CN109136869B - 用于紫外波段的金属掺氧化镓透明导电薄膜及其制备方法 - Google Patents

用于紫外波段的金属掺氧化镓透明导电薄膜及其制备方法 Download PDF

Info

Publication number
CN109136869B
CN109136869B CN201810783767.4A CN201810783767A CN109136869B CN 109136869 B CN109136869 B CN 109136869B CN 201810783767 A CN201810783767 A CN 201810783767A CN 109136869 B CN109136869 B CN 109136869B
Authority
CN
China
Prior art keywords
film
doped
metal
transparent conductive
ultraviolet band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810783767.4A
Other languages
English (en)
Other versions
CN109136869A (zh
Inventor
王洪
文如莲
胡晓龙
周泉斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Zhongshan Institute of Modern Industrial Technology of South China University of Technology
Original Assignee
South China University of Technology SCUT
Zhongshan Institute of Modern Industrial Technology of South China University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT, Zhongshan Institute of Modern Industrial Technology of South China University of Technology filed Critical South China University of Technology SCUT
Priority to CN201810783767.4A priority Critical patent/CN109136869B/zh
Publication of CN109136869A publication Critical patent/CN109136869A/zh
Priority to PCT/CN2019/106290 priority patent/WO2020015765A1/zh
Priority to US17/260,564 priority patent/US20210305460A1/en
Application granted granted Critical
Publication of CN109136869B publication Critical patent/CN109136869B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/42Transparent materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • C23C14/025Metallic sublayers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5846Reactive treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0016Processes relating to electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Led Devices (AREA)

Abstract

本发明公开了用于紫外波段的金属掺氧化镓透明导电薄膜及其制备方法。该制备方法先在基底上生长一层接触层薄膜,接触层薄膜生长后经由快速热退火炉400℃~600℃氮氧氛围下退火;利用磁控溅射氩气条件下溅射生长第一层Ga2O3薄膜;利用磁控溅射氩气条件下溅射生长掺杂薄膜;利用磁控溅射氩气条件下溅射生长第二层Ga2O3薄膜,生长完成的薄膜整体经由快速热退火炉500‐600℃氮氧氛围下退火,薄膜材料之间渗透扩散熔合,形成金属掺杂Ga2O3薄膜。本发明的透明导电薄膜在ITO透明导电薄膜基础上,具有更大的薄膜光学透过率和更低的薄膜方块电阻。

Description

用于紫外波段的金属掺氧化镓透明导电薄膜及其制备方法
技术领域
本发明涉及一种在紫外波段高透过率的导电薄膜,尤其涉及用于紫外波段的金属掺氧化镓透明导电薄膜及其制备方法;该导电薄膜是金属掺杂技术的氧化镓透明导电薄膜。
背景技术
在光电子器件的制备过程中,为与外延片形成良好的欧姆接触,并且减少对发射光源的吸收,制备一种低接触电阻和高光学透过率的透明导电薄膜至关重要。ITO禁带宽度在3.5eV到4.3eV之间,在蓝光和绿光LED制备中有成熟的工艺,但在紫外波段存在严重光吸收,薄膜越好,对紫光的吸收越多。因此能找到一种可以替代ITO在紫外波段作为透明导电层的薄膜意义深远。Ga2O3材料作为一种宽带系材料,禁带宽度为4.9到5.0eV,因其大尺寸高质量的晶片可以通过熔体生长法合成的单晶体来制造而引起广泛关注。这种材料在金属半导体场效应晶体管,金属氧化物半导体场效应管和肖特基势垒二极管的器件中都有研究。并且因其在紫外波段具有很高的透过率,人们也将其考虑用于紫外LED的制备中。
但由于Ga2O3是一种宽禁带半导体材料,其导电性能很差。人们通过掺杂In或者Sn形成β-Ga2O3来提升其导电性能,Orita M,Hiramatsu H等人(Orita M,Hiramatsu H,OhtaH,et al.Preparation of highly conductive,deep ultraviolet transparentβ-Ga 2O3thin film at low deposition temperatures[J].Thin Solid Films.2002,411(1):134-139)在880℃的硅玻璃上制备了多晶β-Ga2O3薄膜,获得了约1S/cm的电导率,通过制备(201)取向Sn掺杂的β-Ga2O3薄膜,获得的最大电导率为8.2S/cm(约1.22×104Ω/sq),但这仍然难以用于LED导电薄膜制备。Liu JJ等人(Liu J J,Yan J l,Shi L,,etal.Electrical and optical properties of deep ultraviolet transparentconductive Ga2O3/ITO films by magnetron sputtering[J].Journal ofsemiconductors.2010,31(10):5-9.)通过调整生长温度,ITO厚度等条件来改善Ga2O3/ITO薄膜方块电阻和透过率,在280nm处可以实现323Ω/sq方块电阻和77.6%透过率。Jae-kwanKim等人(Kim J,Lee J.Electrical and optical properties of near UV transparentconductive ITO/Ga2O3multilayer films deposited by RF magnetron sputtering[J].Applied Physics Letters.2016,109(17):172107.)实现了在380nm处透过率为80.94%,方块电阻为58.6Ω/sq;韩国Kie Young Woo小组制备Ag/Ga2O3模型,通过Ag插入层改善薄膜的接触特性和导电率,在380nm实现91%的透过率和3.06×10-2Ωcm2的比接触电阻电阻率。但上述现有技术方法制备得到的Ga2O3薄膜,在波长低于390nm的紫外波段,透过率仍然不够高,薄膜自身的方块电阻较大,导电性较差。
发明内容
为了克服现在Ga2O3薄膜在紫外波段接触特性差,导电率低等不足,本发明提供一种新型金属掺氧化镓透明导电薄膜及其制备方法,提高其在紫光波段透过率的同时降低薄膜的方块电阻及改善其与外延材料接触特性,薄膜方块电阻低于20Ω/sq,薄膜紫外波段330nm以上透过率大于90%。
本发明解决其技术问题所采用的技术方案是:
一种用于紫外波段的金属掺氧化镓透明导电薄膜的制备方法,包括如下步骤:
1)在基底上利用电子束常规生长一层接触层薄膜,接触层薄膜生长后经由快速热退火炉400℃~600℃氮氧氛围下退火;
2)利用磁控溅射氩气条件下溅射生长第一层Ga2O3薄膜,控制第一层Ga2O3薄膜的厚度为10~20nm;
3)利用磁控溅射氩气条件下溅射生长掺杂薄膜,掺杂薄膜为Ag、Al或Ti薄膜,控制掺杂薄膜的厚度为3-7nm;
4)利用磁控溅射氩气条件下溅射生长第二层Ga2O3薄膜,控制第二层Ga2O3薄膜的厚度为10~20nm;
5)生长完成的薄膜整体经由快速热退火炉500-600℃氮氧氛围下退火,薄膜材料之间渗透扩散熔合,形成金属掺杂Ga2O3薄膜。
为进一步实现本发明目的,优选地,步骤1)所述的基底是分别经由硫酸、双氧水和氨水在60℃水浴清洗所得。
优选地,步骤1)所述的基底为圆形,厚度为1-2mm;所述基底为GaN基LED外延。
优选地,步骤1)所述的接触层薄膜的材料为ITO或者Ni,如果接触层薄膜的材料为ITO,所述的ITO生长厚度为10nm~20nm;如果接触层薄膜的材料为Ni,所述Ni生长厚度为1~4nnm。
优选地,步骤2)所述的磁控溅射的功率为120~140W,基底转速为20rmp,压强为5mtorr;溅射时间为5~10分钟。
优选地,步骤3)所述的磁控溅射的功率为100~120W,基底转速为20rmp,压强为5mtorr。
优选地,步骤4)所述的磁控溅射的功率为120~140W,基底转速为20rmp,压强为5mtorr;溅射时间为5~10分钟。
优选地,步骤5)所述的金属掺杂Ga2O3薄膜是由接触层薄膜、第一层Ga2O3薄膜、掺杂薄膜4以及第二层Ga2O3薄膜融合形成;金属掺杂Ga2O3薄膜的厚度为24nm~67nm。
优选地,步骤1)和步骤5)所述的退火的时间都为1-5分钟。
一种用于紫外波段的金属掺氧化镓透明导电薄膜,由上述制备方法制得,所述金属掺氧化镓透明导电薄膜的方块电阻低于20Ω/sq,薄膜紫外波段330nm以上透过率大于90%。
相对于现有技术,本发明具有如下优点和有益效果:
1)本发明薄膜透过率在紫外波段提升,同时薄膜方块电阻降低,金属掺氧化镓透明导电薄膜的方块电阻低于20Ω/sq,薄膜紫外波段330nm以上透过率大于90%。
2)本发明在Ga2O3薄膜下插入一层接触层薄膜,可以改善Ga2O3薄膜与外延材料之间的接触性能。
3)本发明薄膜内元素通过高温退火处理后发生扩散渗透熔合,XPS测试得到的接触层薄膜元素以及氧元素含量增大。
4)本发明薄膜与p-GaN表面的接触特性达到10-3Ωcm2的比接触电阻电阻率。
5)本发明制备方法为通过先生长一层接触层薄膜,高温退火处理后再生长第一层Ga2O3薄膜、掺杂金属薄膜、第二层Ga2O3薄膜,再一起通过高温退火后而形成;制备方法简单。
6)本发明在采用的是常规的磁控溅射设备和电子束蒸发设备来沉积各层薄膜,原有设备上不需要引入新的设备,不会增大工艺难度;具有明显的成本优势。
附图说明
图1为实施例1透明导电薄膜未退火前的横截面示意图;
图2为实施例1用于紫外波段的Ga2O3透明导电薄膜退火后的横截面示意图;
图3为实施例1的用于紫外波段的Ga2O3透明导电薄膜与普通的90nmITO薄膜的透过率曲线图。
图中示出:基底1、接触层薄膜2、第一层Ga2O3薄膜31、掺杂薄膜4、第二层Ga2O3薄膜32、金属掺杂Ga2O3薄膜5。
具体实施方式
为更好地理解本发明,下面结合附图和实施例对本发明作进一步的说明,但本发明的实施方式不限如此。
实施例1
图1为具体实施例的一种新型金属掺杂Ga2O3薄膜未高温退火前的横截面示意图;如图1所示,一种用于紫外波段的金属掺氧化镓透明导电薄膜的制备方法,包括如下步骤:
1)在分别经由硫酸、双氧水和氨水在60℃水浴清洗的基底1上首先利用电子束常规生长接触层薄膜2,接触层薄膜2为ITO,厚度为10nm,经由快速热退火炉600℃氮氧氛围下退火1分钟。
2)利用磁控溅射140W功率,基底转速20rmp,5mtorr氩气条件下溅射生长第一层Ga2O3薄膜31,溅射时间优选10分钟,厚度是15nm。
3)利用磁控溅射100W功率,基底转速20rmp,5mtorr氩气条件下溅射生长掺杂薄膜4,掺杂薄膜4是厚度为7nm的Ag薄膜;
4)利用磁控溅射140W功率,基底转速20rmp,5mtorr氩气条件下溅射生长第二层Ga2O3薄膜32,溅射时间优选10分钟,厚度是15nm。
5)生长完成的薄膜整体再经由快速热退火炉600℃氮氧氛围下退火1分钟,薄膜材料之间渗透扩散熔合形成图2所示金属掺杂Ga2O3薄膜5,具体是接触层薄膜2、第一层Ga2O3薄膜31、掺杂薄膜4以及第二层Ga2O3薄膜32融合成为金属掺杂Ga2O3薄膜5。金属掺杂Ga2O3薄膜5的厚度是47nm。
对实施例1所述的样品,采用椭偏仪测试其的透过率,得到图3的透过率曲线。图3中,横坐标为波长,纵坐标为透过率,90nm ITO是采用常规的电子束蒸发沉积的厚度为90nm的ITO薄膜,ITO-Ga2O3-Ag-Ga2O3薄膜是实施例1制备的样品。从图3可见,本实施例品在300nm~500nm的波段范围内,透过率远大于常规的90nm ITO薄膜。
表1为具体实施例1的以ITO为接触层薄膜2的新型金属掺杂Ga2O3薄膜5与90nmITO薄膜的在365nm的透过率和方块电阻参数,方块电阻采用四探针测试仪测得。本实施例的新型金属掺杂Ga2O3薄膜5的方块电阻,远低于常规的90nmITO薄膜。
表1
365nm 90nmITO ITO-M-Ga<sub>2</sub>O<sub>3</sub>
透过率 78.03% 92.68%
方块电阻 45.03Ω/sq 20.1Ω/sq
本发明一种用于紫外波段的Ga2O3透明导电薄膜的方块电阻降低至20Ω/sq、透过率在365nm波段透过率达92%以上、薄膜与p-GaN表面的比接触电阻率达到10-3Ωcm2。因为采用了ITO作为接触层,并加入了掺杂薄膜4,使薄膜整体欧姆接触特性得到改善,同时由于Ga2O3薄膜在紫外波段的高透过率,保证了薄膜整体的高透过率。
本发明的透明导电薄膜在ITO透明导电薄膜基础上,具有更大的薄膜光学透过率和更低的薄膜方块电阻。本发明在采用的是常规的磁控溅射设备和电子束蒸发设备来沉积各层薄膜,原有设备上不需要引入新的设备,因此不会增大工艺难度。
本发明一种用于紫外波段的Ga2O3透明导电薄膜,结合了导电性较好的接触层薄膜和透过率较高的Ga2O3薄膜,通过克服现在Ga2O3薄膜在紫外波段接触特性差,导电率低的问题,有利于提高薄膜紫外波段的透过率和降低了方块电阻。
实施例2
一种用于紫外波段的金属掺氧化镓透明导电薄膜的制备方法,包括如下步骤:
1)在分别经由硫酸、双氧水和氨水在60℃水浴清洗的基底1上首先利用电子束常规生长接触层薄膜2,接触层薄膜2为Ni,厚度为4nm,经由快速热退火炉600℃氮氧氛围下退火1分钟。
2)利用磁控溅射140W功率,基底转速20rmp,5mtorr氩气条件下溅射生长第一层Ga2O3薄膜31,溅射时间优选10分钟,厚度是15nm。
3)利用磁控溅射100W功率,基底转速20rmp,5mtorr氩气条件下溅射生长掺杂薄膜4,掺杂薄膜4是厚度为7nm的Ag薄膜;
4)利用磁控溅射140W功率,基底转速20rmp,5mtorr氩气条件下溅射生长第二层Ga2O3薄膜32,溅射时间优选10分钟,厚度是15nm。
5)生长完成的薄膜整体再经由快速热退火炉600℃氮氧氛围下退火1分钟,薄膜材料之间渗透扩散熔合形成图2所示金属掺杂Ga2O3薄膜5,具体是接触层薄膜2、第一层Ga2O3薄膜31、掺杂薄膜4以及第二层Ga2O3薄膜32融合成为金属掺杂Ga2O3薄膜5。金属掺杂Ga2O3薄膜5的厚度是41nm。
实施例2的一种用于紫外波段的Ga2O3透明导电薄膜,方块电阻降低至16Ω/sq、透过率在365nm波段透过率达93%以上、薄膜与p-GaN表面的接触特性达到0.5x 10-3Ωcm2
实施例3
一种用于紫外波段的金属掺氧化镓透明导电薄膜的制备方法,包括如下步骤:
1)在分别经由硫酸、双氧水和氨水在60℃水浴清洗的基底1上首先利用电子束常规生长接触层薄膜2,接触层薄膜2为ITO,厚度为10nm,经由快速热退火炉600℃氮氧氛围下退火1分钟。
2)利用磁控溅射140W功率,基底转速20rmp,5mtorr氩气条件下溅射生长第一层Ga2O3薄膜31,溅射时间优选10分钟,厚度是10nm。
3)利用磁控溅射100W功率,基底转速20rmp,5mtorr氩气条件下溅射生长掺杂薄膜4,掺杂薄膜4是厚度为7nm的Ag薄膜;
4)利用磁控溅射140W功率,基底转速20rmp,5mtorr氩气条件下溅射生长第二层Ga2O3薄膜32,溅射时间优选10分钟,厚度是10nm。
5)生长完成的薄膜整体再经由快速热退火炉600℃氮氧氛围下退火1分钟,薄膜材料之间渗透扩散熔合形成图2所示金属掺杂Ga2O3薄膜5,具体是接触层薄膜2、第一层Ga2O3薄膜31、掺杂薄膜4以及第二层Ga2O3薄膜32融合成为金属掺杂Ga2O3薄膜5。金属掺杂Ga2O3薄膜5的厚度是37nm。
实施例3的一种用于紫外波段的Ga2O3透明导电薄膜,方块电阻降低至20Ω/sq、透过率在365nm波段透过率达94%、薄膜与p-GaN表面的接触特性达到10-3Ωcm2
需要说明的是,实施例不构成对本发明的任何限制,显然对于本领域的专业人员来说,在了解本发明内容和原理后,能够在不背离本发明的原理和范围的情况下,对本发明进行形式和细节上的各种修正和改变,这些基于本发明的修正和改变仍在本发明的权利要求保护范围之内。

Claims (9)

1.用于紫外波段的金属掺氧化镓透明导电薄膜的制备方法,其特征在于包括如下步骤:
1)在基底上利用电子束常规生长一层接触层薄膜,接触层薄膜生长后经由快速热退火炉400℃~600℃氮氧氛围下退火;所述的接触层薄膜的材料为ITO或者Ni,如果接触层薄膜的材料为ITO,所述的ITO生长厚度为10nm~20nm;如果接触层薄膜的材料为Ni,所述Ni生长厚度为1~4nnm;
2)利用磁控溅射氩气条件下溅射生长第一层Ga2O3薄膜,控制第一层Ga2O3薄膜的厚度为10~20nm;
3)利用磁控溅射氩气条件下溅射生长掺杂薄膜,掺杂薄膜为Ag、Al或Ti薄膜,控制掺杂薄膜的厚度为3-7nm;
4)利用磁控溅射氩气条件下溅射生长第二层Ga2O3薄膜,控制第二层Ga2O3薄膜的厚度为10~20nm;
5)生长完成的薄膜整体经由快速热退火炉500-600℃氮氧氛围下退火,薄膜材料之间渗透扩散熔合,形成金属掺杂Ga2O3薄膜;所述金属掺杂Ga2O3薄膜的方块电阻低于20Ω/sq,薄膜紫外波段365nm透过率为92.68%-94%。
2.根据权利要求1所述的用于紫外波段的金属掺氧化镓透明导电薄膜的制备方法,其特征在于,步骤1)所述的基底是分别经由硫酸、双氧水和氨水在60℃水浴清洗所得。
3.根据权利要求1所述的用于紫外波段的金属掺氧化镓透明导电薄膜的制备方法,其特征在于,步骤1)所述的基底为圆形,厚度为1-2mm;所述基底为GaN基LED外延。
4.根据权利要求1所述的用于紫外波段的金属掺氧化镓透明导电薄膜的制备方法,其特征在于,步骤2)所述的磁控溅射的功率为120~140W,基底转速为20rmp,压强为5mtorr;溅射时间为5~10分钟。
5.根据权利要求1所述的用于紫外波段的金属掺氧化镓透明导电薄膜的制备方法,其特征在于,步骤3)所述的磁控溅射的功率为100~120W,基底转速为20rmp,压强为5mtorr。
6.根据权利要求1所述的用于紫外波段的金属掺氧化镓透明导电薄膜的制备方法,其特征在于,步骤4)所述的磁控溅射的功率为120~140W,基底转速为20rmp,压强为5mtorr;溅射时间为5~10分钟。
7.根据权利要求1所述的用于紫外波段的金属掺氧化镓透明导电薄膜的制备方法,其特征在于,步骤5)所述的金属掺杂Ga2O3薄膜是由接触层薄膜、第一层Ga2O3薄膜、掺杂薄膜以及第二层Ga2O3薄膜融合形成;金属掺杂Ga2O3薄膜的厚度为24nm~67nm。
8.根据权利要求1所述的用于紫外波段的金属掺氧化镓透明导电薄膜的制备方法,其特征在于,步骤1)和步骤5)所述的退火的时间都为1-5分钟。
9.一种用于紫外波段的金属掺氧化镓透明导电薄膜,其特征在于,其由权利要求1-8任一项所述的制备方法制得;所述金属掺氧化镓透明导电薄膜的方块电阻低于20Ω/sq,薄膜紫外波段365nm透过率为92.68%-94%。
CN201810783767.4A 2018-07-17 2018-07-17 用于紫外波段的金属掺氧化镓透明导电薄膜及其制备方法 Active CN109136869B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201810783767.4A CN109136869B (zh) 2018-07-17 2018-07-17 用于紫外波段的金属掺氧化镓透明导电薄膜及其制备方法
PCT/CN2019/106290 WO2020015765A1 (zh) 2018-07-17 2019-09-17 用于紫外波段的金属掺氧化镓透明导电薄膜及其制备方法
US17/260,564 US20210305460A1 (en) 2018-07-17 2019-09-17 Metal-doped gallium oxide transparent conductive thin film for ultraviolet waveband and preparation method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810783767.4A CN109136869B (zh) 2018-07-17 2018-07-17 用于紫外波段的金属掺氧化镓透明导电薄膜及其制备方法

Publications (2)

Publication Number Publication Date
CN109136869A CN109136869A (zh) 2019-01-04
CN109136869B true CN109136869B (zh) 2020-07-31

Family

ID=64800767

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810783767.4A Active CN109136869B (zh) 2018-07-17 2018-07-17 用于紫外波段的金属掺氧化镓透明导电薄膜及其制备方法

Country Status (3)

Country Link
US (1) US20210305460A1 (zh)
CN (1) CN109136869B (zh)
WO (1) WO2020015765A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109136869B (zh) * 2018-07-17 2020-07-31 中山市华南理工大学现代产业技术研究院 用于紫外波段的金属掺氧化镓透明导电薄膜及其制备方法
CN112885503B (zh) * 2021-01-12 2022-06-21 南开大学 一种超薄银基omo复合透明导电薄膜的制备方法及应用
CN112908517B (zh) * 2021-01-19 2022-08-05 大正(江苏)微纳科技有限公司 一种透明导电薄膜及其制备方法
CN116083869B (zh) * 2023-04-07 2023-06-20 北京石油化工学院 一种偏压辅助半导体薄膜、制备方法及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005078812A1 (ja) * 2004-02-18 2005-08-25 Waseda University Ga2O3系単結晶の導電率制御方法
CN101661810A (zh) * 2009-09-24 2010-03-03 鲁东大学 深紫外非晶透明导电膜及其制备方法
CN101841003A (zh) * 2010-03-30 2010-09-22 鲁东大学 双层结构深紫外透明导电膜及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102543271B (zh) * 2012-02-17 2014-12-24 华东师范大学 热稳定性增强的透明导电薄膜及其应用
JP5861719B2 (ja) * 2014-01-17 2016-02-16 Tdk株式会社 透明導電体及びタッチパネル
US11018238B2 (en) * 2016-10-11 2021-05-25 Idemitsu Kosan Co., Ltd. Structure, method for manufacturing same, semiconductor element, and electronic circuit
WO2018103647A1 (zh) * 2016-12-08 2018-06-14 西安电子科技大学 基于Ga2O3材料的紫外光电探测器的制备方法
CN109136869B (zh) * 2018-07-17 2020-07-31 中山市华南理工大学现代产业技术研究院 用于紫外波段的金属掺氧化镓透明导电薄膜及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005078812A1 (ja) * 2004-02-18 2005-08-25 Waseda University Ga2O3系単結晶の導電率制御方法
CN101661810A (zh) * 2009-09-24 2010-03-03 鲁东大学 深紫外非晶透明导电膜及其制备方法
CN101841003A (zh) * 2010-03-30 2010-09-22 鲁东大学 双层结构深紫外透明导电膜及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
AZO透明导电薄膜及其用于GaN基LED透明电极的研究;陈丹;《中国优秀硕士学位论文全文数据库 信息科技辑》;20131015(第10期);摘要、正文第41页 *
Kie Young Woo 等.Performance of InGaN/AlGaInN Near-UV LEDs With Ni/Ga2O3/Ag/Ga2O3 Electrode.《IEEE PHOTONICS TECHNOLOGY LETTERS》.2016,第28卷67-70. *
Performance of InGaN/AlGaInN Near-UV LEDs With Ni/Ga2O3/Ag/Ga2O3 Electrode;Kie Young Woo 等;《IEEE PHOTONICS TECHNOLOGY LETTERS》;20160101;第28卷;67-70 *

Also Published As

Publication number Publication date
CN109136869A (zh) 2019-01-04
WO2020015765A1 (zh) 2020-01-23
US20210305460A1 (en) 2021-09-30

Similar Documents

Publication Publication Date Title
CN109136869B (zh) 用于紫外波段的金属掺氧化镓透明导电薄膜及其制备方法
CN107507866B (zh) 一种多晶氧化物柔性薄膜晶体管及其制备方法
CN109616541B (zh) 过渡金属硫族化合物横向同质结太阳能电池及其制备方法
CN112086344B (zh) 一种铝镓氧/氧化镓异质结薄膜的制备方法及其在真空紫外探测中的应用
CN103077963A (zh) 一种欧姆接触电极、其制备方法及包含该欧姆接触电极的半导体元件
CN110993503B (zh) 基于氧化镓/钙钛矿传输层异质结的n型晶体管及其制备方法
CN111312852A (zh) 氧化镓半导体结构、日盲光电探测器及制备方法
Kim et al. Improved performance of Ga2O3/ITO‐based transparent conductive oxide films using hydrogen annealing for near‐ultraviolet light‐emitting diodes
Bayhan et al. Eects of Post Deposition Treatments on Vacuum Evaporated CdTe Thin Films and CdS= CdTe Heterojunction Devices
CN110993707A (zh) 基于氧化镓多层堆叠结构的pin二极管及其制备方法
CN203026510U (zh) 一种欧姆接触电极及包含该欧姆接触电极的半导体元件
CN111081886B (zh) 基于氧化镓钙钛矿多层堆叠结构的pin二极管及其制备方法
CN109616533A (zh) 一种晶硅异质结太阳电池及其制备方法
CN107706278A (zh) 一种紫外发光二极管的透明电极制备方法及其应用
CN110571310B (zh) 一种(100)取向n型单晶金刚石电极欧姆接触形成方法
Weng et al. Improving the microstructure and electrical properties of aluminum induced polysilicon thin films using silicon nitride capping layer
KR20140122326A (ko) 산화인듐을 이용한 cigs 광흡수층 제조방법
CN103268906B (zh) 硫化镉薄膜及具有硫化镉薄膜的太阳能电池的制备方法
CN112695380A (zh) 一种新型透明导电氧化物薄膜的制备方法及其应用
WO2018214480A1 (zh) 一种类岛状电子传输的薄膜晶体管及制备方法
CN113555418B (zh) 基于P区和I区渐变掺杂的4H-SiC PIN微波二极管及制作方法
CN114134569B (zh) Cu-SnO2单晶薄膜及其制备方法和应用
KR101540035B1 (ko) 스퍼터링 증착을 이용한 황화카드뮴 박막의 제조방법
KR102660923B1 (ko) 도핑된 주석 산화물 박막 트랜지스터 및 그 제조 방법
KR101449278B1 (ko) 반도체를 이용한 그래핀 성장 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant