CN116083869B - 一种偏压辅助半导体薄膜、制备方法及其应用 - Google Patents

一种偏压辅助半导体薄膜、制备方法及其应用 Download PDF

Info

Publication number
CN116083869B
CN116083869B CN202310361346.3A CN202310361346A CN116083869B CN 116083869 B CN116083869 B CN 116083869B CN 202310361346 A CN202310361346 A CN 202310361346A CN 116083869 B CN116083869 B CN 116083869B
Authority
CN
China
Prior art keywords
bias
clean substrate
sputtering
semiconductor film
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310361346.3A
Other languages
English (en)
Other versions
CN116083869A (zh
Inventor
冯文然
高妍
张小可
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Petrochemical Technology
Original Assignee
Beijing Institute of Petrochemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Petrochemical Technology filed Critical Beijing Institute of Petrochemical Technology
Priority to CN202310361346.3A priority Critical patent/CN116083869B/zh
Publication of CN116083869A publication Critical patent/CN116083869A/zh
Application granted granted Critical
Publication of CN116083869B publication Critical patent/CN116083869B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3435Applying energy to the substrate during sputtering
    • C23C14/345Applying energy to the substrate during sputtering using substrate bias
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/09Devices sensitive to infrared, visible or ultraviolet radiation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

本发明属于半导体领域,具体涉及一种偏压辅助半导体薄膜、制备方法及其应用。所述制备方法首先将设备背景抽真空,然后向腔室内通入氩气和氧气并转动闸板阀调节工作压强,随后先预溅射以确保功率稳定、正常起辉,最后设置Ga2O3靶材的射频功率和Al靶材的直流功率,待达到溅射时间后依次关闭设备。所述偏压辅助半导体薄膜的制备方法,通过在溅射过程中施加偏压来达到调整铝含量的目的;另外经检测可知,当施加偏压时能改善薄膜的结晶质量,同时薄膜中不含有任何其他杂质,并且薄膜密集地填充着大小均匀的等轴颗粒以及表面没有观察到明显的缺陷,相应探测器光电性能优异。

Description

一种偏压辅助半导体薄膜、制备方法及其应用
技术领域
本发明属于半导体领域,具体涉及一种偏压辅助半导体薄膜、制备方法及其应用。
背景技术
半导体作为制备新材料的基础材料推动了科技革命的发展,现如今人们生活中的信息化和智能化设备都与半导体技术密切相关。同时半导体材料也广泛应用于电力电子、光电子、集成电路芯片等诸多领域。
特别是氧化镓(Ga2O3),近年来由于其具有多态性、高化学性和物理稳定性引起了广泛的关注。Ga2O3是一种宽禁带半导体,禁带宽度为4.5~5.0eV,介电常数为10.2~14.2,还有着低成本以及高击穿场强(~8 MV/cm)等优势,已广泛应用于深紫外光电探测器,深紫外透明电极,太阳能水分裂膜和场效应晶体管。然而在许多应用中,如载流子限制或深紫外光电子学,需要更大的带隙。
研究表明,掺杂Al元素可以显著增大Ga2O3的带隙宽度,来扩大并增强Ga2O3的光学性质,因此掺杂后得到的氧化铝镓((AlxGa1–x)2O3)薄膜在超宽带隙材料和光电器件领域受到越来越多的关注。然而,目前手段多通过改变溅射功率、气体浓度等方式来调整薄膜中Al离子含量,但此类方法并不能稳定控制Al离子含量。
故基于此,提出本发明技术方案。
发明内容
为了解决现有技术存在的问题,本发明提供了一种偏压辅助半导体薄膜、制备方法及其应用。所述偏压辅助半导体薄膜的制备方法,通过在溅射过程中施加偏压来达到调整铝含量的目的;另外经检测可知,当施加偏压时能改善薄膜的结晶质量,同时薄膜中不含有任何其他杂质,并且薄膜密集地填充着大小均匀的等轴颗粒以及表面没有观察到明显的缺陷,相应探测器光电性能优异。
本发明的方案是,提供一种偏压辅助半导体薄膜的制备方法,所述制备方法包括如下步骤:
(1)将衬底清洗、烘干,得到干净衬底;
(2)将所述干净衬底放入磁控溅射设备的腔室内部,对所述腔室内部减压并对所述干净衬底加热;
(3)再向所述腔室内部通入氩气和氧气,并对所述干净衬底施加偏压;
(4)然后调整工作压强,并对所述干净衬底进行预溅射,以确保功率稳定及正常起辉;
(5)设置所述干净衬底的转速,并调整Ga2O3靶材射频功率和Al靶材直流功率,对所述干净衬底进行溅射;
(6)待溅射完毕后,将所述干净衬底进行退火,即得到所述偏压辅助半导体薄膜。
优选地,步骤(1)中,将衬底在超声容器中分别用乙醇、丙酮、去离子水超声清洗8~12min,然后通过氮气枪吹干,得到干净衬底。
优选地,步骤(2)中,将所述干净衬底放入磁控溅射设备腔室内部,并与靶材保持7~9cm距离,关闭腔室,对所述腔室内部抽真空至1.9×10-6~2.1×10-6Torr,并将所述干净衬底加热至590~610℃。
优选地,步骤(3)中,向所述腔室内部通入氩气和氧气,所述氩气和所述氧气的流量分别为50sccm和10sccm,并对所述干净衬底施加-60~-80V偏压。
优选地,步骤(4)中,将工作压强调整至5×10-3Torr,在正式溅射之前,遮挡所述干净衬底,先进行14~16min的预溅射,以确保功率稳定及正常起辉。
优选地,步骤(5)中,设置所述干净衬底的转速为14~16r/min,并调整Ga2O3靶材射频功率为150W和Al靶材直流功率为30W,对所述干净衬底进行溅射2h。
优选地,步骤(6)中,将所述干净衬底放入马弗炉内部以10℃/min的速率加热至900℃,在空气环境下退火处理20min,即得到所述偏压辅助半导体薄膜。
本发明的再一方案是,提供一种由上述制备方法得到的偏压辅助半导体薄膜。
本发明的另一方案是,提供一种由上述制备方法得到的偏压辅助半导体薄膜在紫外探测器中应用。
本发明的有益效果为:
本发明所述偏压辅助半导体薄膜的制备方法,通过在溅射过程中施加偏压来达到调控铝含量的目的;另外经检测可知,当施加偏压时能改善薄膜的结晶质量,同时薄膜中不含有任何其他杂质,并且薄膜密集地填充着大小均匀的等轴颗粒以及表面没有观察到明显的缺陷,相应探测器光电性能优异。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是试验例中,(AlxGa1–x)2O3半导体薄膜的XRD衍射图谱。
图2是试验例中,(AlxGa1–x)2O3半导体薄膜的XPS图谱;其中:
图2中(a)是(AlxGa1–x)2O3半导体薄膜的总谱图;
图2中(b)是Al 2p窄谱图;
图2中(c)是Ga 3d窄谱图;
图2中(d)是O 1s窄谱图。
图3是试验例中,(AlxGa1–x)2O3半导体薄膜的SEM图;其中:
图3中(a)是对比例1得到的(AlxGa1–x)2O3半导体薄膜的SEM图(不施加偏压,0V);
图3中(b)是对比例3得到的(AlxGa1–x)2O3半导体薄膜的SEM图(施加-60V偏压);
图3中(c)是实施例1得到的(AlxGa1–x)2O3半导体薄膜的SEM图(施加-70V偏压);
图3中(d)是对比例4得到的(AlxGa1–x)2O3半导体薄膜的SEM图(施加-80V偏压)。
图4是粒径分布柱状图。
图5是电压-电流(I-V)曲线图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将对本发明的技术方案进行详细的描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所得到的所有其它实施方式,都属于本发明所保护的范围。
实施例1
本实施例提供一种偏压辅助半导体薄膜的制备方法,所述制备方法包括如下步骤:
(1)将蓝宝石衬底在超声容器中分别用乙醇、丙酮、去离子水超声清洗10min,然后通过氮气枪吹干,得到干净衬底;
(2)将所述干净衬底放入磁控溅射设备腔室内部距离靶材8cm的样品架上,关闭腔室,对所述腔室内部抽真空至2×10-6Torr,并对所述干净衬底加热至600℃;
(3)对所述腔室内部通入氩气和氧气,所述氩气和所述氧气的流量分别为50sccm和10sccm,并对所述干净衬底施加-70V偏压;
(4)转动闸板阀将工作压强调至5×10-3Torr,在正式溅射之前,通过挡板遮挡所述干净衬底,先进行15min大功率的预溅射,确保功率稳定、正常起辉再进行后续操作;
(5)设置所述干净衬底的转速为15r/min,并调整Ga2O3靶材射频功率为150W和Al靶材直流功率为30W,对所述干净衬底进行溅射2h;
(6)待溅射完毕后,将所述干净衬底放入马弗炉内部以10℃/min的速率加热至900℃,在空气环境下退火处理20min,即得到所述偏压辅助半导体薄膜。
实施例2
本实施例提供一种偏压辅助半导体薄膜的制备方法,所述制备方法包括如下步骤:
(1)将蓝宝石衬底在超声容器中分别用乙醇、丙酮、去离子水超声清洗8min,然后通过氮气枪吹干,得到干净衬底;
(2)将所述干净衬底放入磁控溅射设备腔室内部距离靶材7cm的样品架上,关闭腔室,对所述腔室内部抽真空至1.9×10-6Torr,并对所述干净衬底加热至590℃;
(3)对所述腔室内部通入氩气和氧气,所述氩气和所述氧气的流量分别为50sccm和10sccm,并对所述干净衬底施加-60V偏压;
(4)转动闸板阀将工作压强调至5×10-3Torr,在正式溅射之前,通过挡板遮挡所述干净衬底,先进行14min大功率的预溅射,确保功率稳定、正常起辉再进行后续操作;
(5)设置所述干净衬底的转速为14r/min,并调整Ga2O3靶材射频功率为150W和Al靶材直流功率为30W,对所述干净衬底进行溅射2h;
(6)待溅射完毕后,将所述干净衬底放入马弗炉内部以10℃/min的速率加热至900℃,在空气环境下退火处理20min,即得到所述偏压辅助半导体薄膜。
实施例3
本实施例提供一种偏压辅助半导体薄膜的制备方法,所述制备方法包括如下步骤:
(1)将蓝宝石衬底在超声容器中分别用乙醇、丙酮、去离子水超声清洗12min,然后通过氮气枪吹干,得到干净衬底;
(2)将所述干净衬底放入磁控溅射设备腔室内部距离靶材9cm的样品架上,关闭腔室,对所述腔室内部抽真空至2.1×10-6Torr,并对所述干净衬底加热至610℃;
(3)对所述腔室内部通入氩气和氧气,所述氩气和所述氧气的流量分别为50sccm和10sccm,并对所述干净衬底施加-80V偏压;
(4)转动闸板阀将工作压强调至5×10-3Torr,在正式溅射之前,通过挡板遮挡所述干净衬底,先进行16min大功率的预溅射,确保功率稳定、正常起辉再进行后续操作;
(5)设置所述干净衬底的转速为16r/min,并调整Ga2O3靶材射频功率为150W和Al靶材直流功率为30W,对所述干净衬底进行溅射2h;
(6)待溅射完毕后,将所述干净衬底放入马弗炉内部以10℃/min的速率加热至900℃,在空气环境下退火处理20min,即得到所述偏压辅助半导体薄膜。
对比例1
本对比例提供一种偏压辅助半导体薄膜的制备方法,与实施例1相比,区别在于,步骤(3)中对所述干净衬底不施加偏压(即0V),其他操作均相同。
对比例2
本对比例提供一种偏压辅助半导体薄膜的制备方法,与实施例1相比,区别在于,步骤(3)中对所述干净衬底施加-40V偏压,其他操作均相同。
对比例3
本对比例提供一种偏压辅助半导体薄膜的制备方法,与实施例1相比,区别在于,步骤(3)中对所述干净衬底施加-100V偏压,其他操作均相同。
试验例
对实施例1、实施例2、实施例3、对比例1和对比例2、对比例3所得偏压辅助半导体薄膜((AlxGa1–x)2O3)进行测试。
(一)XRD测试
采用X射线衍射仪对(AlxGa1–x)2O3半导体薄膜进行检测,XRD衍射图谱的结果如图1所示。由图1可以看出,对衬底施加偏压后各组别半导体薄膜并没有出现多余杂峰,然而特征峰强度却有明显的变化:随着偏压从0 V到-70 V的增大,衍射峰强度逐渐增大,但随着偏压的进一步增大,衍射峰强度逐渐减小,说明施加-70V偏压能改善薄膜的晶体质量。且同时注意到-40V和-100V条件下,特征峰不明显,故在后续检测无需再对其进行检测。
(二)XPS测试
采用X射线光电子能谱对(AlxGa1–x)2O3半导体薄膜进行检测,XPS图谱的结果如图2所示。由图2可以看出,光谱中检测到Al、Ga、O和C元素,说明薄膜中没有其他任何杂质。从窄谱扫描可以观察到施加偏压后Al含量x先降低后增加。施加0V、-60V、-70V、-80V偏压时的x分别为0.3707,0.1217,0.0894,0.1339。在-70V偏压时得到含量最小值。说明通过对衬底施加不同偏压可以调控Al含量。
(三)SEM测试及粒径分布
采用扫描电子显微镜(SEM)对(AlxGa1–x)2O3半导体薄膜进行检测,SEM照片的结果如图3所示。由图3可以看出,对衬底施加不同偏压后薄膜密集地填充着大小均匀的等轴颗粒,表面没有观察到明显的缺陷。
而对不同组别粒径进行统计后,结果如图4所示,由图4可知,在-70V偏压时晶粒尺寸相对更大。
(四)光电性能测试
采用半导体测试仪对(AlxGa1–x)2O3半导体薄膜紫外光电探测器进行光电性能测试,I-V曲线结果如图5所示。由图5可以看出,对衬底施加0V,-60V,-70V,-80V偏压沉积的薄膜,在5 V工作电压下的暗电流分别为1.15×10-11A、1.51×10-11A、4.62×10-11A和2.03×10-11A。而对衬底施加-70V偏压后的薄膜制备的紫外探测器光电流明显增大,得相对较好的开关比71.10,说明此时的薄膜紫外探测器具有更好的性能。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (8)

1.一种偏压辅助半导体薄膜的制备方法,其特征在于,所述制备方法包括如下步骤:
(1)将衬底清洗、烘干,得到干净衬底;
(2)将所述干净衬底放入磁控溅射设备的腔室内部,对所述腔室内部减压并对所述干净衬底加热;
(3)向所述腔室内部通入氩气和氧气,所述氩气和所述氧气的流量分别为50sccm和10sccm,并对所述干净衬底施加-60~-80V偏压;
(4)然后调整工作压强,并对所述干净衬底进行预溅射,以确保功率稳定及正常起辉;
(5)设置所述干净衬底的转速,并调整Ga2O3靶材射频功率和Al靶材直流功率,对所述干净衬底进行溅射;
(6)待溅射完毕后,将所述干净衬底进行退火,即得到所述偏压辅助半导体薄膜。
2.根据权利要求1所述偏压辅助半导体薄膜的制备方法,其特征在于,步骤(1)中,将衬底在超声容器中分别用乙醇、丙酮、去离子水超声清洗8~12min,然后通过氮气枪吹干,得到干净衬底。
3.根据权利要求1所述偏压辅助半导体薄膜的制备方法,其特征在于,步骤(2)中,将所述干净衬底放入磁控溅射设备腔室内部,并与靶材保持7~9cm距离,关闭腔室,对所述腔室内部抽真空至1.9×10-6~2.1×10-6Torr,并将所述干净衬底加热至590~610℃。
4.根据权利要求1所述偏压辅助半导体薄膜的制备方法,其特征在于,步骤(4)中,将工作压强调整至5×10-3Torr,在正式溅射之前,遮挡所述干净衬底,先进行14~16min的预溅射,以确保功率稳定及正常起辉。
5.根据权利要求1所述偏压辅助半导体薄膜的制备方法,其特征在于,步骤(5)中,设置所述干净衬底的转速为14~16r/min,并调整Ga2O3靶材射频功率为150W和Al靶材直流功率为30W,对所述干净衬底进行溅射2h。
6.根据权利要求1所述偏压辅助半导体薄膜的制备方法,其特征在于,步骤(6)中,待溅射完毕后,将所述干净衬底放入马弗炉内部以10℃/min的速率加热至900℃,在空气环境下退火处理20min,即得到所述偏压辅助半导体薄膜。
7.权利要求1~6任一项所述制备方法得到的偏压辅助半导体薄膜。
8.权利要求1~6任一项所述制备方法得到的偏压辅助半导体薄膜在紫外探测器中应用。
CN202310361346.3A 2023-04-07 2023-04-07 一种偏压辅助半导体薄膜、制备方法及其应用 Active CN116083869B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310361346.3A CN116083869B (zh) 2023-04-07 2023-04-07 一种偏压辅助半导体薄膜、制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310361346.3A CN116083869B (zh) 2023-04-07 2023-04-07 一种偏压辅助半导体薄膜、制备方法及其应用

Publications (2)

Publication Number Publication Date
CN116083869A CN116083869A (zh) 2023-05-09
CN116083869B true CN116083869B (zh) 2023-06-20

Family

ID=86187178

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310361346.3A Active CN116083869B (zh) 2023-04-07 2023-04-07 一种偏压辅助半导体薄膜、制备方法及其应用

Country Status (1)

Country Link
CN (1) CN116083869B (zh)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7378356B2 (en) * 2002-03-16 2008-05-27 Springworks, Llc Biased pulse DC reactive sputtering of oxide films
CN107164727B (zh) * 2017-06-05 2024-03-15 吉林大学 一种带隙可调的BN(Al)薄膜材料及其制备方法
CN109136869B (zh) * 2018-07-17 2020-07-31 中山市华南理工大学现代产业技术研究院 用于紫外波段的金属掺氧化镓透明导电薄膜及其制备方法
WO2022061484A1 (zh) * 2020-09-22 2022-03-31 南方科技大学 一种调控宽禁带半导体材料缺陷及掺杂特性的方法及应用
CN112951948B (zh) * 2021-01-18 2023-01-24 郑州大学 基于氧化镓能带调控的同质结光电探测器及其制备方法
CN115896697A (zh) * 2022-11-04 2023-04-04 上海大学 一种Ga2O3薄膜禁带宽度调控的工艺方法

Also Published As

Publication number Publication date
CN116083869A (zh) 2023-05-09

Similar Documents

Publication Publication Date Title
Suchea et al. ZnO transparent thin films for gas sensor applications
KR101559484B1 (ko) 질소 가스를 사용한 아연 타겟의 반응성 스퍼터링을 통해서 생성된 박막 반도체 재료
Wang et al. The effect of Mg and Al co-doping on the structural and photoelectric properties of ZnO thin film
CN113088922B (zh) 一种晶圆级绝对单层过渡金属硫族化合物的制备方法和应用
Du et al. High-performance Ga 2 O 3 diode based on tin oxide Schottky contact
CN112126897A (zh) 一种alpha相氧化镓薄膜的制备方法
Sushmitha et al. Structural, electrical, optical and magnetic properties of NiO/ZnO thin films
Das et al. Advanced nanocrystallinity with widened optical gap realized via microstructural control in P-doped silicon oxide thin films used as window layer in nc-Si solar cells
CN110055589B (zh) 大尺寸单层六方氮化硼单晶或薄膜及制备方法
CN116083869B (zh) 一种偏压辅助半导体薄膜、制备方法及其应用
CN111710591A (zh) 一种Ga2O3薄膜及其制备方法
Ren et al. Annealing atmosphere effects on the surface properties of Cd2SnO4 thin films obtained by RF sputtering
Michard et al. High deposition rate processes for the fabrication of microcrystalline silicon thin films
Vigil‐Galán et al. Physical properties of CdS thin films grown by pulsed laser ablation on conducting substrates: effect of the thermal treatment
Bekpulatov et al. Obtaining higher manganese silicide films with high thermoelectric properties
EP3404725A1 (en) Solar cell comprising cigs light absorbing layer and method for manufacturing same
Su et al. High-rate growth of gallium oxide films by plasma-enhanced thermal oxidation for solar-blind photodetectors
CN111293194A (zh) 一种铜锌锡硫硒薄膜太阳能电池的制备方法
CN113594289B (zh) 一种PbS同质结器件及其制备方法
KR101540035B1 (ko) 스퍼터링 증착을 이용한 황화카드뮴 박막의 제조방법
CN111908433B (zh) 一种硒化亚锡纳米片中硒空位缺陷的修复方法
CN103103479A (zh) 一种硫氮共掺杂制备p型氧化锌薄膜的方法
CN109243994B (zh) 一种高k薄膜MOS结构及其制备和检测方法
KR20140097645A (ko) CuSe2를 타겟으로 하는 비셀렌화 스퍼터링 공정을 이용한 CIGS 박막 제조방법
Aimagambetova et al. DEVELOPMENT OF TRANSPARENT, CONDUCTIVE THIN FILM COATINGS ON THE BASIS OF METALS

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant