WO2020015765A1 - 用于紫外波段的金属掺氧化镓透明导电薄膜及其制备方法 - Google Patents

用于紫外波段的金属掺氧化镓透明导电薄膜及其制备方法 Download PDF

Info

Publication number
WO2020015765A1
WO2020015765A1 PCT/CN2019/106290 CN2019106290W WO2020015765A1 WO 2020015765 A1 WO2020015765 A1 WO 2020015765A1 CN 2019106290 W CN2019106290 W CN 2019106290W WO 2020015765 A1 WO2020015765 A1 WO 2020015765A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
metal
thin film
doped
transparent conductive
Prior art date
Application number
PCT/CN2019/106290
Other languages
English (en)
French (fr)
Inventor
王洪
文如莲
胡晓龙
周泉斌
Original Assignee
中山市华南理工大学现代产业技术研究院
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中山市华南理工大学现代产业技术研究院, 华南理工大学 filed Critical 中山市华南理工大学现代产业技术研究院
Priority to US17/260,564 priority Critical patent/US20210305460A1/en
Publication of WO2020015765A1 publication Critical patent/WO2020015765A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • C23C14/025Metallic sublayers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5846Reactive treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/42Transparent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0016Processes relating to electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen

Definitions

  • Metal-doped gallium oxide transparent conductive film for ultraviolet wave band and preparation method thereof Metal-doped gallium oxide transparent conductive film for ultraviolet wave band and preparation method thereof
  • the present invention relates to a conductive film with high transmittance in the ultraviolet band, and particularly to a metal-doped gallium oxide transparent conductive film for use in the ultraviolet band and a preparation method thereof; the conductive film is a gallium oxide transparent metal-doped technology Conductive film.
  • ITO forbidden band width is between 3.5eV and 4.3eV.
  • Ga203 material is a wideband material with a forbidden band width of 4.9 to 5. OeV.
  • Ga203 is a wide band gap semiconductor material, its conductivity is poor. People doped with In or Sn to form (3-Ga203 to improve its conductivity. Orita M, Hiramatsu H, et al. (Orita
  • ITOfilmsbymagnetron sputtering [J] .Journalo fsemiconductors.2010, 31 (10): 5-9.)
  • ITO thickness and other conditions to improve the sheet resistance and transmittance of Ga203 / IT0 film, 323Q / sq can be achieved at 280nm Block resistance and 77.6% transmittance.
  • Jae-kwanKim et al. Karl J, Lee J. Electrical and optical properties of near UV transparent conductive
  • the present invention provides a
  • the sheet resistance of the film is lower than 20Q / sq,
  • the transmittance of the film above 330nm is more than 90%.
  • a method for preparing a metal-doped gallium oxide transparent conductive film for use in the ultraviolet band includes the following steps:
  • a contact layer film is conventionally grown on the substrate using an electron beam, and the contact layer film is annealed in a rapid thermal annealing furnace at 400 ° C ⁇ 600 ° C under nitrogen and oxygen atmosphere after growth;
  • the first layer of Ga203 film is grown by sputtering under the condition of argon magnetron sputtering, and the thickness of the first layer of Ga203 film is controlled to 10 ⁇ 20nm;
  • doped thin film sputter growth under the condition of argon magnetron sputtering the doped film is Ag, A1 or Ti film, the thickness of the miscellaneous hafnium film is controlled to 3-7nm;
  • the second layer of Ga203 thin film is grown by sputtering under the condition of argon magnetron sputtering, and the thickness of the second layer of Ga203 thin film is 10 ⁇ 20nm;
  • the substrate described in step 1) is obtained by washing with sulfuric acid, hydrogen peroxide, and ammonia in a 60 ° C water bath.
  • the substrate in step 1) is circular and has a thickness of
  • the substrate is a GaN-based LED epitaxial.
  • the material of the contact layer film in step 1) is ITO or Ni, and if the material of the contact layer film is ITO, the ITO growth thickness is 10 nm to 20 nm; if the material of the contact layer film is Ni The Ni growth thickness is 1 to 4 nm.
  • the power of the magnetron sputtering described in step 2) is 120 ⁇ 140W, the rotation speed of the substrate is 20rmp, and the pressure is 5mtorr; the Si emission time is 5 ⁇ 10 minutes.
  • the magnetron sputtering power in step 3) is 100 ⁇ 120W, the substrate rotation speed is 20 rmp, and the pressure is 5 mtorr.
  • the power of the magnetron sputtering in step 4) is 120 ⁇ 140W
  • the rotation speed of the substrate is 20rmp
  • the pressure is 5mtorr
  • the Si emission time is 5 ⁇ 10 minutes.
  • the metal-doped Ga203 film in step 5) is formed by fusing the contact layer film, the first Ga203 film, the doped film 4 and the second Ga203 film; the thickness of the metal-doped Ga203 film is 2 4nm ⁇ 67nm.
  • the annealing time in step 1) and step 5) are both 1-5 minutes.
  • a metal-doped gallium oxide transparent conductive film for use in the ultraviolet band is prepared by the above preparation method.
  • the metal-doped gallium oxide transparent conductive film has a sheet resistance of less than 20 Q / sq, and the film has a UV band of 330 nm or more. The rate is greater than 90%.
  • the transmittance of the thin film of the present invention is increased in the ultraviolet band, while the sheet resistance of the thin film is reduced, and the metal is doped with gallium oxide.
  • the square resistance of the transparent conductive film is less than 20Q / sq, and the transmittance of the film is more than 90% above 330nm in the ultraviolet band.
  • the present invention inserts a contact layer film under the Ga203 film, which can improve the contact performance between the Ga203 film and the epitaxial material.
  • the preparation method of the present invention is to form a first layer of Ga203 film, a doped metal film, and a second layer of Ga203 film by high-temperature annealing after growing a contact layer film after high-temperature annealing treatment.
  • the preparation method is simple.
  • FIG. 1 is a schematic cross-sectional view of Example 1 before the transparent conductive film is not annealed;
  • FIG. 2 is a schematic cross-sectional view of the Ga203 transparent conductive thin film for ultraviolet band in Example 1 after annealing;
  • FIG. 3 is a diagram of the Ga203 transparent conductive thin film for ultraviolet band and ordinary 90nm ITO film in Example 1 Transmission graph.
  • the figure shows: a substrate 1, a contact layer film 2, a first Ga203 film 31, a doped film 4, a second Ga203 film 32, and a metal-doped Ga203 film 5.
  • FIG. 1 is a schematic cross-sectional view of a novel metal-doped Ga203 film before high temperature annealing in a specific embodiment
  • a method for preparing a metal-doped gallium oxide transparent conductive film for use in the ultraviolet band includes: Include the following steps:
  • the contact layer film 2 is conventionally grown using an electron beam on a substrate 1 which is cleaned by sulfuric acid, hydrogen peroxide and ammonia in a 60 ° C water bath.
  • the contact layer film 2 is ITO and has a thickness of 10 nm. Anneal at 60 0 ° C for 1 minute.
  • the first layer of Ga203 thin film 31 is sputter-grown under the conditions of 140W of magnetron sputtering, substrate rotation speed of 20rmp, and 5mtorr argon.
  • the sputtering time is preferably 10 minutes and the thickness is 15nm.
  • doped film 4 is a 7nm thickness Ag film;
  • the whole of the grown film is annealed in a rapid thermal annealing furnace at 600 ° C. for 1 minute under nitrogen and oxygen atmosphere, and the film materials are permeated, diffused and fused to form a metal-doped Ga203 film 5 as shown in FIG.
  • the thin film 2, the first Ga203 thin film 31, the doped thin film 4, and the second Ga203 thin film 32 are fused into a metal-doped Ga203 thin film 5.
  • the thickness of the metal-doped Ga203 film 5 is 47 nm.
  • the abscissa is the wavelength and the ordinate is the transmittance.
  • 90nm ITO is a ITO film with a thickness of 90nm deposited by conventional electron beam evaporation
  • IT0-Ga203-Ag-Ga203 film is the sample prepared in Example 1. It can be seen from FIG. 3 that the transmittance of the product of this example in the range of 300 nm to 500 nm is much larger than that of a conventional 90 nm ITO film.
  • Table 1 shows the transmittance and square resistance parameters of the novel metal-doped Ga203 thin film 5 and 90nml TO thin film with ITO as the contact layer 2 in specific embodiment 1 at 365 nm, and the square resistance uses a four-probe tester. Measured.
  • the square resistance of the novel metal-doped Ga203 thin film 5 in this embodiment is much lower than that of a conventional 90 nm ITO thin film.
  • a Ga203 transparent conductive film for ultraviolet band of the present invention has a reduced sheet resistance to 20 Q / sq, a transmittance of more than 92% at a band of 365 nm, and a specific contact resistivity between the film and the p- GaN surface. Reached 10-3Qcm2. Because ITO is used as the contact layer, and the doped thin film 4 is added, the overall ohmic contact characteristics of the thin film are improved. At the same time, the high transmittance of the Ga203 thin film in the ultraviolet band is ensured.
  • the transparent conductive film of the present invention has a larger film optical transmittance and a lower film sheet resistance.
  • conventional magnetron sputtering equipment and electron beam evaporation equipment are used to deposit each layer of thin film, and new equipment is not required to be introduced into the original equipment, so the process difficulty is not increased.
  • the present invention is a Ga203 transparent conductive film for the ultraviolet band, which combines a contact layer film with good conductivity and a Ga203 film with high transmittance.
  • the conductive layer is conductive.
  • the problem of low rate is conducive to improving the transmittance of the film in the ultraviolet band and reducing the sheet resistance.
  • a method for preparing a metal-doped gallium oxide transparent conductive film for use in the ultraviolet band includes the following steps:
  • the substrate 1 washed with sulfuric acid, hydrogen peroxide, and ammonia in a 60 ° C water bath was firstly grown using a conventional electron beam.
  • the contact layer film 2 was Ni, and the thickness of the contact layer film 2 was 4 nm through a rapid thermal annealing furnace. 600 ° (: annealing for 1 minute under nitrogen and oxygen atmosphere.
  • the first layer of Ga203 thin film 31 is sputter-grown under the conditions of 140 W of magnetron sputtering, substrate rotation speed of 20 rmp, and 5 mtorr argon.
  • the sputtering time is preferably 10 minutes and the thickness is 15 nm.
  • doped thin film 4 is a 7nm thick Ag film;
  • the whole grown film is annealed in a rapid thermal annealing furnace at 600 ° C. for 1 minute under nitrogen and oxygen atmosphere, and the film materials are permeated, diffused and fused to form a metal-doped Ga203 film 5 as shown in FIG.
  • the thin film 2, the first Ga203 thin film 31, the doped thin film 4, and the second Ga203 thin film 32 are fused into a metal-doped Ga203 thin film 5.
  • the thickness of the metal-doped Ga203 film 5 is 41 nm.
  • a Ga203 transparent conductive film for ultraviolet band in Example 2 has a reduced sheet resistance to 16Q / sq , The transmittance is above 93% in the 365nm band, and the contact characteristics of the film and the p-GaN surface reach 0 5x 10-3Qcm2
  • a method for preparing a metal-doped gallium oxide transparent conductive film for use in the ultraviolet band includes the following steps:
  • the contact layer film 2 is grown conventionally using an electron beam on a substrate 1 which is cleaned by sulfuric acid, hydrogen peroxide, and ammonia in a 60 ° C water bath.
  • the contact layer film 2 is ITO and has a thickness of 10 nm. Anneal at 60 0 ° C for 1 minute.
  • the first layer of Ga203 thin film 31 is sputter-grown under the conditions of 140 W of magnetron sputtering, substrate rotation speed of 20 rmp, and 5 mtorr argon.
  • the sputtering time is preferably 10 minutes, and the thickness is 10 nm.
  • doped thin film 4 is a 7nm thick Ag film;
  • the sputtering time is preferably 10 minutes, and the thickness is 10 nm.
  • the whole of the grown film is further annealed in a rapid thermal annealing furnace at 600 ° C. for 1 minute under nitrogen and oxygen atmosphere. Permeation, diffusion and fusion between the thin film materials form a metal-doped Ga203 film 5 as shown in FIG.
  • the thin film 2, the first Ga203 thin film 31, the doped thin film 4, and the second Ga203 thin film 32 are fused into a metal-doped Ga203 thin film 5.
  • the thickness of the metal-doped Ga203 film 5 is 37 nm.
  • a Ga203 transparent conductive film for ultraviolet band in Example 3 has a reduced sheet resistance of 20Q / sq, a transmittance of 94% in the 365nm band, and a contact characteristic between the film and the p-GaN surface. 10-3Qc m2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Led Devices (AREA)

Abstract

一种用于紫外波段的金属掺氧化镓透明导电薄膜的制备方法,先在基底(1)上生长一层接触层薄膜(2),接触层薄膜(2)生长后经由快速热退火炉400°C〜600°C氮氧氛围下退火;利用磁控溅射氩气条件下溅射生长第一层Ga2O3薄膜(31);利用磁控溅射氩气条件下溅射生长掺杂薄膜(4);利用磁控溅射氩气条件下溅射生长第二层Ga2O3薄膜(32),生长完成的薄膜整体经由快速热退火炉500-600°C氮氧氛围下退火,薄膜材料之间渗透扩散熔合,形成金属掺杂Ga2O3薄膜(5)。还包括一种用于紫外波段的金属掺氧化镓透明导电薄膜。

Description

用于紫外波段的金属掺氧化镓透明导电薄膜及其制备方 法
技术领域
[0001] 本发明涉及一种在紫外波段高透过率的导电薄膜, 尤其涉及用于紫外波段的金 属掺氧化镓透明导电薄膜及其制备方法; 该导电薄膜是金属掺杂技术的氧化镓 透明导电薄膜。
背景技术
[0002] 在光电子器件的制备过程中, 为与外延片形成良好的欧姆接触, 并且减少对发 射光源的吸收, 制备一种低接触电阻和高光学透过率的透明导电薄膜至关重要 。 ITO禁带宽度在 3.5eV到 4.3eV之间, 在蓝光和绿光 LED制备中有成熟的工艺, 但在紫外波段存在严重光吸收, 薄膜越好, 对紫光的吸收越多。 因此能找到一 种可以替代 ITO在紫外波段作为透明导电层的薄膜意义深远。 Ga203材料作为一 种宽带系材料, 禁带宽度为 4.9到 5.OeV, 因其大尺寸高质量的晶片可以通过熔 体生长法合成的单晶体来制造而引起广泛关注。 这种材料在金属半导体场效应 晶体管, 金属氧化物半导体场效应管和肖特基势垒二极管的器件中都有研究。 并且因其在紫外波段具有很高的透过率, 人们也将其考虑用于紫外 LED的制备中
[0003] 但由于 Ga203是一种宽禁带半导体材料, 其导电性能很差。 人们通过掺杂 In或 者 Sn形成 (3-Ga203来提升其导电性能, Orita M, Hiramatsu H等人 (Orita
M, Hiramatsu H, OhtaH , et al .Preparation of highly conductive , deep ultraviolet transparent(3-Ga 203thin film at low deposition temperatures [J] .Thin Solid Films .2002, 411(1):134-139)在 880°C的硅玻璃上制备了多晶 (3-Ga203薄膜, 获得了约 1 S/cm的电导率, 通过制备 (201)取向 Sn掺杂的 (3-Ga203薄膜, 获得的最大电导率 为 8.2S/cm (约 1.22xl04Q/sq), 但这仍然难以用于 L E D导电薄膜制备。 LiuJJ 等人 ( LiuJJ , YanJl, S h i L , , etal .Electrical and optical properties of d eep ultra violet trans pa rente onductiveGa203/ITOfilmsbymagnetron sputtering[J] .Journalo fsemiconductors .2010, 31(10):5-9.)通过调整生 长温度, ITO厚度等条件来改善 Ga203/IT0薄膜方块电阻和透过率, 在 280nm处 可以实现 323Q/sq方块电阻和 77.6%透过率。 Jae-kwanKim等人(Kim J, LeeJ .Electrical and optical properties of near UV transparentconductive
IT0/Ga203multilayer films deposited by RF magnetron sputtering [J] .Applied Physics Letters .2016, 109(17):172107.)实现了在 380nm处透过率为 80
.94%, 方块电阻为 58.6Q/sq; 韩国 KieYoungWoo小组制备 Ag/Ga203模型, 通 过 Ag插入层改善薄膜的接触特性和导电率, 在 380nm实现 91%的透过率和 3 ,06xl0-2Qcm2的比接触电阻电阻率。 但上述现有技术方法制备得到的 Ga203薄 膜, 在波长低于 390nm的紫外波段, 透过率仍然不够高, 薄膜自身的方块电阻较 大, 导电性较差。 技术问题
发明概述
技术问题
问题的解决方案
技术解决方案
[0004] 为了克服现在 Ga203薄膜在紫外波段接触特性差, 导电率低等不足, 本发明提 供一
[0005] 种新型金属掺氧化镓透明导电薄膜及其制备方法, 提高其在紫光波段透过率的 同时降低薄膜的方块电阻及改善其与外延材料接触特性, 薄膜方块电阻低于 20Q /sq, 薄膜紫外波段 330nm以上透过率大于 90%。
[0006] 本发明解决其技术问题所采用的技术方案是:
[0007] 一种用于紫外波段的金属掺氧化镓透明导电薄膜的制备方法, 包括如下步骤:
[0008] 1)在基底上利用电子束常规生长一层接触层薄膜, 接触层薄膜生长后经由快速 热退火炉 400°C〜 600°C氮氧氛围下退火;
[0009] 2)利用磁控溅射氩气条件下溅射生长第一层 Ga203薄膜, 控制第一层 Ga203薄 膜的厚度为 10〜 20nm;
[0010] 3)利用磁控溅射氩气条件下溅射生长掺杂薄膜, 掺杂薄膜为 Ag、 A1或 Ti薄膜, 控制惨杂溥膜的厚度为 3-7nm; [0011] 4)利用磁控溅射氩气条件下溅射生长第二层 Ga203薄膜, 控制第二层 Ga203薄 膜的厚度为 10〜 20nm;
[0012] 5)生长完成的薄膜整体经由快速热退火炉 500-600°C氮氧氛围下退火, 薄膜材 料之间渗透扩散熔合, 形成金属掺杂 Ga203薄膜。
[0013] 为进一步实现本发明目的, 优选地, 步骤 1)所述的基底是分别经由硫酸、 双氧 水和氨水在 60°C水浴清洗所得。
[0014] 优选地, 步骤 1)所述的基底为圆形, 厚度为
Figure imgf000005_0001
所述基底为 GaN基 LED外 延。
[0015] 优选地, 步骤 1)所述的接触层薄膜的材料为 ITO或者 Ni, 如果接触层薄膜的材 料为 ITO, 所述的 ITO生长厚度为 10nm〜 20nm; 如果接触层薄膜的材料为 Ni, 所 述 Ni生长厚度为 1〜 4nnm。
[0016] 优选地, 步骤 2)所述的磁控溅射的功率为 120〜 140W, 基底转速为 20rmp, 压 强为 5mtorr; Si射时间为 5〜 10分钟。
[0017] 优选地, 步骤 3)所述的磁控溅射的功率为 100〜 120W, 基底转速为 20rmp, 压 强为 5mtorr。
[0018] 优选地, 步骤 4)所述的磁控溅射的功率为 120〜 140W, 基底转速为 20rmp, 压 强为 5mtorr; Si射时间为 5〜 10分钟。
[0019] 优选地, 步骤 5)所述的金属掺杂 Ga203薄膜是由接触层薄膜、 第一层 Ga203薄 膜、 掺杂薄膜 4以及第二层 Ga203薄膜融合形成; 金属掺杂 Ga203薄膜的厚度为 2 4nm〜 67nm。
[0020] 优选地, 步骤 1)和步骤 5)所述的退火的时间都为 1-5分钟。
[0021] 一种用于紫外波段的金属掺氧化镓透明导电薄膜, 由上述制备方法制得, 所述 金属掺氧化镓透明导电薄膜的方块电阻低于 20Q/sq, 薄膜紫外波段 330nm以上透 过率大于 90%。
发明的有益效果
有益效果
[0022] 相对于现有技术, 本发明具有如下优点和有益效果:
[0023] 1)本发明薄膜透过率在紫外波段提升, 同时薄膜方块电阻降低, 金属掺氧化镓 透明导电薄膜的方块电阻低于 20Q/sq, 薄膜紫外波段 330nm以上透过率大于 90%
[0024] 2)本发明在 Ga203薄膜下插入一层接触层薄膜, 可以改善 Ga203薄膜与外延材 料之间的接触性能。
[0025] 3)本发明薄膜内元素通过高温退火处理后发生扩散渗透熔合, XPS测试得到的 接触层薄膜元素以及氧元素含量增大。
[0026] 4)本发明薄膜与 p-GaN表面的接触特性达到 10-3Qcm2的比接触电阻电阻率。
[0027] 5)本发明制备方法为通过先生长一层接触层薄膜, 高温退火处理后再生长第一 层 Ga203薄膜、 掺杂金属薄膜、 第二层 Ga203薄膜, 再一起通过高温退火后而形 成; 制备方法简单。
[0028] 6)本发明在采用的是常规的磁控溅射设备和电子束蒸发设备来沉积各层薄膜, 原有设备上不需要引入新的设备, 不会增大工艺难度; 具有明显的成本优势。 对附图的简要说明
附图说明
[0029] 图 1为实施例 1透明导电薄膜未退火前的横截面示意图;
[0030] 图 2为实施例 1用于紫外波段的 Ga203透明导电薄膜退火后的横截面示意图; [0031] 图 3为实施例 1的用于紫外波段的 Ga203透明导电薄膜与普通的 90nmITO薄膜的 透过率曲线图。
[0032] 图中示出: 基底 1、 接触层薄膜 2、 第一层 Ga203薄膜 31、 掺杂薄膜 4、 第二层 G a203薄膜 32、 金属掺杂 Ga203薄膜 5。
发明实施例
本发明的实施方式
[0033] 为更好地理解本发明, 下面结合附图和实施例对本发明作进一步的说明, 但本 发明的实施方式不限如此。
[0034] 实施例 1
[0035] 图 1为具体实施例的一种新型金属掺杂 Ga203薄膜未高温退火前的横截面示意 图;
[0036] 如图 1所示, 一种用于紫外波段的金属掺氧化镓透明导电薄膜的制备方法, 包 括如下步骤:
[0037] 1)在分别经由硫酸、 双氧水和氨水在 60°C水浴清洗的基底 1上首先利用电子束 常规生长接触层薄膜 2, 接触层薄膜 2为 ITO, 厚度为 10nm, 经由快速热退火炉 60 0°C氮氧氛围下退火 1分钟。
[0038] 2)利用磁控濺射 140W功率, 基底转速 20rmp, 5mtorr氩气条件下濺射生长第一 层 Ga203薄膜 31, 溅射时间优选 10分钟, 厚度是 15nm。
[0039] 3)利用磁控濺射 100W功率, 基底转速 20rmp, 5mtorr氩气条件下濺射生长掺杂 薄膜 4, 掺杂薄膜 4是厚度为 7nm的 Ag薄膜;
[0040] 4)利用磁控濺射 140W功率, 基底转速 20rmp, 5mtorr氩气条件下濺射生长第二 层 Ga203薄膜 32, 溅射时间优选 10分钟, 厚度是 15nm。
[0041] 5)生长完成的薄膜整体再经由快速热退火炉 600°C氮氧氛围下退火 1分钟, 薄膜 材料之间渗透扩散熔合形成图 2所示金属掺杂 Ga203薄膜 5, 具体是接触层薄膜 2 、 第一层 Ga203薄膜 31、 掺杂薄膜 4以及第二层 Ga203薄膜 32融合成为金属掺杂 Ga203薄膜 5。 金属掺杂 Ga203薄膜 5的厚度是 47nm。
[0042] 对实施例 1所述的样品, 采用椭偏仪测试其的透过率, 得到图 3的透过率曲线。
图 3中, 横坐标为波长, 纵坐标为透过率, 90nm ITO是采用常规的电子束蒸发沉 积的厚度为 90nm的 ITO薄膜, IT0-Ga203-Ag-Ga203薄膜是实施例 1制备的样品 。 从图 3可见, 本实施例品在 300nm〜 500nm的波段范围内, 透过率远大于常规 的 90nm ITO薄膜。
[0043] 表 1为具体实施例 1的以 ITO为接触层薄膜 2的新型金属掺杂 Ga203薄膜 5与 90nml TO薄膜的在 365nm的透过率和方块电阻参数, 方块电阻采用四探针测试仪测得 。 本实施例的新型金属掺杂 Ga203薄膜 5的方块电阻, 远低于常规的 90nmITO薄 膜。
[0044] 表 1
[] [表 1]
Figure imgf000007_0001
[0045] 本发明一种用于紫外波段的 Ga203透明导电薄膜的方块电阻降低至 20Q/sq、 透 过率在 365nm波段透过率达 92%以上、 薄膜与 p-GaN表面的比接触电阻率达到 10- 3Qcm2。 因为采用了 ITO作为接触层, 并加入了掺杂薄膜 4, 使薄膜整体欧姆接 触特性得到改善, 同时由于 Ga203薄膜在紫外波段的高透过率, 保证了薄膜整体 的高透过率。
[0046] 本发明的透明导电薄膜在 ITO透明导电薄膜基础上, 具有更大的薄膜光学透过 率和更低的薄膜方块电阻。 本发明在采用的是常规的磁控溅射设备和电子束蒸 发设备来沉积各层薄膜, 原有设备上不需要引入新的设备, 因此不会增大工艺 难度。
[0047] 本发明一种用于紫外波段的 Ga203透明导电薄膜, 结合了导电性较好的接触层 薄膜和透过率较高的 Ga203薄膜, 通过克服现在 Ga203薄膜在紫外波段接触特性 差, 导电率低的问题, 有利于提高薄膜紫外波段的透过率和降低了方块电阻。
[0048] 实施例 2
[0049] 一种用于紫外波段的金属掺氧化镓透明导电薄膜的制备方法, 包括如下步骤:
[0050] 1)在分别经由硫酸、 双氧水和氨水在 60°C水浴清洗的基底 1上首先利用电子束 常规生长接触层薄膜 2, 接触层薄膜 2为 Ni, 厚度为 4nm, 经由快速热退火炉 600 °(:氮氧氛围下退火 1分钟。
[0051] 2)利用磁控濺射 140W功率, 基底转速 20rmp, 5mtorr氩气条件下濺射生长第一 层 Ga203薄膜 31, 溅射时间优选 10分钟, 厚度是 15nm。
[0052] 3)利用磁控濺射 100W功率, 基底转速 20rmp, 5mtorr氩气条件下濺射生长掺杂 薄膜 4, 掺杂薄膜 4是厚度为 7nm的 Ag薄膜;
[0053] 4)利用磁控濺射 140W功率, 基底转速 20rmp, 5mtorr氩气条件下濺射生长第二 层 Ga203薄膜 32, 溅射时间优选 10分钟, 厚度是 15nm。
[0054] 5)生长完成的薄膜整体再经由快速热退火炉 600°C氮氧氛围下退火 1分钟, 薄膜 材料之间渗透扩散熔合形成图 2所示金属掺杂 Ga203薄膜 5, 具体是接触层薄膜 2 、 第一层 Ga203薄膜 31、 掺杂薄膜 4以及第二层 Ga203薄膜 32融合成为金属掺杂 Ga203薄膜 5。 金属掺杂 Ga203薄膜 5的厚度是 41nm。
[0055] 实施例 2的一种用于紫外波段的 Ga203透明导电薄膜, 方块电阻降低至 16Q/sq 、 透过率在 365nm波段透过率达 93%以上、 薄膜与 p-GaN表面的接触特性达到 0 5x 10-3Qcm2
[0056] 实施例 3
[0057] 一种用于紫外波段的金属掺氧化镓透明导电薄膜的制备方法, 包括如下步骤:
[0058] 1)在分别经由硫酸、 双氧水和氨水在 60°C水浴清洗的基底 1上首先利用电子束 常规生长接触层薄膜 2, 接触层薄膜 2为 ITO, 厚度为 10nm, 经由快速热退火炉 60 0°C氮氧氛围下退火 1分钟。
[0059] 2)利用磁控濺射 140W功率, 基底转速 20rmp, 5mtorr氩气条件下濺射生长第一 层 Ga203薄膜 31, 溅射时间优选 10分钟, 厚度是 10nm。
[0060] 3)利用磁控濺射 100W功率, 基底转速 20rmp, 5mtorr氩气条件下濺射生长掺杂 薄膜 4, 掺杂薄膜 4是厚度为 7nm的 Ag薄膜;
[0061] 4)利用磁控濺射 140W功率, 基底转速 20rmp, 5mtorr氩气条件下濺射生长第二 层 Ga203薄膜 32, 溅射时间优选 10分钟, 厚度是 10nm。
[0062] 5)生长完成的薄膜整体再经由快速热退火炉 600°C氮氧氛围下退火 1分钟, 薄膜 材料之间渗透扩散熔合形成图 2所示金属掺杂 Ga203薄膜 5, 具体是接触层薄膜 2 、 第一层 Ga203薄膜 31、 掺杂薄膜 4以及第二层 Ga203薄膜 32融合成为金属掺杂 Ga203薄膜 5。 金属掺杂 Ga203薄膜 5的厚度是 37nm。
[0063] 实施例 3的一种用于紫外波段的 Ga203透明导电薄膜, 方块电阻降低至 20Q/sq 、 透过率在 365nm波段透过率达 94%、 薄膜与 p-GaN表面的接触特性达到 10-3Qc m2。
[0064] 需要说明的是, 实施例不构成对本发明的任何限制, 显然对于本领域的专业人 员来说, 在了解本发明内容和原理后, 能够在不背离本发明的原理和范围的情 况下, 对本发明进行形式和细节上的各种修正和改变, 这些基于本发明的修正 和改变仍在本发明的权利要求保护范围之内。

Claims

权利要求书
[权利要求 1] 用于紫外波段的金属掺氧化镓透明导电薄膜的制备方法, 其特征在于 包括如下步骤:
1)在基底上利用电子束常规生长一层接触层薄膜, 接触层薄膜生长后 经由快速热退火炉 400°C〜 600°C氮氧氛围下退火;
2)利用磁控溅射氩气条件下溅射生长第一层 Ga 20 3 薄膜, 控制第一层 Ga 20 3薄膜的厚度为 10〜 20nm;
3)利用磁控溅射氩气条件下溅射生长掺杂薄膜, 掺杂薄膜为 Ag、 A1或 Ti薄膜, 控制掺杂薄膜的厚度为 3-7nm;
4)利用磁控溅射氩气条件下溅射生长第二层 Ga 20 3 薄膜, 控制第二层 Ga 20 3薄膜的厚度为 10〜 20nm;
5)生长完成的薄膜整体经由快速热退火炉 500-600°C氮氧氛围下退火 , 薄膜材料之间渗透扩散熔合, 形成金属掺杂 Ga 20 3薄膜。
[权利要求 2] 根据权利要求 1所述的用于紫外波段的金属掺氧化镓透明导电薄膜的 制备方法, 其特征在于, 步骤 1)所述的基底是分别经由硫酸、 双氧水 和氨水在 60°C水浴清洗所得。
[权利要求 3] 根据权利要求 1所述的用于紫外波段的金属掺氧化镓透明导电薄膜的 制备方法, 其特征在于, 步骤 1)所述的基底为圆形, 厚度为
Figure imgf000010_0001
所述基底为 GaN基 LED外延。
[权利要求 4] 根据权利要求 1所述的用于紫外波段的金属掺氧化镓透明导电薄膜的 制备方法, 其特征在于, 步骤 1)所述的接触层薄膜的材料为 ITO或者 Ni, 如果接触层薄膜的材料为 ITO, 所述的 ITO生长厚度为 10nm〜 20 nm; 如果接触层薄膜的材料为 Ni, 所述 Ni生长厚度为 1〜 4nnm。
[权利要求 5] 根据权利要求 1所述的用于紫外波段的金属掺氧化镓透明导电薄膜的 制备方法, 其特征在于, 步骤 2)所述的磁控溅射的功率为 120〜 140W , 基底转速为 20rmp, 压强为 5mtorr; Si射时间为 5〜 10分钟。
[权利要求 6] 根据权利要求 1所述的用于紫外波段的金属掺氧化镓透明导电薄膜的 制备方法, 其特征在于, 步骤 3)所述的磁控溅射的功率为 100〜 120W , 基底转速为 20rmp, 压强为 5mtorr。
[权利要求 7] 根据权利要求 1所述的用于紫外波段的金属掺氧化镓透明导电薄膜的 制备方法, 其特征在于, 步骤 4)所述的磁控溅射的功率为 120〜 140W , 基底转速为 20rmp, 压强为 5mtorr; Si射时间为 5〜 10分钟。
[权利要求 8] 根据权利要求 1所述的用于紫外波段的金属掺氧化镓透明导电薄膜的 制备方法, 其特征在于, 步骤 5)所述的金属掺杂 Ga 20 3薄膜是由接触 层薄膜、 第一层 Ga 20 3薄膜、 掺杂薄膜 4以及第二层 Ga 20 3薄膜融合 形成; 金属掺杂 Ga 20 3薄膜的厚度为 24nm〜 67nm。
[权利要求 9] 根据权利要求 1所述的用于紫外波段的金属掺氧化镓透明导电薄膜的 制备方法, 其特征在于, 步骤 1)和步骤 5)所述的退火的时间都为 1-5分 钟。
[权利要求 10] 一种用于紫外波段的金属掺氧化镓透明导电薄膜, 其特征在于, 其由 权利要求 1-9任一项所述的制备方法制得; 所述金属掺氧化镓透明导 电薄膜的方块电阻低于 20Q/sq, 薄膜紫外波段 330nm以上透过率大于 90%。
PCT/CN2019/106290 2018-07-17 2019-09-17 用于紫外波段的金属掺氧化镓透明导电薄膜及其制备方法 WO2020015765A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/260,564 US20210305460A1 (en) 2018-07-17 2019-09-17 Metal-doped gallium oxide transparent conductive thin film for ultraviolet waveband and preparation method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810783767.4A CN109136869B (zh) 2018-07-17 2018-07-17 用于紫外波段的金属掺氧化镓透明导电薄膜及其制备方法
CN201810783767.4 2018-07-17

Publications (1)

Publication Number Publication Date
WO2020015765A1 true WO2020015765A1 (zh) 2020-01-23

Family

ID=64800767

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/106290 WO2020015765A1 (zh) 2018-07-17 2019-09-17 用于紫外波段的金属掺氧化镓透明导电薄膜及其制备方法

Country Status (3)

Country Link
US (1) US20210305460A1 (zh)
CN (1) CN109136869B (zh)
WO (1) WO2020015765A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116083869A (zh) * 2023-04-07 2023-05-09 北京石油化工学院 一种偏压辅助半导体薄膜、制备方法及其应用

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109136869B (zh) * 2018-07-17 2020-07-31 中山市华南理工大学现代产业技术研究院 用于紫外波段的金属掺氧化镓透明导电薄膜及其制备方法
CN112885503B (zh) * 2021-01-12 2022-06-21 南开大学 一种超薄银基omo复合透明导电薄膜的制备方法及应用
CN112908517B (zh) * 2021-01-19 2022-08-05 大正(江苏)微纳科技有限公司 一种透明导电薄膜及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101661810A (zh) * 2009-09-24 2010-03-03 鲁东大学 深紫外非晶透明导电膜及其制备方法
CN102543271A (zh) * 2012-02-17 2012-07-04 华东师范大学 热稳定性增强的透明导电薄膜及其应用
CN104795131A (zh) * 2014-01-17 2015-07-22 Tdk株式会社 透明导电体以及触摸面板
TW201820625A (zh) * 2016-10-11 2018-06-01 日本商出光興產股份有限公司 構造物、其製造方法、半導體元件及電子電路
CN109136869A (zh) * 2018-07-17 2019-01-04 中山市华南理工大学现代产业技术研究院 用于紫外波段的金属掺氧化镓透明导电薄膜及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005235961A (ja) * 2004-02-18 2005-09-02 Univ Waseda Ga2O3系単結晶の導電率制御方法
CN101841003B (zh) * 2010-03-30 2012-05-23 鲁东大学 双层结构深紫外透明导电膜及其制备方法
WO2018103647A1 (zh) * 2016-12-08 2018-06-14 西安电子科技大学 基于Ga2O3材料的紫外光电探测器的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101661810A (zh) * 2009-09-24 2010-03-03 鲁东大学 深紫外非晶透明导电膜及其制备方法
CN102543271A (zh) * 2012-02-17 2012-07-04 华东师范大学 热稳定性增强的透明导电薄膜及其应用
CN104795131A (zh) * 2014-01-17 2015-07-22 Tdk株式会社 透明导电体以及触摸面板
TW201820625A (zh) * 2016-10-11 2018-06-01 日本商出光興產股份有限公司 構造物、其製造方法、半導體元件及電子電路
CN109136869A (zh) * 2018-07-17 2019-01-04 中山市华南理工大学现代产业技术研究院 用于紫外波段的金属掺氧化镓透明导电薄膜及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116083869A (zh) * 2023-04-07 2023-05-09 北京石油化工学院 一种偏压辅助半导体薄膜、制备方法及其应用

Also Published As

Publication number Publication date
CN109136869A (zh) 2019-01-04
CN109136869B (zh) 2020-07-31
US20210305460A1 (en) 2021-09-30

Similar Documents

Publication Publication Date Title
WO2020015765A1 (zh) 用于紫外波段的金属掺氧化镓透明导电薄膜及其制备方法
JP2022518522A (ja) 複合金属酸化物半導体および薄膜トランジスタとその応用
Vu et al. The effect of oxygen partial pressure on band gap modulation of Ga2O3 grown by pulsed laser deposition
CN112831768B (zh) 一种高结晶质量的氮化铪薄膜制备方法及应用
WO2007107048A1 (fr) PROCÉDÉ DE FABRICATION DE FILM MONOCRISTALLIN ZnO DE GRANDE QUALITÉ SUR SUBSTRAT DE SILICIUM (111)
JP2022518521A (ja) ドーピングされた金属酸化物半導体および薄膜トランジスタとその応用
CN108899401B (zh) 基于石墨烯插入层结构的GaN基LED器件制备方法
CN100479221C (zh) 一种氧化锡单晶薄膜的制备方法
Yusof et al. Fabrication and characterization of copper doped zinc oxide by using Co-sputtering technique
JP6036984B2 (ja) 酸窒化物半導体薄膜
CN116845152A (zh) 一种led芯片制备方法及led芯片
WO2022105203A1 (zh) 一种新型透明导电氧化物薄膜的制备方法及其应用
US9583517B2 (en) Polycrystalline oxide thin-film transistor array substrate and method of manufacturing same
KR20140122326A (ko) 산화인듐을 이용한 cigs 광흡수층 제조방법
WO2018214480A1 (zh) 一种类岛状电子传输的薄膜晶体管及制备方法
CN111933697A (zh) 一种二维全无机钙钛矿晶体管及其制备方法
CN112725746A (zh) 一种提高氧化亚铜薄膜晶粒度的方法及其应用
CN111081886A (zh) 基于氧化镓钙钛矿多层堆叠结构的pin二极管及其制备方法
WO2019127849A1 (zh) 高功函数可调的过渡金属氮化物材料、其制备方法及应用
WO2023193636A1 (zh) 基于单晶二硒化钨的垂直异质外延高定向金属铂的方法
CN117568755B (zh) 一种低电阻的镧锶锰氧电极薄膜及其制备方法
CN101311357B (zh) 一种氧化铟单晶外延薄膜的制备方法
CN114134569B (zh) Cu-SnO2单晶薄膜及其制备方法和应用
CN114752887B (zh) 一种利用磁控共溅射技术制备MnGe铁磁性量子点材料的方法
KR102660923B1 (ko) 도핑된 주석 산화물 박막 트랜지스터 및 그 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19837411

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19837411

Country of ref document: EP

Kind code of ref document: A1