CN112951948B - 基于氧化镓能带调控的同质结光电探测器及其制备方法 - Google Patents

基于氧化镓能带调控的同质结光电探测器及其制备方法 Download PDF

Info

Publication number
CN112951948B
CN112951948B CN202110064133.5A CN202110064133A CN112951948B CN 112951948 B CN112951948 B CN 112951948B CN 202110064133 A CN202110064133 A CN 202110064133A CN 112951948 B CN112951948 B CN 112951948B
Authority
CN
China
Prior art keywords
film
amorphous
beta
photoelectric detector
homojunction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110064133.5A
Other languages
English (en)
Other versions
CN112951948A (zh
Inventor
杨珣
陈彦成
单崇新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhengzhou University
Original Assignee
Zhengzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhengzhou University filed Critical Zhengzhou University
Priority to CN202110064133.5A priority Critical patent/CN112951948B/zh
Publication of CN112951948A publication Critical patent/CN112951948A/zh
Application granted granted Critical
Publication of CN112951948B publication Critical patent/CN112951948B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明提出了一种基于氧化镓能带调控的同质结光电探测器及其制备方法,同质结光电探测器包括绝缘的衬底,衬底(1)上依次设有无定形Ga2O3薄膜和β相Ga2O3薄膜,无定形Ga2O3薄膜和β相Ga2O3薄膜上均设有接触电极。本发明针对Ga2O3不能实现稳定p型掺杂限制同质结光电探测器制备的问题,提出了一种通过调控生长过程中氧气的量来改变氧化镓带隙,并利用两种不同带隙的氧化镓制备了同质结光电探测器,克服了制备同质结探测器时Ga2O3p型掺杂的难题,为Ga2O3的能带调控和高性能Ga2O3同质结光电探测器的制备和研究奠定基础。

Description

基于氧化镓能带调控的同质结光电探测器及其制备方法
技术领域
本发明涉及光电器件制备领域,特别是指一种基于氧化镓能带调控的同质结光电探测器及其制备方法。
背景技术
氧化镓(Ga2O3)作为一种超宽带隙半导体,由于其具有高击穿场,高热稳定性和化学稳定性以及高巴利加优值等特性,因此在电力电子、日盲光电探测器和传感器等领域引起了广泛关注。此外,对在不同条件下制备的Ga2O3样品进行研究,发现其带隙在4.4-5.1eV之间变化,对应于日盲区域中234-280nm的波长,使其适合日盲光检测。已有文献报道了各种基于Ga2O3的电子和光电器件,然而,如何提高基于Ga2O3设备的性能是阻碍其未来应用最具挑战性的问题之一。带隙工程是制备高性能半导体器件的一种基本方法,且被广泛接受。但是,带隙工程涉及合金化或掺杂,合金化或者掺杂过程中通常会发生成成分波动和相分离,这对带隙工程的可重复性和可控性提出了巨大挑战。Ga2O3的带隙在某种程度上取决于合成技术和条件,这为合金化或掺杂之外的Ga2O3带隙工程提供了有效途径。同质结减少了制备过程中两种半导体材料的晶格失配问题,提高了薄膜的结晶质量,减少了材料的缺陷态。所以利用同质结制备的光电探测器通常具有较高的光响应,较快的响应速度和较高的灵敏度等。Ga2O3由于在生长过程中引入的氧空位是一种本征n型半导体材料,况且很难实现稳定的p型掺杂。这也是制备Ga2O3同质结光电探测器所面临的巨大挑战。如果可以通过调控氧化镓的带隙制备出不同导带性能的Ga2O3,利用他们的带隙和载流子浓度的差异可以制备同质结器件,这将为制备Ga2O3同质结光电探测器提供新的路径。
发明内容
本发明的目的在于针对Ga2O3不能实现稳定p型掺杂限制同质结光电探测器制备的问题,提出了一种通过调控生长过程中氧气的量来改变氧化镓带隙,并利用两种不同带隙的氧化镓制备了同质结光电探测器。
本发明的技术方案是这样实现的:基于氧化镓能带调控的同质结光电探测器,包括绝缘的衬底,衬底上依次设有无定形Ga2O3薄膜和β相Ga2O3薄膜,无定形Ga2O3薄膜和β相Ga2O3薄膜上均设有接触电极。利用不同带隙和不同导带性能的两种Ga2O3即可构建成同质结光电探测器。
进一步地,无定形Ga2O3薄膜氧空位为48%以上,电阻率为6×105Ω·m以下,厚度为100~200纳米。
进一步地,β相Ga2O3薄膜(3)氧空位为37%以下,电阻率为4×106Ω·m以上,厚度为30~60纳米。
进一步地,无定形Ga2O3薄膜氧空位为48~61%,电阻率为3×105~6×105Ω·m。
进一步地,β相Ga2O3薄膜(3)氧空位为18~37%,电阻率为4×106~4.5×107Ω·m。
进一步地,接触电极为钛金电极、铝银电极或者铝金电极。
进一步地,接触电极为钛金电极,钛金电极包括钛层和位于钛层上侧的金层,钛层和金层的厚度分别为20~30纳米和50~100纳米。
进一步地,无定形Ga2O3薄膜和β相Ga2O3薄膜上的接触电极的距离为0.5~1.5毫米。
进一步地,衬底为单面抛光的Al2O3衬底,衬底的厚度为300~400微米。
一种基于氧化镓能带调控的同质结光电探测器的制备方法,包括以下步骤:
(1)清洗衬底;
(2)采用等离子体增强化学气相沉积技术在衬底上沉积无定形Ga2O3薄膜;
(3)采用等离子体增强化学气相沉积技术在无定形Ga2O3薄膜上沉积β相Ga2O3薄膜;
(4)采用磁控溅射技术分别在无定形Ga2O3薄膜和β相Ga2O3薄膜上溅射接触电极;
(5)采用高温退火技术,让两个接触电极分别与无定形Ga2O3薄膜和β-Ga2O3薄膜形成欧姆接触。
进一步地,步骤(2)中,等离子体增强化学气相沉积所用的镓源为三乙基镓,生长所需的气体为氮气和氧气,气体流量分别为15和3~8sccm,生长温度为400~600℃,生长厚度为100~200纳米。
进一步地,步骤(3)中,等离子体增强化学气相沉积所用的镓源为三乙基镓,生长所需的气体为氮气和氧气,气体流量分别为15和20~10sccm,生长温度为400~600℃,生长厚度为30~60纳米。
优选的,步骤(5)中所用高温退火技术所需温度为300~400℃,时间为10~30分钟,通入的气体为氮气。
本发明的有益效果:
本发明通过改变生长过程中氧气的通入量来调控Ga2O3的结晶无序度,从而改变薄膜的电导率和带隙,无须复杂的掺杂和合金化过程,并利用两种不同带隙的Ga2O3制备了同质结光电探测器,克服了制备同质结探测器时Ga2O3 p型掺杂的难题,为Ga2O3的能带调控和高性能Ga2O3同质结光电探测器的制备和研究奠定基础。
本发明相对于无定形Ga2O3薄膜和β相Ga2O3薄膜同质结的配合,相比于ɑ-氧化镓和β-氧化镓或K-氧化镓和β-氧化镓等,可以实现零伏自驱动光电探测,无定形氧化镓带隙可调(4.1-5.1eV),可以通过调节无定形氧化镓的带隙来调节探测范围。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明所述的调控氧化镓带隙范围示意图。
图2为本发明所述的调控氧化镓电阻率示意图。
图3为本发明所述的氧化镓同质结光电探测器的结构示意图。
图4为本发明所述的氧化镓同质结光电探测器的能带示意图。
图5为实施例1中无定形Ga2O3薄膜和β相Ga2O3薄膜的吸收光谱。
图6为实施例1中无定形Ga2O3薄膜和β相Ga2O3薄膜的X射线光电子能谱。
图7为实施例1中无定形Ga2O3薄膜和β相Ga2O3薄膜的X射线衍射能谱。
图8为实施例1中同质结光电探测器光电流和暗电流随电压变化曲线。
图9为实施例2中同质结光电探测器的光响应谱。
图10为实施例3中同质结光电探测器不同电压下的I-t曲线。
衬底1,无定形Ga2O3薄膜2,β相Ga2O3薄膜3,钛层4,金层5。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
使用等离子体增强化学气相沉积(PECVD)技术在蓝宝石衬底上生长Ga2O3膜。氧气(O2)和三乙基镓(TEGa)被用作生长的前体;氮气(N2)被用作载气将前驱物引入生长室。在沉积过程中,衬底温度保持在500℃,PECVD室中的压力设置为0.8Torr,N2流量保持在15sccm。通过将O2流量分别设置为20、15、10、8和5sccm,获得了一系列具有不同氧空位的Ga2O3膜,分别标记为样品1-5,图1为5个样品的吸收谱,插图为对应的带隙。5个样品的氧空位(Vo)分别为18%、26%、37%、48%和61%,图2为不同氧空位浓度的氧化镓电阻率的关系图,5个样品的电阻率如下表所示:
样品1 样品2 样品3 样品4 样品5
N<sub>2</sub>流量(sccm) 15 15 15 15 15
O<sub>2</sub>流量(sccm) 20 15 10 8 5
氧空位V<sub>o</sub>(%) 18 26 37 48 61
带隙(eV) 5.1 4.9 4.7 4.5 4.4
电阻率(Ω·m) 4.5×10<sup>7</sup> 1.7×10<sup>7</sup> 4×10<sup>6</sup> 6×10<sup>5</sup> 3×10<sup>5</sup>
如图3所示,基于氧化镓能带调控的同质结光电探测器,包括绝缘的衬底1,衬底1的上端从下到上依次设有无定形Ga2O3薄膜2和β相Ga2O3薄膜3,无定形Ga2O3薄膜2和β相Ga2O3薄膜3的上端均设有接触电极,接触电极为钛金电极,钛金电极包括钛层4和位于钛层4上端的金层5。无定形Ga2O3薄膜氧空位为48%以上,电阻率为6×105Ω·m以下,厚度为100~200纳米。β相Ga2O3薄膜(3)氧空位为37%以下,电阻率为4×106Ω·m以上,厚度为30~60纳米。
所述衬底1为单抛的蓝宝石(Al2O3)衬底,衬底的厚度为300~400微米,优选为350微米左右。
所述钛金电极采用磁控溅射制备,钛层和金层的厚度分别为20~30纳米和50~100纳米。
所述基于氧化镓能带调控的同质结光电探测器的制备方法,包括以下步骤:
(1)清洗衬底;
(2)采用等离子体增强化学气相沉积技术在衬底上沉积无定形Ga2O3薄膜;
(3)在无定形Ga2O3薄膜上利用等离子体增强化学气相沉积技术在上面沉积β相Ga2O3薄膜;
(4)采用磁控溅射技术分别在两种Ga2O3薄膜上溅射钛金电极;
(5)采用高温退火技术,让两个电极分别与无定形Ga2O3和β-Ga2O3形成欧姆接触。
步骤(2)中等离子体增强化学气相沉积所用的镓源为三乙基镓,生长所需的气体为氮气和氧气,气体流量分别为15和3~8sccm,生长温度为400~600℃,生长厚度为100~200纳米。
步骤(3)中等离子体增强化学气相沉积所用的镓源为三乙基镓,生长所需的气体为氮气和氧气,气体流量分别为15和20~10sccm,生长温度为400~600℃,生长厚度为30~60纳米。
优选的,步骤(5)中所用高温退火技术所需温度为300~400℃,时间为10~30分钟,通入的气体为氮气。
本发明通过改变生长过程中氧气的通入量来调控Ga2O3的带隙和电导率,无须复杂的掺杂和合金化过程,并利用两种不同带隙的Ga2O3制备了同质结光电探测器,克服了制备同质结探测器时Ga2O3 p型掺杂的难题。
实施例1
步骤(2)和(3),氧化镓制备过程中,通过通入氧气和氮气的量调控生长出来无定形Ga2O3薄膜和β相Ga2O3薄膜的带隙和导电性能,两种不同带隙的氧化镓薄膜接触后由于费米能级的不同,在界面出形成内建电场,能带图如4所示。
本实例中,步骤(2)中,无定形Ga2O3薄膜制备过程中氮氧流量分别为15和5sccm,生长温度为500℃,生长时间为1.5个小时,生长厚度为100纳米左右,步骤(3)中,β相Ga2O3薄膜制备过程中氮氧气体流量分别为15和15sccm,生长温度为500度,生长时间为1.0个小时,生长厚度为45纳米左右,无定形Ga2O3薄膜的带隙为4.4eV,β相Ga2O3薄膜的带隙为4.9eV,无定形Ga2O3薄膜和β相Ga2O3薄膜的吸收光谱如图3所示,强度随波长发生变化。由于生长过程中氧气量的不同,所制备的无定形Ga2O3薄膜和β相Ga2O3薄膜中氧空位的量也是不相同的,通过X射线光电子能谱技术分析可得,无定形Ga2O3薄膜和β相Ga2O3薄膜中的氧空位分别为61%和18%,如图4所示。通过测试X射线衍射分析可以看出,具有高氧空位的氧化镓为无定形相,具有少量氧空位的氧化镓为β相,如图5所示。
采用磁控溅射技术分别在无定形Ga2O3薄膜和β相Ga2O3薄膜上溅射钛金电极,然后放在高温管式炉中进行退火,退火温度和时间分别为400℃和10分钟。图6测试了本实例中同质结光电探测器的I-V曲线,从图中可以看出同质结光电探测器具有明显的整流特性,并且光电流远远大于暗电流,0下的开关比为8.9×102,且具有明显的开路电压和短路电流分别为0.6V和6nA,所以可以说明同质结已经完成,并且可以用于光电探测器的应用。
实施例2
本实例与实例1有所不同,改变了生长两次氧化镓过程中氮气和氧气的比例,本实例中生长无定形Ga2O3薄膜和β相Ga2O3薄膜过程中氮氧气体流量分别为15、3sccm和15、20sccm,带隙分别为4.1和5.1eV,按照上述器件制备过程制备出如图1所示的同质结光电探测器,制备完后把器件放在高温管式炉中进行退火,退火温度和时间分别为400℃和10分钟。通过对其进行零伏偏压下的光谱响应测试,响应曲线如图7所示。从图7中可以看出,在深紫外区域内的响应谱明显大于可见光区域,这说明在这个实例中此光电探测器也具有光伏效应,可以通过生长不同氧空位的氧化镓制备同质结光电探测器。
实施例3
本实例与实例1或2基本相同,不同之处在于:改变了电极的材料,把钛金电极换为铝银或者铝金电极,根据上述制备器件过程,在制备完电极后对器件进行高温退火,退火温度为300度,退火时间为5分钟,也可以得到氧化镓同质结光电探测器,通过测试器件的电流随时间的变化曲线,如图8所示,可以看出器件的光电流明显大于暗电流,且可以在三个测试电压下稳定运行,并且随着电压的增加,光电流也随着增加。这说明改变电极的材料也可以制备出氧化镓同质结光电探测器。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (4)

1.一种基于氧化镓能带调控的同质结光电探测器的制备方法,其特征在于,包括以下步骤:
(1)清洗衬底;
(2)采用等离子体增强化学气相沉积技术在衬底上沉积无定形Ga2O3薄膜;
(3)采用等离子体增强化学气相沉积技术在无定形Ga2O3薄膜上沉积β相Ga2O3薄膜;
(4)采用磁控溅射技术分别在无定形Ga2O3薄膜和β相Ga2O3薄膜上溅射接触电极;
(5)采用高温退火技术,让两个接触电极分别与无定形Ga2O3薄膜和β-Ga2O3薄膜形成欧姆接触;
步骤(2)中,等离子体增强化学气相沉积所用的镓源为三乙基镓,生长所需的气体为氮气和氧气,气体流量分别为15和3~8 sccm;无定形Ga2O3薄膜氧空位为48%以上;
步骤(3)中,等离子体增强化学气相沉积所用的镓源为三乙基镓,生长所需的气体为氮气和氧气,气体流量分别为15和20~10 sccm;β相Ga2O3薄膜(3)氧空位为37%以下。
2.根据权利要求1所述的制备方法,其特征在于,步骤(2)中,生长温度为400~600℃,生长厚度为100~200纳米。
3.根据权利要求1所述的制备方法,其特征在于,步骤(3)中,生长温度为400~600℃,生长厚度为30~60纳米。
4.根据权利要求1所述的制备方法,其特征在于,步骤(5)中所用高温退火技术所需温度为300~400℃,时间为10~30分钟,通入的气体为氮气。
CN202110064133.5A 2021-01-18 2021-01-18 基于氧化镓能带调控的同质结光电探测器及其制备方法 Active CN112951948B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110064133.5A CN112951948B (zh) 2021-01-18 2021-01-18 基于氧化镓能带调控的同质结光电探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110064133.5A CN112951948B (zh) 2021-01-18 2021-01-18 基于氧化镓能带调控的同质结光电探测器及其制备方法

Publications (2)

Publication Number Publication Date
CN112951948A CN112951948A (zh) 2021-06-11
CN112951948B true CN112951948B (zh) 2023-01-24

Family

ID=76235438

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110064133.5A Active CN112951948B (zh) 2021-01-18 2021-01-18 基于氧化镓能带调控的同质结光电探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN112951948B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116083869B (zh) * 2023-04-07 2023-06-20 北京石油化工学院 一种偏压辅助半导体薄膜、制备方法及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015099915A (ja) * 2013-10-18 2015-05-28 日本放送協会 光電変換素子、及び、光電変換素子の製造方法
CN108963027A (zh) * 2017-05-19 2018-12-07 中国科学院物理研究所 一种非晶Ga2O3日盲紫外探测器及其制备方法和应用
CN109256438A (zh) * 2018-09-26 2019-01-22 北京镓族科技有限公司 一种硅基非晶氧化镓薄膜日盲光电晶体管及其制造方法
CN112071944A (zh) * 2020-08-26 2020-12-11 西安理工大学 基于NiFe2O4/Ga2O3的紫外光电二极管及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018103647A1 (zh) * 2016-12-08 2018-06-14 西安电子科技大学 基于Ga2O3材料的紫外光电探测器的制备方法
CN109957759A (zh) * 2019-05-13 2019-07-02 北京镓族科技有限公司 Cu掺杂β-Ga2O3薄膜的制备方法及相应的结构

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015099915A (ja) * 2013-10-18 2015-05-28 日本放送協会 光電変換素子、及び、光電変換素子の製造方法
CN108963027A (zh) * 2017-05-19 2018-12-07 中国科学院物理研究所 一种非晶Ga2O3日盲紫外探测器及其制备方法和应用
CN109256438A (zh) * 2018-09-26 2019-01-22 北京镓族科技有限公司 一种硅基非晶氧化镓薄膜日盲光电晶体管及其制造方法
CN112071944A (zh) * 2020-08-26 2020-12-11 西安理工大学 基于NiFe2O4/Ga2O3的紫外光电二极管及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Balanced performance for β-Ga2O3 solar blind photodetectors: The role of oxygen vacancies ";Jiang Wang;《Optical Materials》;20210109;全文 *
"P-type b-gallium oxide: A new perspective for power and optoelectronic devices";Ekaterine Chikoidze;《Materials Today Physics》;20171012;118-126页 *

Also Published As

Publication number Publication date
CN112951948A (zh) 2021-06-11

Similar Documents

Publication Publication Date Title
Qian et al. Ultrahigh-responsivity, rapid-recovery, solar-blind photodetector based on highly nonstoichiometric amorphous gallium oxide
Shah et al. Material and solar cell research in microcrystalline silicon
US9249016B2 (en) Graphene-based multi-junctions flexible solar cell
US5141564A (en) Mixed ternary heterojunction solar cell
Ameen et al. Solar light photodetectors based on nanocrystalline zinc oxide cadmium doped/p-Si heterojunctions
CN111341839B (zh) 一种p型氮掺杂氧化镓薄膜及其制备方法
CN112086344B (zh) 一种铝镓氧/氧化镓异质结薄膜的制备方法及其在真空紫外探测中的应用
JPH04266066A (ja) 光起電力素子
CN108346712B (zh) 一种硅掺杂氮化硼/石墨烯的pn结型紫外探测器制备方法
CN112951948B (zh) 基于氧化镓能带调控的同质结光电探测器及其制备方法
Hu et al. Photodetection properties of β-Ga2O3/n-Si isotype heterojunction for solar-blind ultraviolet photodetector
Mathews et al. Near IR photodiodes with tunable absorption edge based on Ge1-y Sny alloys integrated on silicon
Ruiz-Perona et al. Influence of Zn excess on compositional, structural and vibrational properties of Cu2ZnSn0. 5Ge0. 5Se4 thin films and their effect on solar cell efficiency
Ramakrishnan et al. Oxygen partial pressure dependent sputtered copper oxide films for visible photodetectors
Mazzarella et al. Optimization of PECVD process for ultra-thin tunnel SiO x film as passivation layer for silicon heterojunction solar cells
JPH04266067A (ja) 光起電力素子
Djeffal et al. Enhanced photoresponse of ultraviolet photodetector via RF sputtered ZnO/a-SiC heterostructure
Moustakas Photovoltaic properties of amorphous silicon produced by reactive sputtering
Al Qassem et al. Comparative study of the P-CDS/N-cdte photovoltaic devices with depleted intrinsic layer
Uvarov et al. Plasma-enhanced atomic layer deposition of Zn-doped GaP
JPS6384076A (ja) 光起電力素子
Bahlool Temperature-Dependent Optoelectronic Characteristics of p-SnO2/n-Si Heterojunction Structures
CN115810694A (zh) 一种低噪声、高响应Ga2O3基雪崩光电二极管及其制备方法
Zhang et al. High-Performance β-Ga 2 O 3 MISIM Solar-Blind Photodetectors with An Interfacial AlN Layer
Aimagambetova et al. DEVELOPMENT OF TRANSPARENT, CONDUCTIVE THIN FILM COATINGS ON THE BASIS OF METALS

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant