CN105483646B - 一种紫外吸收薄膜的制备方法 - Google Patents

一种紫外吸收薄膜的制备方法 Download PDF

Info

Publication number
CN105483646B
CN105483646B CN201610038774.2A CN201610038774A CN105483646B CN 105483646 B CN105483646 B CN 105483646B CN 201610038774 A CN201610038774 A CN 201610038774A CN 105483646 B CN105483646 B CN 105483646B
Authority
CN
China
Prior art keywords
film
boron nitride
hexagonal boron
sheet metal
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610038774.2A
Other languages
English (en)
Other versions
CN105483646A (zh
Inventor
赵士超
张琪
李玉伟
吕燕飞
金圣忠
王昕�
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Zhongshang Carbon Institute Co ltd
Original Assignee
Hangzhou Dianzi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Dianzi University filed Critical Hangzhou Dianzi University
Priority to CN201610038774.2A priority Critical patent/CN105483646B/zh
Publication of CN105483646A publication Critical patent/CN105483646A/zh
Application granted granted Critical
Publication of CN105483646B publication Critical patent/CN105483646B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/342Boron nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Surface Treatment Of Glass (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)

Abstract

本发明公开了一种紫外吸收薄膜材料的制备方法。近紫外光吸收屏蔽薄膜常见的有氧化锌薄膜,氧化锌薄膜化学性质不够稳定比如遇到弱酸即溶解。六方氮化硼化学稳定性好,薄膜柔韧性好,光学禁带宽度6.1eV,能够吸收屏蔽202nm附近的紫外光,可以用作紫外吸收屏蔽材料。但是六方氮化硼紫外吸收范围窄,通过氧掺杂后可以调节六方氮化硼的禁带宽度,增加六方氮化硼对紫外光的吸收范围。本专利通过化学气相沉积法在生长六方氮化硼的同时进行氧掺杂,获得氧掺杂六方氮化硼薄膜,这种方法制备的六方氮化硼薄膜对紫外光吸收的波长范围扩大到190nm~380nm,适合用作近紫外光的吸收材料。

Description

一种紫外吸收薄膜的制备方法
技术领域
本发明属于材料技术领域,具体涉及一种具有近紫外光吸收性能的氧掺杂六方氮化硼薄膜的制备方法。
背景技术
紫外线照射会对皮肤造成伤害,对有机物光降解和老化,紫外吸收材料是紫外防护的有效手段。氧掺杂氮化硼薄膜是一种透明紫外吸收薄膜,可以吸收屏蔽波长介于190nm–380nm之间的紫外线。与氧化锌透明紫外吸收薄膜相比,具有化学稳定性好、机械强度高的优点。六方氮化硼(h-BN)是类似石墨烯的平面六角蜂巢结构,介电常数3-4,光学禁带宽度6.1eV左右,是宽禁带半导体材料,经过氧掺杂后禁带宽度减小对紫外线吸收波长范围增加,用作近紫外吸收薄膜材料在建筑玻璃、汽车玻璃、抗紫外眼镜等领域有广阔的应用前景。
六方氮化硼薄膜常用的制备方法是化学气相沉积法(CVD法)。该方法氮化硼生成于金属催化剂表面,采用聚合物作为支撑,溶解去除金属催化剂最终转移至目标衬底。理论计算表明氧掺杂会导致h-BN禁带宽度降低,本专利通过实验合成了氧掺杂六方氮化硼,并将氧掺杂六方氮化硼薄膜用作紫外线吸收屏蔽材料。
发明内容
本发明针对氧掺杂六方氮化硼薄膜,提出了一种氧掺杂六方氮化硼紫外吸收薄膜的制备方法。
本发明方法采用化学气相沉积法(CVD法)以过渡金属铜或镍催化剂为基底,在氧化气氛中高温保温后快速冷却,在金属催化剂薄膜表面制备1~20nm厚度的氧掺杂氮化硼薄膜,然后去除金属催化剂薄膜,获得氧掺杂六方氮化硼薄膜。
本发明一种紫外吸收薄膜的制备方法的具体步骤是:
步骤(1)、将金属片用浓度为O.5~1.5mol/L的盐酸浸洗5~10秒,去离子水清洗后用氮气吹干,放入电炉的石英管中;
所述的金属片的金属为铜、镍或铜镍合金。
步骤(2)、石英管中持续通入氩气、氢气和氧气的混合气,氩气与氢气和氧气的流量比为1~3:2:0.005~0.05,将电炉温度升至900~1000℃后保温5~30分钟;氧化气氛中六方氮化硼生长的同时进行氧掺杂;
步骤(3)、同时向石英管内通入硼氨烷蒸气,20~30分钟后关闭通入硼氨烷蒸气。硼氨烷蒸气通过水浴加热硼氨烷产生,水浴温度40~100℃。
步骤(4)、电炉停止加热,将石英管冷却到常温,冷却速率为20~30℃/min,然后关闭通入氢气、氩气和氧气,取出金属片。
步骤(5).将金属片取出,在金属片上表面旋涂PMMA溶液,PMMA溶液在空气中干燥5~30分钟形成PMMA薄膜黏附在金属片表面,然后浸入氯化铁溶液中浸泡10~60分钟去除金属片,之后将漂浮在氯化铁溶液表面的PMMA薄膜转移至基底表面,接着将基底浸入丙酮中,经过30~180分钟,获得转移至基底表面的氧掺杂氮化硼薄膜。
上述基底是指:硅、玻璃。
本发明的有益效果:本发明方法通过控制氧含量,在生长六方氮化硼薄膜的同时对氮化硼进行氧掺杂,获得氧掺杂的六方氮化硼透明薄膜。氧掺杂六方氮化硼紫外吸收波段范围为190nm-380nm。
具体实施方式
实施例1:
步骤(1).将铜片(3cm x 2cm x 0.05cm)用浓度为O.5mol/L的盐酸浸洗10秒,去离子水清洗后用氮气吹干,放入电炉的石英管中;
步骤(2).石英管中持续通入氩气、氢气和氧气的混合气,氩气、氢气和氧气的流量比为1:2:0.005,将电炉温度升至900℃后保温30分钟;
步骤(3).同时向石英管内通入硼氨烷蒸气,20分钟后关闭通入硼氨烷蒸气。通入的硼氨烷蒸气是通过水浴加热得到,水浴温度40℃。
步骤(4).电炉停止加热,将石英管冷却到常温,冷却速率为20℃/min,然后关闭通入氢气和氩气,取出铜片。
步骤(5).将铜片取出,在铜片上表面旋涂PMMA溶液,PMMA溶液在空气中干燥5分钟形成PMMA薄膜黏附在铜片表面,然后浸入氯化铁溶液中浸泡10分钟去除铜片,之后将漂浮在氯化铁溶液表面的PMMA薄膜转移至硅基底表面,接着将硅基底浸入丙酮中,经过30分钟,获得转移至基底表面的氧掺杂氮化硼薄膜。
实施例2:
步骤(1).将铜镍合金片用浓度为O.6mol/L的盐酸浸洗9秒,去离子水清洗后用氮气吹干,放入电炉的石英管中;
步骤(2).石英管中持续通入氩气、氢气和氧气的混合气,氩气与氢气和氧气的流量比为3:2:0.01,将电炉温度升至1000℃后保温20分钟。
步骤(3).同时向石英管内通入硼氨烷蒸气,30分钟后关闭通入硼氨烷蒸气;通入的硼氨烷蒸气是通过水浴加热得到,水浴温度100℃。
步骤(4).电炉停止加热,将石英管冷却到常温,冷却速率为30℃/min,然后关闭通入氢气和氩气,取出铜镍合金片。
步骤(5).将铜镍合金片取出,在铜镍合金片下表面B表面旋涂PMMA溶液,PMMA溶液在空气中干燥30分钟形成PMMA薄膜黏附在铜镍合金片表面,然后浸入氯化铁溶液中浸泡30分钟去除铜镍合金片,之后将漂浮在氯化铁溶液表面的PMMA薄膜转移至硅基底表面,接着将硅基底浸入丙酮中,经过120分钟,获得转移至基底表面的氧掺杂氮化硼薄膜。
实施例3:
步骤(1).将镍片用浓度为1.5mol/L的盐酸浸洗5秒,去离子水清洗后用氮气吹干,放入电炉的石英管中;
步骤(2).石英管中持续通入氩气、氢气和氧气的混合气,氩气与氢气和氧气的流量比为3:2:0.05,将电炉温度升至950℃后保温5分钟。
步骤(3).同时向石英管内通入硼氨烷蒸气,25分钟后关闭通入硼氨烷蒸气。通入的硼氨烷蒸气是通过水浴加热得到,水浴温度60℃。
步骤(4).电炉停止加热,将石英管冷却到常温,冷却速率为25℃/min,
然后关闭通入氢气和氩气,取出镍片。
步骤(5).将镍片取出,在镍片上表面旋涂PMMA溶液,PMMA溶液在空气中干燥16分钟形成PMMA薄膜黏附在镍片表面,然后浸入氯化铁溶液中浸泡60分钟去除镍片,之后将漂浮在氯化铁溶液表面的PMMA薄膜转移至玻璃基底表面,接着将硅玻璃基底浸入丙酮中,经过180分钟,获得转移至基底表面的氧掺杂氮化硼薄膜。

Claims (4)

1.一种紫外吸收薄膜的制备方法,其特征在于,该方法具体步骤是:
步骤(1)、将金属片用浓度为0 .5~1.5mol/L的盐酸浸洗5~10秒,去离子水清洗后用氮气吹干,放入电炉的石英管中;
步骤(2)、石英管中持续通入氩气、氢气和氧气的混合气,氩气与氢气和氧气的流量比为1~3:2:0.005~0.05;将电炉温度升至900~1000℃后保温5~30分钟;
步骤(3)、同时向石英管内通入硼氨烷蒸气,20~30分钟后关闭通入硼氨烷蒸气;
步骤(4)、电炉停止加热,将石英管冷却到常温,冷却速率为20~30℃/min,然后关闭通入氢气、氩气和氧气,取出金属片;
步骤(5).将金属片取出,在金属片上表面旋涂PMMA溶液,PMMA溶液在空气中干燥5~30分钟形成PMMA薄膜黏附在金属片表面,然后浸入氯化铁溶液中浸泡10~60分钟去除金属片,之后将漂浮在氯化铁溶液表面的PMMA薄膜转移至基底表面,接着将基底浸入丙酮中,经过30~180分钟,获得转移至基底表面的氧掺杂氮化硼薄膜。
2.如权利要求1所述的一种紫外吸收薄膜的制备方法,其特征在于:所述的金属片的金属为铜、镍或铜镍合金。
3.如权利要求1所述的一种紫外吸收薄膜的制备方法,其特征在于:所述的基底为硅衬底或玻璃。
4.如权利要求1所述的一种紫外吸收薄膜的制备方法,其特征在于:硼氨烷蒸气通过水浴加热硼氨烷产生,水浴温度40~100℃。
CN201610038774.2A 2016-01-20 2016-01-20 一种紫外吸收薄膜的制备方法 Active CN105483646B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610038774.2A CN105483646B (zh) 2016-01-20 2016-01-20 一种紫外吸收薄膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610038774.2A CN105483646B (zh) 2016-01-20 2016-01-20 一种紫外吸收薄膜的制备方法

Publications (2)

Publication Number Publication Date
CN105483646A CN105483646A (zh) 2016-04-13
CN105483646B true CN105483646B (zh) 2019-01-18

Family

ID=55670908

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610038774.2A Active CN105483646B (zh) 2016-01-20 2016-01-20 一种紫外吸收薄膜的制备方法

Country Status (1)

Country Link
CN (1) CN105483646B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107051370B (zh) * 2017-05-24 2019-08-09 成都理工大学 非晶态o掺杂的bn纳米片的制备方法
CN112941466B (zh) * 2021-01-29 2022-08-23 杭州电子科技大学 一种金掺杂氮化硼薄膜的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101010445A (zh) * 2004-09-02 2007-08-01 卡尔斯鲁厄研究中心股份有限公司 具有立方氮化硼的分层复合物
CN101690420A (zh) * 2007-05-23 2010-03-31 应用材料股份有限公司 氮化硼和氮化硼导出材料的沉积方法
CN103031516A (zh) * 2013-01-18 2013-04-10 浙江大学 一种六角相氮化硼薄膜的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101010445A (zh) * 2004-09-02 2007-08-01 卡尔斯鲁厄研究中心股份有限公司 具有立方氮化硼的分层复合物
CN101690420A (zh) * 2007-05-23 2010-03-31 应用材料股份有限公司 氮化硼和氮化硼导出材料的沉积方法
CN103031516A (zh) * 2013-01-18 2013-04-10 浙江大学 一种六角相氮化硼薄膜的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
六方氮化硼原子层薄膜的制备研究;李玉伟等;《杭州电子科技大学学报》;20150915;第35卷(第5期);第101-105页 *

Also Published As

Publication number Publication date
CN105483646A (zh) 2016-04-13

Similar Documents

Publication Publication Date Title
CN104726844B (zh) 一种在钛合金基底生长超强光吸收碳纳米管涂层的方法
Zheng et al. TiO2 (R)/VO2 (M)/TiO2 (A) multilayer film as smart window: Combination of energy-saving, antifogging and self-cleaning functions
Jongnavakit et al. Preparation and photocatalytic activity of Cu-doped ZnO thin films prepared by the sol–gel method
Garlisi et al. Radiation-free superhydrophilic and antifogging properties of e-beam evaporated TiO2 films on glass
Nielsen et al. Large area, low cost anti-reflective coating for solar glasses
Kumar et al. Preparation and characterization of CuO nanostructures on copper substrate as selective solar absorbers
CN103496223B (zh) 一种防雾自洁净玻璃及其制备方法
CN105483646B (zh) 一种紫外吸收薄膜的制备方法
KR20100130624A (ko) 박층 침착 방법
KR101733861B1 (ko) 환원된 산화그래핀의 제조 방법
CN104971757B (zh) 一种Ag、N共掺杂TiO2纳米薄膜的制备方法及其纳米薄膜的应用
CN101235485A (zh) 纳米金刚石薄膜窗口的制备方法
CN102491649A (zh) 减反射玻璃的制备方法
CN102653639A (zh) 复合二氧化钛光触媒溶胶涂料组成物及涂布方法
CN104071988B (zh) 耐磨的长效自清洁的增透涂层的制备方法以及耐磨的长效自清洁的增透涂层
CN102644052B (zh) 一种配置紫外光照射清洁功能的真空镀膜机
CN105031950B (zh) 一种基于多孔复合材料的可控蒸发表面温度的方法
CN109569687A (zh) 一种具有核壳结构的二氧化锡/氮掺杂石墨/硫化镉复合材料及其制备方法
Pan et al. Effect of annealing temperature on the photocatalytic activity of CdS-modified TNAs/glass nanotube arrays
CN103073048B (zh) 一种液相自组装技术制备图案化的ZnO薄膜的方法
CN108550642A (zh) 一种铜锌锡硫薄膜的制备方法
Asakuma et al. Photocrystallization of amorphous ZnO
Rad et al. Antireflection and photocatalytic single layer and double layer ZnO and ZnO–TiO2 thin films
CN104086092A (zh) 一种超亲水性自洁净防雾复合薄膜及其制备方法与应用
Shih et al. Enhancement on photocatalytic activity of an amorphous titanium oxide film with nano-textured surface by selective-fluorination etching process

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20200819

Address after: Room 504, building 9, No. 20, kekeyuan Road, Baiyang street, Qiantang New District, Hangzhou City, Zhejiang Province

Patentee after: Zhejiang Qibo Intellectual Property Operation Co.,Ltd.

Address before: Hangzhou City, Zhejiang province 310018 Xiasha Higher Education Park No. 2 street

Patentee before: HANGZHOU DIANZI University

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20210118

Address after: 221600 Peixian Economic Development Zone, Xuzhou City, Jiangsu Province, North of Peihe Highway and East of Hanrun Road (Science and Technology Pioneer Park)

Patentee after: JIANGSU ZHONGSHANG CARBON INSTITUTE Co.,Ltd.

Address before: 310018 room 504, building 9, 20 kejiyuan Road, Baiyang street, Qiantang New District, Hangzhou City, Zhejiang Province

Patentee before: Zhejiang Qibo Intellectual Property Operation Co.,Ltd.

TR01 Transfer of patent right