CN112941466B - 一种金掺杂氮化硼薄膜的制备方法 - Google Patents

一种金掺杂氮化硼薄膜的制备方法 Download PDF

Info

Publication number
CN112941466B
CN112941466B CN202110122717.3A CN202110122717A CN112941466B CN 112941466 B CN112941466 B CN 112941466B CN 202110122717 A CN202110122717 A CN 202110122717A CN 112941466 B CN112941466 B CN 112941466B
Authority
CN
China
Prior art keywords
gold
substrate
quartz tube
boron nitride
nitride film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110122717.3A
Other languages
English (en)
Other versions
CN112941466A (zh
Inventor
吕燕飞
彭雪
蔡庆锋
赵士超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Dianzi University
Original Assignee
Hangzhou Dianzi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Dianzi University filed Critical Hangzhou Dianzi University
Priority to CN202110122717.3A priority Critical patent/CN112941466B/zh
Publication of CN112941466A publication Critical patent/CN112941466A/zh
Application granted granted Critical
Publication of CN112941466B publication Critical patent/CN112941466B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/342Boron nitride
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Vapour Deposition (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

本发明公开了一种金掺杂氮化硼薄膜的制备方法,现有技术中贵金属元素掺杂后,可以改变h‑BN的导电类型、降低禁带宽度和电导能力。不同于石墨烯,h‑BN单分子层薄膜的制备非常困难;本发明采用氨硼烷和金作为h‑BN前驱物和掺杂剂,通过气相法在基底上制备出金掺杂h‑BN薄膜,厚度从单分子层厚度到20nm。制备的h‑BN其光学、电学性能可通过金掺杂量进行调节。

Description

一种金掺杂氮化硼薄膜的制备方法
技术领域
本发明属于材料技术领域,具体涉及一种金掺杂氮化硼薄膜的制备方法。
背景技术
六方氮化硼(h-BN)用途广泛,可用作绝缘材料、散热材料、固体润滑剂、和油污吸附材料,另外h-BN薄膜隔氧性能好,可用于金属表面抗氧化防护层。此外,h-BN在光电子领域也有很好的应用前景。h-BN是直接带隙半导体材料,可用于制备日盲区的深紫外光电探测器。但是,h-BN的禁带宽度大,约为6eV,不适合探测近紫外光,另外,载流子浓度低也不适合制备二极管,因此有必要降低h-BN的禁带宽度,以扩大应用范围。掺杂是降低禁带宽度提高载流子浓度常用的方法。理论计算表明,贵金属元素掺杂后,可以改变h-BN的导电类型、降低禁带宽度和电导能力。不同于石墨烯,h-BN单分子层薄膜的制备非常困难,掺杂研究少,这与h-BN本身晶体生长特性有关。
发明内容
本发明针对现有技术的不足,采用氨硼烷和金作为h-BN前驱物和掺杂剂,通过气相法在基底上制备出金掺杂h-BN薄膜,厚度从单分子层厚度到20nm。制备的h-BN其光学、电学性能可通过金掺杂量进行调节。
一种金掺杂氮化硼薄膜的制备方法,具体包括以下步骤:
步骤(1).将衬底通过热蒸发法在其表面沉积100-500nm厚度的金薄膜;
步骤(2).将基底用盐酸、去离子水清洗后氮气吹干,放入石英管中,并置于石英管的一端,其正下方放置步骤(1)的产物,基底与金薄膜之间相距500nm-1mm;
步骤(3).将氨硼烷,装入石英管中,并置于石英管的另一端,氨硼烷与基底之间距离10-25cm;
步骤(4).将步骤(3)的石英管两端密封,并抽真空;
步骤(5).将步骤(4)石英管放入管式电炉中,升温至900~1050℃,升温速率为20~30℃/min;温度升至900~1050℃后保温,保温时间为30~120min;
步骤(6).管式电炉、石英管停止加热,开启管式炉,将石英管室温环境下快速冷却到室温,然后取出基底,在基底上获得金掺杂的h-BN薄膜。
作为优选,所述的石英管直径为2cm。
作为优选,所述衬底为硅片、石英玻璃。
作为优选,所述基底为铜片、镍片、硅片。
作为优选,所述的基底尺寸为0.5~1.0cm×0.5~1.0cm。
作为优选,所述的衬底尺寸为1.0cm×1.0cm。
作为优选,所述的步骤(1)中的金薄膜替换为银薄膜。
本发明以金薄膜为掺杂源,高温下,金薄膜挥发形成气态金原子,部分气态金原子与氨硼烷高温分解产物一起在基底表面形成Au掺杂的h-BN。制备的h-BN其光学、电学性能可通过金掺杂量进行调节。
附图说明
图1为本发明的结构示意图。
具体实施方式
实施例一:一种金掺杂氮化硼薄膜的制备方法,具体包括以下步骤:
步骤(1).如图1所示,将尺寸为1.0cm×1.0cm硅片衬底5通过热蒸发法在其表面沉积100nm厚度的金薄膜;
步骤(2).将尺寸为0.5×0.5cm的铜片基底4用盐酸、去离子水清洗后氮气吹干,放入石英管中,并置于直径为2cm的石英管2的一端,其正下方放置步骤(1)的产物,基底与金薄膜之间相距500nm;
步骤(3).将0.2g氨硼烷3,装入石英管中,并置于石英管的另一端,氨硼烷与基底之间距离10cm;
步骤(4).将步骤(3)的石英管两端密封,并抽真空;
步骤(5).将步骤(4)石英管放入管式电炉1中,升温至1050℃,升温速率为20℃/min;温度升至1050℃后保温,保温时间为30min;
步骤(6).管式电炉、石英管停止加热,开启管式炉,将石英管室温环境下快速冷却到室温,然后取出基底,在基底上获得金掺杂的h-BN薄膜。
实施例二:一种金掺杂氮化硼薄膜的制备方法,具体包括以下步骤:
步骤(1).将石英玻璃衬底通过热蒸发法在其表面沉积300nm厚度的金薄膜;
步骤(2).将尺寸为1.0cm×1.0cm的镍片基底用盐酸、去离子水清洗后氮气吹干,放入石英管中,并置于石英管的一端,其正下方放置步骤(1)的产物,基底与金薄膜之间相距700nm;
步骤(3).将0.6g氨硼烷,装入石英试管中,并置于石英管的另一端,氨硼烷与基底之间距离18cm;
步骤(4).将步骤(3)的石英管两端密封,并抽真空;
步骤(5).将步骤(4)石英管放入管式电炉中,升温至1000℃,升温速率为25℃/min;温度升至1000℃后保温,保温时间为80min;
步骤(6).管式电炉、石英管停止加热,开启管式炉,将石英管室温环境下快速冷却到室温,然后取出基底,在基底上获得金掺杂的h-BN薄膜。
实施例三:一种银掺杂氮化硼薄膜的制备方法,具体包括以下步骤:
步骤(1).将尺寸为1.0cm×1.0cm的石英玻璃衬底通过热蒸发法在其表面沉积500nm厚度的银薄膜;
步骤(2).将尺寸为0.8cm×0.8cm的硅片基底用盐酸、去离子水清洗后氮气吹干,放入石英管中,并置于直径为2cm的石英管的一端,其正下方放置步骤(1)的产物,基底与银薄膜之间相距1mm;
步骤(3).将1g氨硼烷,装入石英试管中,并置于石英管的另一端,氨硼烷与基底之间距离10-25cm;
步骤(4).将步骤(3)的石英管两端密封,并抽真空;
步骤(5).将步骤(4)石英管放入管式电炉中,升温至900℃,升温速率为30℃/min;温度升至900℃后保温,保温时间为120min;
步骤(6).管式电炉、石英管停止加热,开启管式炉,将石英管室温环境下快速冷却到室温,然后取出基底,在基底上获得银掺杂的h-BN薄膜。

Claims (7)

1.一种金掺杂氮化硼薄膜的制备方法,其特征在于,具体包括以下步骤:
步骤(1).将衬底通过热蒸发法在其表面沉积100-500nm厚度的金薄膜;
步骤(2).将基底用盐酸、去离子水清洗后氮气吹干,放入石英管中,并置于石英管的一端,其正下方放置步骤(1)的产物,基底与金薄膜之间相距500nm-1mm;
步骤(3).将氨硼烷,装入石英管中,并置于石英管的另一端,氨硼烷与基底之间距离10-25cm;
步骤(4).将步骤(3)的石英管两端密封,并抽真空;
步骤(5).将步骤(4)石英管放入管式电炉中,升温至900~1050℃,升温速率为20~30℃/min;温度升至900~1050℃后保温,保温时间为30~120min;
步骤(6).管式电炉、石英管停止加热,开启管式炉,将石英管室温环境下快速冷却到室温,然后取出基底,在基底上获得金掺杂的h-BN薄膜。
2.根据权利要求1所述的一种金掺杂氮化硼薄膜的制备方法,其特征在于:所述的石英管直径为2cm。
3.根据权利要求1所述的一种金掺杂氮化硼薄膜的制备方法,其特征在于:所述衬底为硅片、石英玻璃。
4.根据权利要求1所述的一种金掺杂氮化硼薄膜的制备方法,其特征在于:所述基底为铜片、镍片、硅片。
5.根据权利要求1所述的一种金掺杂氮化硼薄膜的制备方法,其特征在于:所述的基底尺寸为0.5~1.0cm×0.5~1.0cm。
6.根据权利要求1所述的一种金掺杂氮化硼薄膜的制备方法,其特征在于:所述的衬底尺寸为1.0cm×1.0cm。
7.根据权利要求1所述的一种金掺杂氮化硼薄膜的制备方法,其特征在于:所述的步骤(1)中的金薄膜替换为银薄膜。
CN202110122717.3A 2021-01-29 2021-01-29 一种金掺杂氮化硼薄膜的制备方法 Active CN112941466B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110122717.3A CN112941466B (zh) 2021-01-29 2021-01-29 一种金掺杂氮化硼薄膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110122717.3A CN112941466B (zh) 2021-01-29 2021-01-29 一种金掺杂氮化硼薄膜的制备方法

Publications (2)

Publication Number Publication Date
CN112941466A CN112941466A (zh) 2021-06-11
CN112941466B true CN112941466B (zh) 2022-08-23

Family

ID=76239237

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110122717.3A Active CN112941466B (zh) 2021-01-29 2021-01-29 一种金掺杂氮化硼薄膜的制备方法

Country Status (1)

Country Link
CN (1) CN112941466B (zh)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102212788A (zh) * 2011-06-10 2011-10-12 北京工业大学 一种含纳米银颗粒的氮化硼薄膜的制备方法
CN103774113B (zh) * 2014-02-24 2015-10-28 中国科学院上海微系统与信息技术研究所 一种制备六方氮化硼薄膜的方法
GB201405800D0 (en) * 2014-03-31 2014-05-14 Isis Innovation Process
CN105483646B (zh) * 2016-01-20 2019-01-18 杭州电子科技大学 一种紫外吸收薄膜的制备方法
CN107164727B (zh) * 2017-06-05 2024-03-15 吉林大学 一种带隙可调的BN(Al)薄膜材料及其制备方法
CN110224064B (zh) * 2019-06-26 2020-10-27 西安交通大学 一种基于BN(Al)薄膜的电阻开关及制备方法

Also Published As

Publication number Publication date
CN112941466A (zh) 2021-06-11

Similar Documents

Publication Publication Date Title
JP6519820B2 (ja) トンネル誘電体層を伴う太陽電池の製造方法
Manavizadeh et al. Influence of substrates on the structural and morphological properties of RF sputtered ITO thin films for photovoltaic application
CN102915926B (zh) 一种基于AlN衬底的石墨烯转移退火方法及制造的器件
CN107217242B (zh) 一种电子器件介电衬底的表面修饰方法
Xu et al. Formation mechanism of Zn2SiO4 crystal and amorphous SiO2 in ZnO/Si system
US8241941B2 (en) Method of purifying a crystalline silicon substrate and process for producing a photovoltaic cell
CN111564525A (zh) 一种晶体硅太阳电池用氧化硅-掺杂多晶硅复合薄膜的制备方法
Chun et al. Wet chemical etched CdTe thin film solar cells
US20140083505A1 (en) Varying cadmium telluride growth temperature during deposition to increase solar cell reliability
JP2020189781A (ja) 欠陥ドーピングによるp型酸化ガリウム薄膜の製造手順およびその利用
Dzhafarov et al. Influence of silver nanoparticles on the photovoltaic parameters of silicon solar cells
Gu et al. Effects of sputtering pressure and oxygen partial pressure on amorphous Ga2O3 film-based solar-blind ultraviolet photodetectors
JPWO2007049402A1 (ja) 大気圧水素プラズマを用いた膜製造方法、精製膜製造方法及び装置
Hu et al. Fabrication and properties of a solar-blind ultraviolet photodetector based on Si-doped β-Ga2O3 film grown on p-Si (111) substrate by MOCVD
CN112941466B (zh) 一种金掺杂氮化硼薄膜的制备方法
Zhang et al. Effect of Au nanoparticles on the optical and electrical properties of Nb-doped β-Ga2O3 film
JP5972263B2 (ja) シラン含有配合物から成るシリコン層の改質
CN111807405A (zh) 一种高结晶质量纯相氧化亚铜薄膜的制备方法
CN110344022A (zh) p型戴维南星形MoS2单层二维材料、制备方法及电子器件
Adhikari et al. Optical and structural properties of amorphous carbon thin films deposited by microwave surface-wave plasma CVD
KR20100091187A (ko) 미정질 실리콘 성장 중의 동적 온도 제어 방법
Wang et al. Electrical properties of fluorine-doped ZnO nanowires formed by biased plasma treatment
Zhu et al. CdTe nanoflake arrays on a conductive substrate: template synthesis and photoresponse property
CN111164734A (zh) 制备含碳化硅的无氮层的方法
CN113789574B (zh) 一种在二维材料cvd生长中掺入稀土材料的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant