CN112941466A - 一种金掺杂氮化硼薄膜的制备方法 - Google Patents
一种金掺杂氮化硼薄膜的制备方法 Download PDFInfo
- Publication number
- CN112941466A CN112941466A CN202110122717.3A CN202110122717A CN112941466A CN 112941466 A CN112941466 A CN 112941466A CN 202110122717 A CN202110122717 A CN 202110122717A CN 112941466 A CN112941466 A CN 112941466A
- Authority
- CN
- China
- Prior art keywords
- gold
- substrate
- quartz tube
- boron nitride
- nitride film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
- C23C14/16—Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
- C23C14/18—Metallic material, boron or silicon on other inorganic substrates
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/34—Nitrides
- C23C16/342—Boron nitride
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Vapour Deposition (AREA)
- Surface Treatment Of Glass (AREA)
Abstract
本发明公开了一种金掺杂氮化硼薄膜的制备方法,现有技术中贵金属元素掺杂后,可以改变h‑BN的导电类型、降低禁带宽度和电导能力。不同于石墨烯,h‑BN单分子层薄膜的制备非常困难;本发明采用氨硼烷和金作为h‑BN前驱物和掺杂剂,通过气相法在基底上制备出金掺杂h‑BN薄膜,厚度从单分子层厚度到20nm。制备的h‑BN其光学、电学性能可通过金掺杂量进行调节。
Description
技术领域
本发明属于材料技术领域,具体涉及一种金掺杂氮化硼薄膜的制备方法。
背景技术
六方氮化硼(h-BN)用途广泛,可用作绝缘材料、散热材料、固体润滑剂、和油污吸附材料,另外h-BN薄膜隔氧性能好,可用于金属表面抗氧化防护层。此外,h-BN在光电子领域也有很好的应用前景。h-BN是直接带隙半导体材料,可用于制备日盲区的深紫外光电探测器。但是,h-BN的禁带宽度大,约为6eV,不适合探测近紫外光,另外,载流子浓度低也不适合制备二极管,因此有必要降低h-BN的禁带宽度,以扩大应用范围。掺杂是降低禁带宽度提高载流子浓度常用的方法。理论计算表明,贵金属元素掺杂后,可以改变h-BN的导电类型、降低禁带宽度和电导能力。不同于石墨烯,h-BN单分子层薄膜的制备非常困难,掺杂研究少,这与h-BN本身晶体生长特性有关。
发明内容
本发明针对现有技术的不足,采用氨硼烷和金作为h-BN前驱物和掺杂剂,通过气相法在基底上制备出金掺杂h-BN薄膜,厚度从单分子层厚度到20nm。制备的h-BN其光学、电学性能可通过金掺杂量进行调节。
一种金掺杂氮化硼薄膜的制备方法,具体包括以下步骤:
步骤(1).将衬底通过热蒸发法在其表面沉积100-500nm厚度的金薄膜;
步骤(2).将基底用盐酸、去离子水清洗后氮气吹干,放入石英管中,并置于石英管的一端,其正下方放置步骤(1)的产物,基底与金薄膜之间相距500nm-1mm;
步骤(3).将氨硼烷,装入石英管中,并置于石英管的另一端,氨硼烷与基底之间距离10-25cm;
步骤(4).将步骤(3)的石英管两端密封,并抽真空;
步骤(5).将步骤(4)石英管放入管式电炉中,升温至900~1050℃,升温速率为20~30℃/min;温度升至900~1050℃后保温,保温时间为30~120min;
步骤(6).管式电炉、石英管停止加热,开启管式炉,将石英管室温环境下快速冷却到室温,然后取出基底,在基底上获得金掺杂的h-BN薄膜。
作为优选,所述的石英管直径为2cm。
作为优选,所述衬底为硅片、石英玻璃。
作为优选,所述基底为铜片、镍片、硅片。
作为优选,所述的基底尺寸为0.5~1.0cm×0.5~1.0cm。
作为优选,所述的衬底尺寸为1.0cm×1.0cm。
作为优选,所述的步骤(1)中的金薄膜替换为银薄膜。
本发明以金薄膜为掺杂源,高温下,金薄膜挥发形成气态金原子,部分气态金原子与氨硼烷高温分解产物一起在基底表面形成Au掺杂的h-BN。制备的h-BN其光学、电学性能可通过金掺杂量进行调节。
附图说明
图1为本发明的结构示意图。
具体实施方式
实施例一:一种金掺杂氮化硼薄膜的制备方法,具体包括以下步骤:
步骤(1).如图1所示,将尺寸为1.0cm×1.0cm硅片衬底5通过热蒸发法在其表面沉积100nm厚度的金薄膜;
步骤(2).将尺寸为0.5×0.5cm的铜片基底4用盐酸、去离子水清洗后氮气吹干,放入石英管中,并置于直径为2cm的石英管2的一端,其正下方放置步骤(1)的产物,基底与金薄膜之间相距500nm;
步骤(3).将0.2g氨硼烷3,装入石英管中,并置于石英管的另一端,氨硼烷与基底之间距离10cm;
步骤(4).将步骤(3)的石英管两端密封,并抽真空;
步骤(5).将步骤(4)石英管放入管式电炉1中,升温至1050℃,升温速率为20℃/min;温度升至1050℃后保温,保温时间为30min;
步骤(6).管式电炉、石英管停止加热,开启管式炉,将石英管室温环境下快速冷却到室温,然后取出基底,在基底上获得金掺杂的h-BN薄膜。
实施例二:一种金掺杂氮化硼薄膜的制备方法,具体包括以下步骤:
步骤(1).将石英玻璃衬底通过热蒸发法在其表面沉积300nm厚度的金薄膜;
步骤(2).将尺寸为1.0cm×1.0cm的镍片基底用盐酸、去离子水清洗后氮气吹干,放入石英管中,并置于石英管的一端,其正下方放置步骤(1)的产物,基底与金薄膜之间相距700nm;
步骤(3).将0.6g氨硼烷,装入石英试管中,并置于石英管的另一端,氨硼烷与基底之间距离18cm;
步骤(4).将步骤(3)的石英管两端密封,并抽真空;
步骤(5).将步骤(4)石英管放入管式电炉中,升温至1000℃,升温速率为25℃/min;温度升至1000℃后保温,保温时间为80min;
步骤(6).管式电炉、石英管停止加热,开启管式炉,将石英管室温环境下快速冷却到室温,然后取出基底,在基底上获得金掺杂的h-BN薄膜。
实施例三:一种银掺杂氮化硼薄膜的制备方法,具体包括以下步骤:
步骤(1).将尺寸为1.0cm×1.0cm的石英玻璃衬底通过热蒸发法在其表面沉积500nm厚度的银薄膜;
步骤(2).将尺寸为0.8cm×0.8cm的硅片基底用盐酸、去离子水清洗后氮气吹干,放入石英管中,并置于直径为2cm的石英管的一端,其正下方放置步骤(1)的产物,基底与银薄膜之间相距1mm;
步骤(3).将1g氨硼烷,装入石英试管中,并置于石英管的另一端,氨硼烷与基底之间距离10-25cm;
步骤(4).将步骤(3)的石英管两端密封,并抽真空;
步骤(5).将步骤(4)石英管放入管式电炉中,升温至900℃,升温速率为30℃/min;温度升至900℃后保温,保温时间为120min;
步骤(6).管式电炉、石英管停止加热,开启管式炉,将石英管室温环境下快速冷却到室温,然后取出基底,在基底上获得银掺杂的h-BN薄膜。
Claims (7)
1.一种金掺杂氮化硼薄膜的制备方法,其特征在于,具体包括以下步骤:
步骤(1).将衬底通过热蒸发法在其表面沉积100-500nm厚度的金薄膜;
步骤(2).将基底用盐酸、去离子水清洗后氮气吹干,放入石英管中,并置于石英管的一端,其正下方放置步骤(1)的产物,基底与金薄膜之间相距500nm-1mm;
步骤(3).将氨硼烷,装入石英管中,并置于石英管的另一端,氨硼烷与基底之间距离10-25cm;
步骤(4).将步骤(3)的石英管两端密封,并抽真空;
步骤(5).将步骤(4)石英管放入管式电炉中,升温至900~1050℃,升温速率为20~30℃/min;温度升至900~1050℃后保温,保温时间为30~120min;
步骤(6).管式电炉、石英管停止加热,开启管式炉,将石英管室温环境下快速冷却到室温,然后取出基底,在基底上获得金掺杂的h-BN薄膜。
2.根据权利要求1所述的一种金掺杂氮化硼薄膜的制备方法,其特征在于:所述的石英管直径为2cm。
3.根据权利要求1所述的一种金掺杂氮化硼薄膜的制备方法,其特征在于:所述衬底为硅片、石英玻璃。
4.根据权利要求1所述的一种金掺杂氮化硼薄膜的制备方法,其特征在于:所述基底为铜片、镍片、硅片。
5.根据权利要求1所述的一种金掺杂氮化硼薄膜的制备方法,其特征在于:所述的基底尺寸为0.5~1.0cm×0.5~1.0cm。
6.根据权利要求1所述的一种金掺杂氮化硼薄膜的制备方法,其特征在于:所述的衬底尺寸为1.0cm×1.0cm。
7.根据权利要求1所述的一种金掺杂氮化硼薄膜的制备方法,其特征在于:所述的步骤(1)中的金薄膜替换为银薄膜。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110122717.3A CN112941466B (zh) | 2021-01-29 | 2021-01-29 | 一种金掺杂氮化硼薄膜的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110122717.3A CN112941466B (zh) | 2021-01-29 | 2021-01-29 | 一种金掺杂氮化硼薄膜的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112941466A true CN112941466A (zh) | 2021-06-11 |
CN112941466B CN112941466B (zh) | 2022-08-23 |
Family
ID=76239237
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110122717.3A Active CN112941466B (zh) | 2021-01-29 | 2021-01-29 | 一种金掺杂氮化硼薄膜的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112941466B (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102212788A (zh) * | 2011-06-10 | 2011-10-12 | 北京工业大学 | 一种含纳米银颗粒的氮化硼薄膜的制备方法 |
CN103774113A (zh) * | 2014-02-24 | 2014-05-07 | 中国科学院上海微系统与信息技术研究所 | 一种制备六方氮化硼薄膜的方法 |
CN105483646A (zh) * | 2016-01-20 | 2016-04-13 | 杭州电子科技大学 | 一种紫外吸收薄膜的制备方法 |
US20170114450A1 (en) * | 2014-03-31 | 2017-04-27 | Oxford University Innovation Limited | Process for the production of two-dimensional nanomaterials |
CN107164727A (zh) * | 2017-06-05 | 2017-09-15 | 吉林大学 | 一种带隙可调的BN(Al)薄膜材料及其制备方法 |
CN110224064A (zh) * | 2019-06-26 | 2019-09-10 | 西安交通大学 | 一种基于BN(Al)薄膜的电阻开关及制备方法 |
-
2021
- 2021-01-29 CN CN202110122717.3A patent/CN112941466B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102212788A (zh) * | 2011-06-10 | 2011-10-12 | 北京工业大学 | 一种含纳米银颗粒的氮化硼薄膜的制备方法 |
CN103774113A (zh) * | 2014-02-24 | 2014-05-07 | 中国科学院上海微系统与信息技术研究所 | 一种制备六方氮化硼薄膜的方法 |
US20170114450A1 (en) * | 2014-03-31 | 2017-04-27 | Oxford University Innovation Limited | Process for the production of two-dimensional nanomaterials |
CN105483646A (zh) * | 2016-01-20 | 2016-04-13 | 杭州电子科技大学 | 一种紫外吸收薄膜的制备方法 |
CN107164727A (zh) * | 2017-06-05 | 2017-09-15 | 吉林大学 | 一种带隙可调的BN(Al)薄膜材料及其制备方法 |
CN110224064A (zh) * | 2019-06-26 | 2019-09-10 | 西安交通大学 | 一种基于BN(Al)薄膜的电阻开关及制备方法 |
Non-Patent Citations (1)
Title |
---|
BIYING TAN ET AL.: ""Synthesis of High-Quality Multilayer Hexagonal Boron Nitride Films on Au Foils for Ultrahigh Rejection Ratio Solar-Blind Photodetection"", 《ACS APPL. MATER. INTERFACES》 * |
Also Published As
Publication number | Publication date |
---|---|
CN112941466B (zh) | 2022-08-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6519820B2 (ja) | トンネル誘電体層を伴う太陽電池の製造方法 | |
Manavizadeh et al. | Influence of substrates on the structural and morphological properties of RF sputtered ITO thin films for photovoltaic application | |
Wang et al. | Monocrystalline perovskite wafers/thin films for photovoltaic and transistor applications | |
CN102915926B (zh) | 一种基于AlN衬底的石墨烯转移退火方法及制造的器件 | |
CN107217242B (zh) | 一种电子器件介电衬底的表面修饰方法 | |
Gu et al. | Effects of sputtering pressure and oxygen partial pressure on amorphous Ga2O3 film-based solar-blind ultraviolet photodetectors | |
US8241941B2 (en) | Method of purifying a crystalline silicon substrate and process for producing a photovoltaic cell | |
Chun et al. | Wet chemical etched CdTe thin film solar cells | |
JP2020189781A (ja) | 欠陥ドーピングによるp型酸化ガリウム薄膜の製造手順およびその利用 | |
Hu et al. | Fabrication and properties of a solar-blind ultraviolet photodetector based on Si-doped β-Ga2O3 film grown on p-Si (111) substrate by MOCVD | |
JPWO2007049402A1 (ja) | 大気圧水素プラズマを用いた膜製造方法、精製膜製造方法及び装置 | |
CN111807405A (zh) | 一种高结晶质量纯相氧化亚铜薄膜的制备方法 | |
CN112941466B (zh) | 一种金掺杂氮化硼薄膜的制备方法 | |
Zhang et al. | Effect of Au nanoparticles on the optical and electrical properties of Nb-doped β-Ga2O3 film | |
JP5972263B2 (ja) | シラン含有配合物から成るシリコン層の改質 | |
CN110344022A (zh) | p型戴维南星形MoS2单层二维材料、制备方法及电子器件 | |
Prabahar et al. | Optical properties of copper indium diselenide thin films | |
Adhikari et al. | Optical and structural properties of amorphous carbon thin films deposited by microwave surface-wave plasma CVD | |
KR20100091187A (ko) | 미정질 실리콘 성장 중의 동적 온도 제어 방법 | |
CN110739399B (zh) | 柔性垂直结构npb/氮掺杂石墨烯纳米异质结紫外探测器及其制备方法 | |
Wang et al. | Electrical properties of fluorine-doped ZnO nanowires formed by biased plasma treatment | |
Zhu et al. | CdTe nanoflake arrays on a conductive substrate: template synthesis and photoresponse property | |
Nouiri et al. | Study of TiO 2/ITO/ZnO: Al/p-Si photo-sensitive structure based on nanoparticles | |
CN111164734A (zh) | 制备含碳化硅的无氮层的方法 | |
CN113789574B (zh) | 一种在二维材料cvd生长中掺入稀土材料的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |