CN107164727B - 一种带隙可调的BN(Al)薄膜材料及其制备方法 - Google Patents

一种带隙可调的BN(Al)薄膜材料及其制备方法 Download PDF

Info

Publication number
CN107164727B
CN107164727B CN201710413970.8A CN201710413970A CN107164727B CN 107164727 B CN107164727 B CN 107164727B CN 201710413970 A CN201710413970 A CN 201710413970A CN 107164727 B CN107164727 B CN 107164727B
Authority
CN
China
Prior art keywords
target
film
sputtering
substrate
band gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710413970.8A
Other languages
English (en)
Other versions
CN107164727A (zh
Inventor
张侃
徐永宽
于陕升
文懋
谷鑫磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN201710413970.8A priority Critical patent/CN107164727B/zh
Publication of CN107164727A publication Critical patent/CN107164727A/zh
Application granted granted Critical
Publication of CN107164727B publication Critical patent/CN107164727B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3435Applying energy to the substrate during sputtering
    • C23C14/345Applying energy to the substrate during sputtering using substrate bias
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • C23C14/0647Boron nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3464Sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本发明公开了一种带隙可调的BN(Al)薄膜材料的制备方法,本发明通过Al掺杂的方法实现对六方BN带隙更自由的调控,增加其紫外光的吸收范围,其制备方法通过选择富硼的氮化硼靶材,在溅射过程中对衬底施加高偏压诱导出大量的N空位缺陷,同时通过共溅射使Al原子进入薄膜中N空位缺陷处,实现带隙可在较宽范围内调控的新型BN(Al)薄膜半导体材料。本发明中BN(Al)薄膜半导体材料采用射频共溅射法获得,工艺简单且效率高,可用于波长可调的发光器件,近紫外光吸收材料或光探测器件。

Description

一种带隙可调的BN(Al)薄膜材料及其制备方法
技术领域
本发明属于半导体材料技术领域,特别是涉及一种带隙可调的BN(Al)薄膜材料及其制备方法。
背景技术
六方BN是一种具有高热稳定性和化学稳定性的间接宽带隙半导体材料,又称为白石墨。其耐高温,适合作为耐火材料;在高频下介电常数稳定(4.2-4.45)、有压电效应、声波传输速率高,使其适合制备声表面波器件等。值得一提的是六方BN禁带宽度约为6.0eV,可作为电子器件中的绝缘层应用,同时这种宽带隙使其在深紫外发光及光电探测均具有非常广泛的应用。经过Al掺杂后,BN的禁带宽度减小,将会使得紫外吸收波长范围增加,因此实现对紫外光吸收波长范围的扩大,尤其值得说明的是,少量Al掺杂的BN薄膜同时集成多种优异的力学、热学、光学、耐高温和耐腐蚀等特性,使其在制作高功率、高温、高频率、抗辐射、耐腐蚀器件及短波长光探测器等方面极具潜力,研发Al掺杂BN薄膜的制备技术非常重要。
六方氮化硼薄膜可以通过物理气相沉积的方法获得,然而对BN进行Al掺杂时,由于Al与N具有更低的形成能,往往容易形成Al-N键,而AlN仍然具有较宽带隙。因此,为了形成较大范围的带隙调节,需要诱导薄膜中形成Al-B键,该过程能够引入杂质能级并实现带隙的减小,Al掺杂实现对BN进行带隙调制的关键是:1、在薄膜生长过程中诱导大量N空位缺陷态出现,同时通过共溅射的方法使Al原子优先进入到缺陷位置,而实现带隙的减小;2、精确调控Al在薄膜中的含量以及离子的轰击能量,使适量的Al-B成键而形成BN(Al)薄膜,最终实现对带隙的调节,目前关于通过化学沉积方法获得氧掺杂六方氮化硼的方法有一些报道,但现有技术对制备带隙可调BN(Al)薄膜材料的方法是空缺的。
发明内容
本发明的目的是解决上述背景技术中现有技术缺少制备带隙可调的BN(Al)薄膜材料的制备方法等问题,而提供一种带隙可调的BN(Al)薄膜材料及其制备方法,本发明可实现带隙可调的BN(Al)薄膜材料的制备方法,工艺简单,效率高。
一种带隙可调的BN(Al)薄膜材料,选择富硼含量的BN靶材,并通过氩离子轰击及样品托盘上施加的负电压诱导薄膜出现大量N空位缺陷,同时对Al靶施加功率范围为30-60W,最终实现Al进入N空位缺陷位置形成Al-B键;所述的Al掺杂BN薄膜完全由六方结构构成,不含有其他的相结构,按照各成分的原子数百分含量比如下:
N含量的范围为47.7-48.8at.%,B含量范围为49.1-50.0at.%,掺杂Al的含量范围为1.2-3.2at.%。
一种带隙可调的BN(Al)薄膜材料的制备方法,具体操作步骤如下:
一、采用射频共溅射法,以高纯BN和Al作为靶源,其中BN靶材的硼氮比为5:1-1.2:1,Ar作为放电气体,在单晶硅衬底上沉积BN(Al)薄膜,其中BN靶材的功率为200-300W,Al靶材的功率为30-60W,溅射总压强为0.6-1.2Pa,沉积温度为室温-800℃,靶基距为60-100mm,真空度为2×10-4Pa,薄膜制备过程中通入氩离子对薄膜生长表面进行轰击的同时,同时在样品托盘上施加的电压为-100至-400V,诱导薄膜出现空位缺陷;
二.采用单晶Si作为薄膜生长的衬底:在衬底装入溅射腔体之前,将其进行预处理,分别使用丙酮、无水乙醇和去离子水一次超声清洗15min,并用氮气吹干;
三、抽真空:将上述清洗得到的衬底安装在样品台上,并分别将BN靶材和Al靶材装上靶台,先后开启机械泵和分子泵抽真空,真空度需达到2×10-4Pa以下;
四、衬底预热与预溅射:达到上述真空度后,对衬底进行加温,当达到预设温度时,持续保持该温度不低于0.5h,溅射开始前,为出去靶材上吸附的杂质原子,如BN靶材上的氧,铝靶表面的氧化铝等,通入纯氩气,对靶材进行预溅射,时间为10min;
五、开始进行溅射实验:
选择硼氮比范围为5:1-1.2:1的BN靶材,设置BN靶材的功率为200-300W,Al靶材的功率为30-60W,溅射总压强为0.6-1.2Pa,沉积温度为室温-800℃,靶基距为60-80mm,真空度为2×10-4Pa,同时在样品托盘上施加的电压为-100至-400V,薄膜的沉积时间达到180min后,停止溅射,样品在真空中自然冷却至室温后取出真空室。
按照实验设计,通入氩气,调整靶材功率,衬底偏压,控制工作压强和溅射时间,按照既定实验参数开始溅射;
本发明提供的一种带隙可调的BN(Al)薄膜材料及其制备方法,其创造性在于实现了背景及技术中涉及的两个关键技术:
(1)如何在BN薄膜生长的过程中诱导形成N空位缺陷;
(2)如何实现薄膜生长过程中形成Al-B键,最终实现带隙可调;
针对以上两个关键技术,本发明的解决方案不需对设备进行复杂改装,也不用对设备添加任何昂贵的附件,通过第一性原理计算与实现相配合,从原子间结合能入手,基于热力学条件和薄膜动力学生长过程的理解,提出了高效简单的技术手段,实现了关键技术突破,具体方案如下:
针对第一个关键技术,为了促进BN薄膜N缺陷态的形成,首先选择富硼含量的BN靶材,B:N约为5:1-1.2:1,在薄膜生长过程中引入氩离子的轰击技术,并且为了使得大量缺陷态的出现,还通过对衬底增加了-100至-400V的负偏压,以提高离子对薄膜生长表面的轰击能量,最终通过氩离子的轰击,使得薄膜出现大量的N空位缺陷,因此富硼的氮化硼靶材的使用,氩离子的轰击和衬底偏压的引入是获得N缺陷态BN薄膜形成的关键技术。
为了Al离子能够成功进入BN的缺陷位置和以及针对性取代N原子并严格调控Al在薄膜中的含量,通过对Al靶材的溅射功率进行了一系列的调整,最终获得的Al掺杂的BN薄膜,因此通过对Al靶材的功率进行调控而获得薄膜中适当的Al含量是获得一种带隙可调的BN(Al)薄膜的重要特征,此外,通过大量的实验摸索与结构表征,并于理论计算结果对比,最终确认我们获得了带隙可调的BN(Al)薄膜,并确认了其组分级对应的制备参数。
本发明的有益效果
本发明通过真空射频磁控共溅射技术制备了BN(Al)薄膜,制备方法高效简单,通过对薄膜生长过程中缺陷的调控,在生长六方BN薄膜的同时对Al靶源的功率进行调节,实现对BN进行Al掺杂,最终获得Al掺杂的六方氮化硼薄膜,BN(Al)薄膜的带隙范围为:4.5-6.0eV,可用于波长可调的发光器件,近紫外光吸收材料或光探测器件。
附图说明
图1是本发明实施例1中薄膜的XRD图。
图2是本发明实施例1中薄膜截面SEM图。
图3是本发明实施例1中薄膜表面AFM图。
具体实施方式
在本发明中,合理选择BN靶材的硼氮比,并通过氩离子轰击薄膜生长表面引入N空位缺陷并调控适当的Al含量是获得带隙可调的BN(Al)薄膜的必要条件,在实施例中通过对样品托盘施加一定的负偏压并控制Al靶材的功率是关键技术。
一种带隙可调的BN(Al)薄膜材料,选择富硼含量的BN靶材,并通过氩离子轰击及样品托盘上施加的负电压诱导薄膜出现大量N空位缺陷,同时对Al靶施加功率范围为30-60W,最终实现Al进入N空位缺陷位置形成Al-B键;所述的Al掺杂BN薄膜完全由六方结构构成,不含有其他的相结构,按照各成分的原子数百分含量比如下:
N含量的范围为47.7-48.8at.%,B含量范围为49.1-50.0at.%,掺杂Al的含量范围为1.2-3.2at.%。
一种带隙可调的BN(Al)薄膜材料的制备方法,具体操作步骤如下:
实施例1:
在单晶硅衬底进行预处理,分别使用丙酮、无水乙醇和去离子水一次超声清洗15min,并用氮气吹干;
将上述清洗得到的衬底安装在样品台上,并分别将BN靶材和Al靶材装上靶台,先后开启机械泵和分子泵抽真空,真空度达到2×10-4Pa以下;
对衬底进行加温至800℃,持续保持该温度0.5h,通入纯氩气,对靶材进行预溅射,时间为10min;
选择硼氮比为2:1的BN靶材,设置BN靶材的功率为300W,Al靶材的功率为30W,溅射总压强为0.6Pa,沉积温度为800℃,靶基距为60mm,同时在样品托盘上施加的电压为-400V,薄膜的沉积时间达到180min后,停止溅射,样品在真空中自然冷却至室温后取出真空室;此条件获得的BN薄膜中N含量为48.5at.%,B含量为49.9at.%,掺杂Al的含量为1.6at.%
对本实施例制备的BN(Al)薄膜进行XRD测试,测试结果如图1所示,从晶体结构看,薄膜出现002峰,为六方结构,细化最强峰002,发现波峰不对称现象,这是因为:①自身结构含有大量缺陷;②含有杂质元素Al,结合薄膜截面SEM图和薄膜表面AFM图,请参阅图2和图3,能看出薄膜生长致密,质量好。
实施例2:
在单晶硅衬底进行预处理,分别使用丙酮、无水乙醇和去离子水一次超声清洗15min,并用氮气吹干;
将上述清洗得到的衬底安装在样品台上,并分别将BN靶材和Al靶材装上靶台,先后开启机械泵和分子泵抽真空,真空度达到2×10-4Pa以下;
对衬底进行加温至400℃,持续保持该温度0.5h,通入纯氩气,对靶材进行预溅射,时间为10min;
选择硼氮比为3:1的BN靶材,设置BN靶材的功率为300W,Al靶材的功率为45W,溅射总压强为1.0Pa,沉积温度为400℃,靶基距为60mm,同时在样品托盘上施加的电压为-200V,薄膜的沉积时间达到180min后,停止溅射,样品在真空中自然冷却至室温后取出真空室。此条件获得的BN薄膜中N含量为48.1at.%,B含量为49.3at.%,掺杂Al的含量为2.6at.%
实施例3:
在单晶硅衬底进行预处理,分别使用丙酮、无水乙醇和去离子水一次超声清洗15min,并用氮气吹干;
将上述清洗得到的衬底安装在样品台上,并分别将BN靶材和Al靶材装上靶台,先后开启机械泵和分子泵抽真空,真空度达到2×10-4Pa以下;
对衬底进行加温至600℃,持续保持该温度0.5h,通入纯氩气,对靶材进行预溅射,时间为10min;
选择硼氮比为4:1的BN靶材,设置BN靶材的功率为300W,Al靶材的功率为60W,溅射总压强为1.2Pa,沉积温度为600℃,靶基距为80mm,同时在样品托盘上施加的电压为-200V,薄膜的沉积时间达到180min后,停止溅射,样品在真空中自然冷却至室温后取出真空室。

Claims (1)

1.一种带隙可调的BN(Al)薄膜材料的制备方法,其特征在于:
带隙可调的BN(Al)薄膜材料各成分的原子数百分含量比如下:
N含量的范围为47.7-48.8at.%,B含量范围为49.1-50.0at.%,掺杂Al的含量范围为1.2at.%,所述的Al掺杂BN薄膜完全由六方结构构成,不含有其他的相结构;
具体操作步骤如下:
一、采用射频共溅射法:以高纯BN和Al作为靶源,其中BN靶材的硼氮比为5:1-1.2:1,Ar作为放电气体,在单晶硅衬底上沉积BN(Al)薄膜,其中BN靶材的功率为200-300W,Al靶材的功率为30-60W,溅射总压强为0.6-1.2Pa,沉积温度为400℃-800℃,靶基距为60-100mm,真空度为2×10-4Pa,薄膜制备过程中引入氩离子对样品表面进行轰击,在通入氩离子对薄膜生长表面进行轰击的同时,同时在样品托盘上施加的电压为-100至-400V,诱导薄膜出现N空位缺陷;
二.采用单晶Si作为薄膜生长的衬底:在衬底装入溅射腔体之前,将其进行预处理,分别使用丙酮、无水乙醇和去离子水一次超声清洗15min,并用氮气吹干;
三、抽真空:将上述清洗得到的衬底安装在样品台上,并分别将BN靶材和Al靶材装上靶台,先后开启机械泵和分子泵抽真空,真空度需达到2×10-4Pa以下;
四、衬底预热与预溅射:达到上述真空度后,对衬底进行加温,当达到预设温度时,持续保持该温度不低于0.5h,溅射开始前,为出去靶材上吸附的杂质原子,通入纯氩气,对靶材进行预溅射,时间为10min;
五、开始进行溅射实验:
选择硼氮比范围为5:1-1.2:1的BN靶材,设置BN靶材的功率为200-300W,Al靶材的功率为30-60W,溅射总压强为0.6-1.2Pa,沉积温度为400℃-800℃,靶基距为60-100mm,真空度为2×10-4Pa,同时在样品托盘上施加的电压为-100至-400V,薄膜的沉积时间达到180min后,停止溅射,样品在真空中自然冷却至室温后取出真空室。
CN201710413970.8A 2017-06-05 2017-06-05 一种带隙可调的BN(Al)薄膜材料及其制备方法 Active CN107164727B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710413970.8A CN107164727B (zh) 2017-06-05 2017-06-05 一种带隙可调的BN(Al)薄膜材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710413970.8A CN107164727B (zh) 2017-06-05 2017-06-05 一种带隙可调的BN(Al)薄膜材料及其制备方法

Publications (2)

Publication Number Publication Date
CN107164727A CN107164727A (zh) 2017-09-15
CN107164727B true CN107164727B (zh) 2024-03-15

Family

ID=59824533

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710413970.8A Active CN107164727B (zh) 2017-06-05 2017-06-05 一种带隙可调的BN(Al)薄膜材料及其制备方法

Country Status (1)

Country Link
CN (1) CN107164727B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108425095B (zh) * 2018-03-16 2020-09-25 电子科技大学 一种晶体六方氮化硼薄膜的制备方法
CN110221369B (zh) * 2019-06-26 2020-10-27 西安交通大学 一种基于BN(Al)薄膜的布拉格反射镜及制备方法
CN110670017B (zh) * 2019-10-22 2021-05-18 浙江大学 一种六方氮化硼薄膜制备时的带隙调控方法
CN111020501A (zh) * 2019-11-28 2020-04-17 肇庆市华师大光电产业研究院 一种铋酸铜薄膜的制备方法
CN111129225A (zh) * 2019-12-26 2020-05-08 重庆大学 紫外光电探测器及其制备方法
CN112095075B (zh) * 2020-09-21 2022-07-12 天元航材(营口)科技股份有限公司 一种吸收环境中太赫兹波的材料的制备方法
CN112941466B (zh) * 2021-01-29 2022-08-23 杭州电子科技大学 一种金掺杂氮化硼薄膜的制备方法
CN114551626B (zh) * 2022-02-22 2024-01-26 吉林大学 一种深紫外光电探测器及其制备方法和应用
CN116083869B (zh) * 2023-04-07 2023-06-20 北京石油化工学院 一种偏压辅助半导体薄膜、制备方法及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5296119A (en) * 1990-11-26 1994-03-22 Trustees Of Boston University Defect-induced control of the structure of boron nitride
US6153061A (en) * 1998-03-02 2000-11-28 Auburn University Method of synthesizing cubic boron nitride films
CN101174558A (zh) * 2007-12-04 2008-05-07 北京工业大学 立方氮化硼薄膜的p型掺杂方法
CN106399938A (zh) * 2016-10-20 2017-02-15 富耐克超硬材料股份有限公司 一种立方氮化硼薄膜的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5296119A (en) * 1990-11-26 1994-03-22 Trustees Of Boston University Defect-induced control of the structure of boron nitride
US6153061A (en) * 1998-03-02 2000-11-28 Auburn University Method of synthesizing cubic boron nitride films
CN101174558A (zh) * 2007-12-04 2008-05-07 北京工业大学 立方氮化硼薄膜的p型掺杂方法
CN106399938A (zh) * 2016-10-20 2017-02-15 富耐克超硬材料股份有限公司 一种立方氮化硼薄膜的制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
A. Schiitze, K et al..《Cubic boron nitride films prepared by reactive r.f. and d.c. sputtering from different boron containing targets》.《Surface and Coatings Technology》.1995,717-722. *
Guanghua Chen et al..《The effects of substrate bias voltage and radio-frequency power on the growth of c-BN phase coatings》.《Surface and Coatings Technology》.1998,25–30. *
Th. Pfeifer et al..《Influence of aluminum additions on phase formation in boron nitride films deposited by magnetron sputtering》.《JOURNAL OF APPLIED PHYSICS》.2003,第93卷(第93期),2009-2014. *
Wilfredo Otan˜o-Rivera et al..《Effect of Al additions and AlN interlayers on the stabilization of cBN sputtered thin films 》.《Diamond & Related Materials》.2004,1690– 1696. *

Also Published As

Publication number Publication date
CN107164727A (zh) 2017-09-15

Similar Documents

Publication Publication Date Title
CN107164727B (zh) 一种带隙可调的BN(Al)薄膜材料及其制备方法
KR101130630B1 (ko) 적층기판, 적층기판의 제조방법 및 디바이스
TWI500806B (zh) 碳化矽薄膜的製造方法
AU2008218524B2 (en) Group-III metal nitride and preparation thereof
CN107287578B (zh) 一种大范围均匀双层二硫化钼薄膜的化学气相沉积制备方法
CN104233458A (zh) 一种碳化硅晶体生长用的石墨籽晶托
US6274403B1 (en) Process for producing heteropitaxial diamond layers on Si-substrates
RU2524509C1 (ru) СПОСОБ ПОЛУЧЕНИЯ ТОНКИХ ЭПИТАКСИАЛЬНЫХ СЛОЕВ β-SIC НА КРЕМНИИ МОНОКРИСТАЛЛИЧЕСКОМ
CN106011759B (zh) 一种高c轴取向AlN薄膜及其制备方法与应用
CN110867368A (zh) 一种氧化镓外延薄膜的制备方法
CN107058962A (zh) 一种低温磁控溅射制备低电阻率氮化钛薄膜的方法
CN105821391A (zh) 一种垂直基底生长硒化钨纳米片薄膜材料的可控快速制备方法
CN110896024B (zh) 碳化硅外延氧化镓薄膜方法及碳化硅外延氧化镓薄膜结构
CN104831241A (zh) 一种生长单相外延m面ZnOS三元合金薄膜的方法
Iriarte Influence of the magnetron on the growth of aluminum nitride thin films deposited by reactive sputtering
CN108538970B (zh) 一种发光二极管的制备方法
CN112609240B (zh) 基于复合结构样品台提高金刚石异质外延大尺寸形核均匀性的方法
CN111676450A (zh) 基于离子束溅射沉积的六方氮化硼厚膜及制备方法和应用
CN105132875B (zh) 一种扩散法制备高浓度梯度azo单晶导电薄膜的方法
CN107022744A (zh) 生长在硅衬底上的(100)高度择优取向的氮化钛薄膜及其制备方法
CN108425095B (zh) 一种晶体六方氮化硼薄膜的制备方法
CN105304717A (zh) 一种氮化铟(InN)基场效应晶体管及其制备方法
CN110344012A (zh) 一种Al1-xInxN三元合金纳米晶薄膜及其制备方法
JP3986177B2 (ja) シリコンカーバイド結晶膜の形成方法
CN112725746A (zh) 一种提高氧化亚铜薄膜晶粒度的方法及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant