compositions
ES2910425T3 (es) 2015-09-17 2022-05-12 Modernatx Inc Compuestos y composiciones para la administración intracelular de agentes terapéuticos
CA3001852A1 (en) 2015-10-14 2017-04-20 Translate Bio, Inc. Modification of rna-related enzymes for enhanced production
CN108347916B (zh) 2015-10-14 2022-02-08 先时迈纳米生物科技股份有限公司 一种减少冰晶形成的组合物及其方法
WO2017070613A1 (en) 2015-10-22 2017-04-27 Modernatx, Inc. Human cytomegalovirus vaccine
SI3394030T1 (sl) 2015-12-22 2022-04-29 Modernatx, Inc. Sestave za doziranje sredstev v celice
KR102369898B1 (ko) 2016-04-08 2022-03-03 트랜슬레이트 바이오 인코포레이티드 다량체 코딩 핵산 및 그 용도
US20190167811A1 (en) 2016-04-13 2019-06-06 Modernatx, Inc. Lipid compositions and their uses for intratumoral polynucleotide delivery
JP7312552B2 (ja) * 2016-05-16 2023-07-21 ザ ボード オブ リージェンツ オブ ザ ユニバーシティー オブ テキサス システム ナノ粒子としてのtRNA送達用組成物およびその使用方法
EP3842530A1 (en) 2016-06-13 2021-06-30 Translate Bio, Inc. Messenger rna therapy for the treatment of ornithine transcarbamylase deficiency
KR20190026819A (ko) 2016-07-07 2019-03-13 루비우스 테라퓨틱스, 아이엔씨. 외인성 rna를 발현하는 치료용 세포 시스템과 관련된 조성물 및 방법
CA3041307A1 (en) 2016-10-21 2018-04-26 Giuseppe Ciaramella Human cytomegalovirus vaccine
EP3538067A1 (en) 2016-11-08 2019-09-18 Modernatx, Inc. Stabilized formulations of lipid nanoparticles
EP3573656B1 (en) * 2017-01-27 2021-12-22 The Methodist Hospital Core/shell structure platform for immunotherapy
MX2019010155A (es) 2017-02-27 2020-12-10 Translate Bio Inc Arnm de cftr optimizado por codón novedoso.
HUE060693T2 (hu) 2017-03-15 2023-04-28 Modernatx Inc Vegyület és készítmények terápiás szerek intracelluláris bejuttatására
WO2018170260A1 (en) 2017-03-15 2018-09-20 Modernatx, Inc. Respiratory syncytial virus vaccine
WO2018170322A1 (en) * 2017-03-15 2018-09-20 Modernatx, Inc. Crystal forms of amino lipids
US11969506B2 (en) 2017-03-15 2024-04-30 Modernatx, Inc. Lipid nanoparticle formulation
AU2018268859A1 (en) 2017-05-16 2019-12-12 Translate Bio, Inc. Treatment of cystic fibrosis by delivery of codon-optimized mrna encoding CFTR
JP7285220B2 (ja) 2017-05-18 2023-06-01 モデルナティエックス インコーポレイテッド 連結したインターロイキン-12(il12)ポリペプチドをコードするポリヌクレオチドを含む脂質ナノ粒子
MA49395A (fr) 2017-06-14 2020-04-22 Modernatx Inc Polynucléotides codant pour le facteur viii de coagulation
WO2018232120A1 (en) 2017-06-14 2018-12-20 Modernatx, Inc. Compounds and compositions for intracellular delivery of agents
MA49421A (fr) 2017-06-15 2020-04-22 Modernatx Inc Formulations d'arn
US20190046649A1 (en) * 2017-08-09 2019-02-14 University Of Maryland, Baltimore County Delivery device and use thereof for loading cell plasma membranes
WO2019040516A1 (en) 2017-08-22 2019-02-28 Rubius Therapeutics, Inc. METHODS AND COMPOSITIONS OF LIPID NANOPARTICLES FOR THE PRODUCTION OF MODIFIED ERYTHROID CELLS
US11167043B2 (en) 2017-12-20 2021-11-09 Translate Bio, Inc. Composition and methods for treatment of ornithine transcarbamylase deficiency
US20190330591A1 (en) 2018-01-10 2019-10-31 Rubius Therapeutics, Inc. Amplifiable rnas for therapeutic cell systems
MA54676A (fr) 2018-01-29 2021-11-17 Modernatx Inc Vaccins à base d'arn contre le vrs
WO2020041793A1 (en) 2018-08-24 2020-02-27 Translate Bio, Inc. Methods for purification of messenger rna
KR20210093232A (ko) 2018-10-09 2021-07-27 더 유니버시티 오브 브리티시 콜롬비아 유기용매와 세제가 없는 형질감염 적격 소포를 포함하는 조성물과 시스템 및 관련 방법
KR20210080435A (ko) 2018-10-18 2021-06-30 다케다 야쿠힌 고교 가부시키가이샤 T 세포의 활성화/증식을 위한 방법
AU2019377131A1 (en) * 2018-11-09 2021-06-03 Arbutus Biopharma Corporation Lipid nanoparticle formulations
JP2022542839A (ja) 2019-07-19 2022-10-07 フラッグシップ パイオニアリング イノベーションズ シックス,エルエルシー リコンビナーゼ組成物及び使用方法
KR20220101077A (ko) 2019-09-19 2022-07-19 모더나티엑스, 인크. 치료제의 세포내 전달을 위한 분지형 꼬리 지질 화합물 및 조성물
EP4127186A1 (en) 2020-03-24 2023-02-08 Generation Bio Co. Non-viral dna vectors and uses thereof for expressing gaucher therapeutics
CN115667530A (zh) 2020-03-24 2023-01-31 世代生物公司 非病毒dna载体和其用于表达因子ix治疗剂的用途
TW202204622A (zh) 2020-04-09 2022-02-01 大陸商蘇州艾博生物科技有限公司 針對冠狀病毒之核酸疫苗
AU2021254312B2 (en) 2020-04-09 2024-01-11 Suzhou Abogen Biosciences Co., Ltd. Lipid nanoparticle composition
EP4153223A1 (en) 2020-05-20 2023-03-29 Flagship Pioneering Innovations VI, LLC Immunogenic compositions and uses thereof
CA3179420A1 (en) 2020-05-20 2021-11-25 Avak Kahvejian Coronavirus antigen compositions and their uses
WO2021243301A2 (en) 2020-05-29 2021-12-02 Flagship Pioneering Innovations Vi, Llc. Trem compositions and methods relating thereto
US20230203510A1 (en) 2020-05-29 2023-06-29 Flagship Pioneering Innovations Vi, Llc Trem compositions and methods relating thereto
JP2023532707A (ja) 2020-06-30 2023-07-31 スージョウ・アボジェン・バイオサイエンシズ・カンパニー・リミテッド 脂質化合物及び脂質ナノ粒子組成物
AU2021328980A1 (en) 2020-08-20 2023-03-09 Suzhou Abogen Biosciences Co., Ltd. Lipid compounds and lipid nanoparticle compositions
US11406703B2 (en) 2020-08-25 2022-08-09 Modernatx, Inc. Human cytomegalovirus vaccine
AU2021336976A1 (en) 2020-09-03 2023-03-23 Flagship Pioneering Innovations Vi, Llc Immunogenic compositions and uses thereof
WO2022099003A1 (en) 2020-11-06 2022-05-12 Sanofi Lipid nanoparticles for delivering mrna vaccines
CA3206285A1 (en) 2020-12-23 2022-06-30 Flagship Pioneering, Inc. Compositions of modified trems and uses thereof
CN116615472A (zh) 2021-01-14 2023-08-18 苏州艾博生物科技有限公司 聚合物缀合的脂质化合物和脂质纳米颗粒组合物
WO2022152109A2 (en) 2021-01-14 2022-07-21 Suzhou Abogen Biosciences Co., Ltd. Lipid compounds and lipid nanoparticle compositions
US20220325287A1 (en) 2021-03-31 2022-10-13 Flagship Pioneering Innovations V, Inc. Thanotransmission polypeptides and their use in treating cancer
WO2022232286A1 (en) 2021-04-27 2022-11-03 Generation Bio Co. Non-viral dna vectors expressing anti-coronavirus antibodies and uses thereof
IL308404A (en) 2021-04-27 2024-01-01 Generation Bio Co Non-viral DNA vectors expressing therapeutic antibodies and uses thereof
WO2022247755A1 (en) 2021-05-24 2022-12-01 Suzhou Abogen Biosciences Co., Ltd. Lipid compounds and lipid nanoparticle compositions
WO2023009547A1 (en) 2021-07-26 2023-02-02 Flagship Pioneering Innovations Vi, Llc Trem compositions and uses thereof
TW202330916A (zh) 2021-09-17 2023-08-01 美商旗艦先鋒創新有限責任公司 用於產生環狀多核糖核苷酸之組成物和方法
WO2023056917A1 (en) 2021-10-08 2023-04-13 Suzhou Abogen Biosciences Co., Ltd. Lipid compounds and lipid nanoparticle compositions
CN116064598B (zh) 2021-10-08 2024-03-12 苏州艾博生物科技有限公司 冠状病毒的核酸疫苗
AR127312A1 (es) 2021-10-08 2024-01-10 Suzhou Abogen Biosciences Co Ltd Compuestos lipídicos ycomposiciones de nanopartículas lipídicas
TW202322826A (zh) 2021-10-18 2023-06-16 美商旗艦先鋒創新有限責任公司 用於純化多核糖核苷酸之組成物及方法
CA3236235A1 (en) 2021-11-08 2023-05-11 Orna Therapeutics, Inc. Lipid nanoparticle compositions for delivering circular polynucleotides
WO2023096990A1 (en) 2021-11-24 2023-06-01 Flagship Pioneering Innovation Vi, Llc Coronavirus immunogen compositions and their uses
WO2023097003A2 (en) 2021-11-24 2023-06-01 Flagship Pioneering Innovations Vi, Llc Immunogenic compositions and their uses
WO2023096963A1 (en) 2021-11-24 2023-06-01 Flagship Pioneering Innovations Vi, Llc Varicella-zoster virus immunogen compositions and their uses
TW202340460A (zh) 2021-12-17 2023-10-16 美商旗艦先鋒創新有限責任公司 用於在變性條件下富集環狀rna之方法
TW202340461A (zh) 2021-12-22 2023-10-16 美商旗艦先鋒創新有限責任公司 用於純化多核糖核苷酸之組成物和方法
WO2023122789A1 (en) 2021-12-23 2023-06-29 Flagship Pioneering Innovations Vi, Llc Circular polyribonucleotides encoding antifusogenic polypeptides
WO2023144798A1 (en) 2022-01-31 2023-08-03 Genevant Sciences Gmbh Ionizable cationic lipids for lipid nanoparticles
WO2023177655A1 (en) 2022-03-14 2023-09-21 Generation Bio Co. Heterologous prime boost vaccine compositions and methods of use
WO2023183616A1 (en) 2022-03-25 2023-09-28 Senda Biosciences, Inc. Novel ionizable lipids and lipid nanoparticles and methods of using the same
WO2023196634A2 (en) 2022-04-08 2023-10-12 Flagship Pioneering Innovations Vii, Llc Vaccines and related methods
WO2023220083A1 (en) 2022-05-09 2023-11-16 Flagship Pioneering Innovations Vi, Llc Trem compositions and methods of use for treating proliferative disorders
WO2023220729A2 (en) 2022-05-13 2023-11-16 Flagship Pioneering Innovations Vii, Llc Double stranded dna compositions and related methods
GB202208022D0 (en) 2022-05-31 2022-07-13 Sisaf Ltd Therapeutic compounds and compositions
WO2023239756A1 (en) 2022-06-07 2023-12-14 Generation Bio Co. Lipid nanoparticle compositions and uses thereof
WO2023250112A1 (en) 2022-06-22 2023-12-28 Flagship Pioneering Innovations Vi, Llc Compositions of modified trems and uses thereof
GB202210794D0 (en) 2022-07-22 2022-09-07 Sisaf Ltd Lipid formulations
US20240042021A1 (en) 2022-08-01 2024-02-08 Flagship Pioneering Innovations Vii, Llc Immunomodulatory proteins and related methods
WO2024035952A1 (en) 2022-08-12 2024-02-15 Remix Therapeutics Inc. Methods and compositions for modulating splicing at alternative splice sites
WO2024040222A1 (en) 2022-08-19 2024-02-22 Generation Bio Co. Cleavable closed-ended dna (cedna) and methods of use thereof
WO2024049979A2 (en) 2022-08-31 2024-03-07 Senda Biosciences, Inc. Novel ionizable lipids and lipid nanoparticles and methods of using the same
WO2024077191A1 (en) 2022-10-05 2024-04-11 Flagship Pioneering Innovations V, Inc. Nucleic acid molecules encoding trif and additionalpolypeptides and their use in treating cancer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120172411A1 (en) * 2010-09-17 2012-07-05 Protiva Biotherapeutics, Inc. Novel trialkyl cationic lipids and methods of use thereof
CA2859387A1 (en) * 2011-12-16 2013-06-20 Moderna Therapeutics, Inc. Modified nucleoside, nucleotide, and nucleic acid compositions

Family Cites Families (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3993754A (en) 1974-10-09 1976-11-23 The United States Of America As Represented By The United States Energy Research And Development Administration Liposome-encapsulated actinomycin for cancer chemotherapy
US4086257A (en) 1976-10-12 1978-04-25 Sears Barry D Phosphatidyl quaternary ammonium compounds
CH624011A5 (zh) 1977-08-05 1981-07-15 Battelle Memorial Institute
US4235871A (en) 1978-02-24 1980-11-25 Papahadjopoulos Demetrios P Method of encapsulating biologically active materials in lipid vesicles
US4522803A (en) 1983-02-04 1985-06-11 The Liposome Company, Inc. Stable plurilamellar vesicles, their preparation and use
US4588578A (en) 1983-08-08 1986-05-13 The Liposome Company, Inc. Lipid vesicles prepared in a monophase
US5208036A (en) 1985-01-07 1993-05-04 Syntex (U.S.A.) Inc. N-(ω, (ω-1)-dialkyloxy)- and N-(ω, (ω-1)-dialkenyloxy)-alk-1-yl-N,N,N-tetrasubstituted ammonium lipids and uses therefor
US4683202A (en) 1985-03-28 1987-07-28 Cetus Corporation Process for amplifying nucleic acid sequences
US4683195A (en) 1986-01-30 1987-07-28 Cetus Corporation Process for amplifying, detecting, and/or-cloning nucleic acid sequences
US4737323A (en) 1986-02-13 1988-04-12 Liposome Technology, Inc. Liposome extrusion method
US5725871A (en) 1989-08-18 1998-03-10 Danbiosyst Uk Limited Drug delivery compositions comprising lysophosphoglycerolipid
US5286634A (en) 1989-09-28 1994-02-15 Stadler Joan K Synergistic method for host cell transformation
US5707644A (en) 1989-11-04 1998-01-13 Danbiosyst Uk Limited Small particle compositions for intranasal drug delivery
US5279833A (en) 1990-04-04 1994-01-18 Yale University Liposomal transfection of nucleic acids into animal cells
US5264618A (en) 1990-04-19 1993-11-23 Vical, Inc. Cationic lipids for intracellular delivery of biologically active molecules
US5283185A (en) 1991-08-28 1994-02-01 University Of Tennessee Research Corporation Method for delivering nucleic acids into cells
US5756353A (en) 1991-12-17 1998-05-26 The Regents Of The University Of California Expression of cloned genes in the lung by aerosol-and liposome-based delivery
WO1993023011A1 (en) 1992-05-18 1993-11-25 Minnesota Mining And Manufacturing Company Transmucosal drug delivery device
US5792451A (en) 1994-03-02 1998-08-11 Emisphere Technologies, Inc. Oral drug delivery compositions and methods
US5426039A (en) 1993-09-08 1995-06-20 Bio-Rad Laboratories, Inc. Direct molecular cloning of primer extended DNA containing an alkane diol
CA2200952C (en) 1994-09-30 2006-04-11 Inex Pharmaceuticals Corp. Novel compositions comprising quaternary ammonium compounds and neutral lipids for the introduction of polyanionic materials into cells
US5753613A (en) 1994-09-30 1998-05-19 Inex Pharmaceuticals Corporation Compositions for the introduction of polyanionic materials into cells
US5885613A (en) 1994-09-30 1999-03-23 The University Of British Columbia Bilayer stabilizing components and their use in forming programmable fusogenic liposomes
US5580579A (en) 1995-02-15 1996-12-03 Nano Systems L.L.C. Site-specific adhesion within the GI tract using nanoparticles stabilized by high molecular weight, linear poly (ethylene oxide) polymers
IE80468B1 (en) 1995-04-04 1998-07-29 Elan Corp Plc Controlled release biodegradable nanoparticles containing insulin
IL122290A0 (en) 1995-06-07 1998-04-05 Inex Pharmaceuticals Corp Lipid-nucleic acid complex its preparation and use
US5705385A (en) 1995-06-07 1998-01-06 Inex Pharmaceuticals Corporation Lipid-nucleic acid particles prepared via a hydrophobic lipid-nucleic acid complex intermediate and use for gene transfer
US5981501A (en) 1995-06-07 1999-11-09 Inex Pharmaceuticals Corp. Methods for encapsulating plasmids in lipid bilayers
US7422902B1 (en) 1995-06-07 2008-09-09 The University Of British Columbia Lipid-nucleic acid particles prepared via a hydrophobic lipid-nucleic acid complex intermediate and use for gene transfer
CA2264140A1 (en) * 1996-08-26 1998-03-05 Transgene S.A. Cationic lipid-nucleic acid complexes
WO1998051278A2 (en) 1997-05-14 1998-11-19 Inex Pharmaceuticals Corporation High efficiency encapsulation of charged therapeutic agents in lipid vesicles
WO1999005303A1 (en) 1997-07-24 1999-02-04 Inex Pharmaceuticals Corporation Preparation of lipid-nucleic acid particles using a solvent extraction and direct hydration method
US6320017B1 (en) 1997-12-23 2001-11-20 Inex Pharmaceuticals Corp. Polyamide oligomers
CA2335393C (en) 1998-07-20 2008-09-23 Inex Pharmaceuticals Corporation Liposomal encapsulated nucleic acid-complexes
AU783647B2 (en) 1999-04-20 2005-11-17 University Of British Columbia, The Cationic peg-lipids and methods of use
US6852334B1 (en) 1999-04-20 2005-02-08 The University Of British Columbia Cationic peg-lipids and methods of use
US7189705B2 (en) 2000-04-20 2007-03-13 The University Of British Columbia Methods of enhancing SPLP-mediated transfection using endosomal membrane destabilizers
TW593427B (en) 2000-12-18 2004-06-21 Nektar Therapeutics Al Corp Synthesis of high molecular weight non-peptidic polymer derivatives
US7053150B2 (en) 2000-12-18 2006-05-30 Nektar Therapeutics Al, Corporation Segmented polymers and their conjugates
US20030077829A1 (en) 2001-04-30 2003-04-24 Protiva Biotherapeutics Inc.. Lipid-based formulations
DE60334618D1 (de) 2002-06-28 2010-12-02 Protiva Biotherapeutics Inc Verfahren und vorrichtung zur herstellung von liposomen
EP1648519B1 (en) 2003-07-16 2014-10-08 Protiva Biotherapeutics Inc. Lipid encapsulated interfering rna
US7803397B2 (en) * 2003-09-15 2010-09-28 Protiva Biotherapeutics, Inc. Polyethyleneglycol-modified lipid compounds and uses thereof
WO2005120152A2 (en) 2004-06-07 2005-12-22 Protiva Biotherapeutics, Inc. Cationic lipids and methods of use
ATE536418T1 (de) 2004-06-07 2011-12-15 Protiva Biotherapeutics Inc Lipidverkapselte interferenz-rna
JP5042863B2 (ja) 2005-02-14 2012-10-03 サーナ・セラピューティクス・インコーポレイテッド 生物学的に活性な分子をデリバリーするための脂質ナノ粒子系組成物および方法
US7404969B2 (en) 2005-02-14 2008-07-29 Sirna Therapeutics, Inc. Lipid nanoparticle based compositions and methods for the delivery of biologically active molecules
JP5639338B2 (ja) 2005-07-27 2014-12-10 プロチバ バイオセラピューティクス インコーポレイティッド リポソームの製造システムおよび製造方法
EP3192788A1 (en) 2006-10-03 2017-07-19 Arbutus Biopharma Corporation Lipid containing formulations
CA2709875C (en) 2008-01-02 2019-07-16 Tekmira Pharmaceuticals Corporation Improved compositions and methods for the delivery of nucleic acids
HUE034483T2 (en) 2008-04-15 2018-02-28 Protiva Biotherapeutics Inc New lipid preparations for introducing a nucleic acid
US8883211B2 (en) 2008-07-10 2014-11-11 Serina Therapeutics, Inc. Polyoxazolines with inert terminating groups, polyoxazolines prepared from protected initiating groups and related compounds
US20110071208A1 (en) 2009-06-05 2011-03-24 Protiva Biotherapeutics, Inc. Lipid encapsulated dicer-substrate interfering rna
PT3431076T (pt) 2009-06-10 2021-10-26 Arbutus Biopharma Corp Formulação lipídica melhorada
US8569256B2 (en) 2009-07-01 2013-10-29 Protiva Biotherapeutics, Inc. Cationic lipids and methods for the delivery of therapeutic agents
IL292615B2 (en) * 2009-07-01 2023-11-01 Protiva Biotherapeutics Inc Nucleic acid-lipid particles, preparations containing them and their uses
CN102712935B (zh) * 2009-11-04 2017-04-26 不列颠哥伦比亚大学 含有核酸的脂质粒子及相关的方法
US9254327B2 (en) * 2010-05-10 2016-02-09 Alnylam Pharmaceuticals, Inc. Methods and compositions for delivery of active agents
CA2799091A1 (en) * 2010-05-12 2011-11-17 Protiva Biotherapeutics, Inc. Cationic lipids and methods of use thereof
IL307511A (en) * 2011-06-08 2023-12-01 Shire Human Genetic Therapies Preparations of lipid nanoparticles and methods for administration of mRNA
PT2817287T (pt) 2012-02-24 2018-12-28 Arbutus Biopharma Corp Lípidos catiónicos trialquílicos e seus métodos de utilização
BR112014024131A2 (pt) * 2012-03-29 2017-07-25 Shire Human Genetic Therapies lipídios catiônicos ionizáveis
EP2858679B1 (en) * 2012-06-08 2021-02-24 Translate Bio, Inc. Pulmonary delivery of mrna to non-lung target cells
WO2014089486A1 (en) * 2012-12-07 2014-06-12 Shire Human Genetic Therapies, Inc. Lipidic nanoparticles for mrna delivering
CA2919226A1 (en) * 2013-07-23 2015-01-29 Protiva Biotherapeutics, Inc. Compositions and methods for delivering messenger rna

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120172411A1 (en) * 2010-09-17 2012-07-05 Protiva Biotherapeutics, Inc. Novel trialkyl cationic lipids and methods of use thereof
CA2859387A1 (en) * 2011-12-16 2013-06-20 Moderna Therapeutics, Inc. Modified nucleoside, nucleotide, and nucleic acid compositions

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109563511A (zh) * 2016-06-30 2019-04-02 阿布特斯生物制药公司 用于递送信使rna的组合物和方法
CN111315359A (zh) * 2017-08-31 2020-06-19 摩登纳特斯有限公司 制备脂质纳米颗粒的方法
US11744801B2 (en) 2017-08-31 2023-09-05 Modernatx, Inc. Methods of making lipid nanoparticles
CN111542338A (zh) * 2017-12-27 2020-08-14 武田药品工业株式会社 含核酸脂质纳米粒子及其用途
CN113164379A (zh) * 2018-10-01 2021-07-23 阿尔尼拉姆医药品有限公司 用于递送活性剂的可生物降解脂质
CN113164379B (zh) * 2018-10-01 2024-04-16 阿尔尼拉姆医药品有限公司 用于递送活性剂的可生物降解脂质
CN113286882A (zh) * 2018-11-09 2021-08-20 阿布特斯生物制药公司 脂质纳米颗粒制剂
CN114901253A (zh) * 2019-08-14 2022-08-12 爱康泰生治疗公司 用于递送核酸的改进的脂质纳米颗粒
CN114746398A (zh) * 2019-09-19 2022-07-12 摩登纳特斯有限公司 用于细胞内递送治疗剂的头基脂质化合物和组合物
CN114409554A (zh) * 2022-01-27 2022-04-29 英维沃生物科技(苏州)有限公司 一种新型阳离子脂质化合物及其组合物和用途
CN114685784A (zh) * 2022-04-26 2022-07-01 北京清科胜因生物科技有限公司 一种用于核酸递送的聚(2-噁唑啉)脂质与脂质纳米颗粒及应用
CN114685784B (zh) * 2022-04-26 2023-09-15 北京清科胜因生物科技有限公司 一种用于核酸递送的聚(2-噁唑啉)脂质与脂质纳米颗粒及应用

Also Published As

Publication number Publication date
US20200297870A1 (en) 2020-09-24
JP2022009505A (ja) 2022-01-14
US20160256568A1 (en) 2016-09-08
JP2016525146A (ja) 2016-08-22
JP2020029462A (ja) 2020-02-27
JP2023174867A (ja) 2023-12-08
EP3033325A4 (en) 2017-07-12
US20160256567A1 (en) 2016-09-08
US20160151284A1 (en) 2016-06-02
EP3033325B1 (en) 2019-12-04
EP3033325A1 (en) 2016-06-22
CN110974981A (zh) 2020-04-10
WO2015011633A8 (en) 2015-09-17
EP3677567A1 (en) 2020-07-08
US20230165973A1 (en) 2023-06-01
CA2919226A1 (en) 2015-01-29
WO2015011633A1 (en) 2015-01-29
HK1219719A1 (zh) 2017-04-13
JP6620093B2 (ja) 2019-12-11

Similar Documents

Publication Publication Date Title
CN105555757A (zh) 用于递送信使rna的组合物和方法
JP7086870B2 (ja) メッセンジャーrnaを送達するための組成物及び方法
EP3201338B1 (en) Compositions and methods for silencing hepatitis b virus gene expression
CN102119217B (zh) 用于核酸递送的新型制剂
US20180245074A1 (en) Treating hepatitis b virus infection using crispr
CN104321304A (zh) 三烷基阳离子脂质及其使用方法
US20180208932A1 (en) Compositions and methods for silencing hepatitis b virus gene expression
WO2016071857A1 (en) Compositions and methods for silencing ebola virus expression
US20180245077A1 (en) Compositions and methods for treating hypertriglyceridemia
WO2019051257A2 (en) METHODS OF TREATING HEPATITIS B TYPE INFECTIONS
KR20210105888A (ko) 규소를 포함하는 양이온성 지질
CN110022895A (zh) 用于治疗乙型肝炎的治疗组合物和方法
KR20220140531A (ko) 간 성상 세포에 대한 치료제의 지질 나노입자 전달을 위한 양이온성 지질

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20180821

Address after: Vancouver, Canada

Applicant after: Wild strawberry bio pharmaceutical company

Address before: British Columbia

Applicant before: Protiva Biotherapeutics Inc.

RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20160504