CN110224064A - 一种基于BN(Al)薄膜的电阻开关及制备方法 - Google Patents

一种基于BN(Al)薄膜的电阻开关及制备方法 Download PDF

Info

Publication number
CN110224064A
CN110224064A CN201910563612.4A CN201910563612A CN110224064A CN 110224064 A CN110224064 A CN 110224064A CN 201910563612 A CN201910563612 A CN 201910563612A CN 110224064 A CN110224064 A CN 110224064A
Authority
CN
China
Prior art keywords
film
sputtering
silicon substrate
preparation
resistance switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910563612.4A
Other languages
English (en)
Other versions
CN110224064B (zh
Inventor
李强
秦潇
云峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN201910563612.4A priority Critical patent/CN110224064B/zh
Publication of CN110224064A publication Critical patent/CN110224064A/zh
Application granted granted Critical
Publication of CN110224064B publication Critical patent/CN110224064B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3464Sputtering using more than one target
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/021Formation of switching materials, e.g. deposition of layers
    • H10N70/026Formation of switching materials, e.g. deposition of layers by physical vapor deposition, e.g. sputtering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/883Oxides or nitrides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开一种基于BN(Al)薄膜的电阻开关及制备方法,所述电阻开关,包括硅衬底,硅衬底的一面镀有金属层作为下电极,硅衬底的另一面设有BN(Al)薄膜,BN(Al)薄膜表面设有上电极;构成上电极/BN(Al)/下电极三明治结构电阻开关。本发明首次发现了BN(Al)薄膜具有电阻开关效应,制备成In/BN(Al)/Al三明治结构电阻开关具有良好的开关特性,且稳定性较好。本发明中利用双电源磁控溅射的方式制备BN(Al)薄膜工艺简单,能够实现大面积均匀制备,易实现产业化生产,为制备电阻开关阻变存储器(RRAM)提供一种新的材料及结构原型。

Description

一种基于BN(Al)薄膜的电阻开关及制备方法
技术领域
本发明属于微电子器件和功能薄膜技术领域,具体涉及一种基于BN(Al)薄膜的电阻开关及其制备方法。
背景技术
随着对计算机运行速度以及硬件要求越来越高,与之相对应的就是对其中元器件存储器读取速度、存储密度、功耗、单元尺寸、稳定性等性能的需求。目前,在众多的存储器中阻变存储器(RRAM)相比较于传统的非挥发性闪存存储器具有与CMOS工艺兼容性高、低功耗、结构简单、可高密度集成等优点,而被广泛研究和开发。电阻开关是阻变式存储器的元器件,寻找性能优异的电阻开关材料是制备稳定存储器的关键。
发明内容
本发明的目的在于提供一种基于BN(Al)薄膜的电阻开关及制备方法,给电阻开关提供一种新的制备材料,所获得的电阻开关性能优异,稳定性好。
为了实现上述目的,本发明采用如下技术方案:
一种基于BN(Al)薄膜的电阻开关,包括硅衬底,硅衬底的一面镀有金属层作为下电极,硅衬底的另一面设有BN(Al)薄膜,BN(Al)薄膜表面设有上电极;构成上电极/BN(Al)/下电极三明治结构电阻开关。
进一步的,硅衬底的一面镀有的金属层为金属Al;BN(Al)薄膜表面设有的上电极为In 电极。
进一步的,BN(Al)薄膜为BN薄膜中掺杂了金属Al,金属Al的掺杂质量百分比≥0%。
一种电阻开关的制备方法,包括以下步骤:
(1)硅衬底清洗干净;
(2)在硅衬底一面蒸镀金属薄膜作为下电极;
(3)将硅衬底放入溅射腔室内溅射一层BN(Al)薄膜;
(4)溅射完成后,待硅衬底在溅射腔室内自然冷却至室温后取出;
(5)在溅射制备的BN(Al)薄膜表面制备上电极,形成上电极/BN(Al)/下电极的三明治结构电阻开关。
进一步的,步骤(2)中:在洁净的硅衬底上蒸镀厚度为150-300nm的金属薄膜作为下电极。
进一步的,步骤(3)中:将硅衬底放入溅射腔室内,对溅射腔室以及硅衬底进行加热,达到预设温度时,硅衬底温度稳定后采用双电源磁控溅射法,以六方BN靶材和金属Al靶材作为靶源,氩气作为放电气体,在硅衬底另一面上沉积BN(Al)薄膜。
进一步的,溅射BN靶源的功率为400-600W,溅射金属Al的功率为0-150W,溅射总压强为0.3-0.6Pa,沉积温度为室温-600℃,靶基距为100-150mm,薄膜制备过程中引入氮气对衬底表面进行轰击,补充N空位缺陷,诱导薄膜出现,溅射时间大于等于1.5h。
进一步的,步骤(3)中溅射时溅射腔室的真空度为5×10-4Pa。
进一步的,溅射金属Al靶材的功率为60-150W。
进一步的,具体包括以下步骤:
(1)硅衬底清洗:将硅衬底在311溶液中加热至180℃,浸泡15min,然后在无水乙醇中超声清洗15min,使用去离子水冲洗三次,用氮气吹干,去除硅片表面附着的杂质;
(2)电蒸镀过程:在洁净的硅衬底上蒸镀厚度为150nm的铝膜;
(3)将样品放入溅射腔室内,首先对腔室以及衬底进行加热升温,升温速度不超过10℃ /min,当温度计显示达到预设温度时,持续保温1h以确保腔室和衬底温度的稳定;采用双电源磁控溅射法,以六方BN靶材和金属Al作为靶源,氩气作为放电气体,在衬底上沉积BN (Al)薄膜;其中溅射BN靶材的功率为400W,溅射Al靶材的功率为150W,溅射总压强为0.6Pa,沉积温度为600℃,靶基距为150mm,真空度为5×10-4Pa,薄膜制备过程中引入氮气对样品表面进行轰击,补充N空位缺陷,诱导薄膜成形,溅射时间为2h;形成样品中BN薄膜中掺入金属Al的比例为7.51%;
(4)溅射完成后,样品在真空中自然冷却至室温后取出真空室;
(5)在溅射制备的BN(Al)薄膜制备上In电极,制备成In/BN(Al)/Al三明治结构电阻开关元器件。
本发明的有益效果在于:
1.所述电阻开关结构简单,成本低廉,在阻变式存储器中有较强的实用价值;
2.利用BN薄膜作为电阻开关材料,具有良好的稳定性,电阻开关窗口大,电阻特性明显;
3.在BN薄膜制备过程中加入金属Al,生成BN(Al)薄膜作为电阻开关材料,具有良好的稳定性,电阻开关特性更加明显;
4.所述制备方法步骤简单,易于操作,具有很强的实用性,能够实现大面积均匀制备,易实现产业化生产;
5.BN(Al)薄膜利用双电源磁控溅射的方式制备,其厚度以及掺金属比例可以通过调节溅射时间和功率等参数进行调制,进而可以根据不同需要进行材料选择。
附图说明
构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为BN(Al)薄膜的场发射扫描电子显微镜(SEM)表面形貌图;
图2为BN(Al)薄膜的场发射扫描电子显微镜(SEM)横截面形貌图;
图3为BN(Al)薄膜横截面电阻开关的电压-电流特性曲线图;
具体实施方式
下面将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
以下详细说明均是示例性的说明,旨在对本发明提供进一步的详细说明。除非另有指明,本发明所采用的所有技术术语与本申请所属领域的一般技术人员的通常理解的含义相同。本发明所使用的术语仅是为了描述具体实施方式,而并非意图限制根据本发明的示例性实施方式。
氮化硼(BN)薄膜具有宽带隙、高热稳定性、化学稳定性能和表面负电子亲和势,是一种具有良好开发前景的薄膜电阻开关材料。其相对于传统介电材料比如SiO2,BN薄膜表面化学稳定性可抑制与相邻层的相互作用,其高导热性有利于电子器件的热扩散。
有关利用金属掺杂的BN薄膜进行电阻开关的制备及电阻开关特性的研究尚未见报道。
本发明提供一种基于BN(Al)薄膜的电阻开关,包括硅衬底,硅衬底的一面镀有金属 Al层作为下电极,硅衬底的另一面设有BN(Al)薄膜,BN(Al)薄膜表面设有In上电极;形成In/BN(Al)/Al三明治结构电阻开关。
根据对本发明中所制备的In/BN(Al)/Al三明治结构电阻开关样品特性分析,下面将基于BN(Al)薄膜的电阻开关的制备方法的最佳实施案例进行详细地说明:
实施案例1:
(1)硅衬底清洗:将硅衬底在311溶液中加热至180℃,浸泡15min,然后在无水乙醇中超声清洗15min,使用去离子水冲洗三次,用氮气吹干,以保证去除硅片表面附着的杂质;
(2)在洁净的硅衬底上蒸镀厚度为250nm的铝膜;
(3)将样品放入溅射腔室内,首先对腔室以及衬底进行加热升温,升温速度为10℃/min,当温度计显示达到预设温度时,持续保温1h以确保腔室和衬底温度的稳定。
采用磁控溅射法,以高纯六方BN靶材(99.99%)作为靶源,氩气(Ar)作为放电气体,在衬底上沉积BN薄膜,溅射BN靶材的功率为400W,溅射总压强为0.6Pa,沉积温度为600℃,靶基距为150mm,真空度为5×10-4Pa,薄膜制备过程中引入氮气对样品表面进行轰击,补充 N空位缺陷,诱导薄膜出现,溅射时间为2h。本组样品中掺金属Al的比例为0,进行的是单电源溅射,形成BN薄膜;
(4)溅射完成后,样品在真空中自然冷却至室温后取出真空室;
(5)在溅射制备的BN薄膜表面制备上电极(In),制备成In/BN/Al三明治结构电阻开关元器件。
对制备好的In/BN/Al三明治结构电阻开关进行电压-电流特性的测量,研究其电阻开关特性。
用电流源/电压表测量样品的电压-电流特性,分别将测试探针正极插在下电极Al上,负极插在上电极In上,电压变化过程为0→8V→0→-8V→0,每隔0.16V测量一个数据点,结果如图3中实线所示。可以看出在相同的电压下,对应着不同的电流,表现出了不同的电阻值,说明BN薄膜具有电阻开关特性。
实施案例2:
(1)硅衬底清洗:将硅衬底在311溶液中加热至180℃,浸泡15min,然后在无水乙醇中超声清洗15min,使用去离子水冲洗三次,用氮气吹干,以保证去除硅片表面附着的杂质;
(2)电蒸镀过程:在洁净的硅衬底上蒸镀厚度为150nm的铝膜;
(3)将样品放入溅射腔室内,首先对腔室以及衬底进行加热升温,升温速度不超过10℃ /min,当温度计显示达到预设温度时,持续保温1h以确保腔室和衬底温度的稳定。采用双电源磁控溅射法,以高纯六方BN靶材(99.99%)和金属Al作为靶源,氩气(Ar)作为放电气体,在衬底上沉积BN(Al)薄膜。其中溅射BN靶材的功率为400W,溅射Al靶材的功率为150W,溅射总压强为0.6Pa,沉积温度为600℃,靶基距为150mm,真空度为5×10-4Pa,薄膜制备过程中引入氮气对样品表面进行轰击,补充N空位缺陷,诱导薄膜成形,溅射时间为 2h。形成样品的表面及截面形貌如图1所示,本组样品中BN薄膜中掺入金属Al的比例为7.51%,采用的是双电源溅射。
(4)溅射完成后,样品在真空中自然冷却至室温后取出真空室。
(5)在溅射制备的BN(Al)薄膜制备上电极(In),制备成In/BN(Al)/Al三明治结构电阻开关元器件。
对制备好的In/BN/Al三明治结构电阻开关进行电压-电流特性的测量,研究其电阻开关特性。
用电流源/电压表测量样品的电压-电流特性,分别将测试探针正极插在下电极Al上,负极插在上电极In上,电压变化过程为0→8V→0→-8V→0,每隔0.16V测量一个数据点,结果如图3中虚线所示。可以看出在相同的电压下,对应着不同的电流,表现出了不同的电阻值,且高低阻态的比值(电阻窗口)高于没有掺入金属BN薄膜的,说明BN(Al)薄膜的电阻开关特性更明显。
实施案例3:
(1)硅衬底清洗:将硅衬底在311溶液中加热至180℃,浸泡15min,然后在无水乙醇中超声清洗15min,使用去离子水冲洗三次,用氮气吹干,以保证去除硅片表面附着的杂质;
(2)电蒸镀过程:在洁净的硅衬底上蒸镀厚度为250nm的铝膜;
(3)将样品放入溅射腔室内,首先对腔室以及衬底进行加热升温,升温速度不超过10℃ /min,当温度计显示达到预设温度时,持续保温1h以确保腔室和衬底温度的稳定。采用双电源磁控溅射法,以高纯六方BN靶材(99.99%)和金属Al作为靶源,氩气(Ar)作为放电气体,在衬底上沉积BN(Al)薄膜。其中溅射BN靶材的功率为500W,溅射Al靶材的功率为100W,溅射总压强为0.4Pa,沉积温度为200℃,靶基距为130mm,真空度为5×10-4Pa,薄膜制备过程中引入氮气对样品表面进行轰击,补充N空位缺陷,诱导薄膜成形,溅射时间为1.5h。
(4)溅射完成后,样品在真空中自然冷却至室温后取出真空室。
(5)在溅射制备的BN(Al)薄膜制备上电极(In),制备成In/BN(Al)/Al三明治结构电阻开关元器件。
实施案例4:
(1)硅衬底清洗:将硅衬底在311溶液中加热至180℃,浸泡15min,然后在无水乙醇中超声清洗15min,使用去离子水冲洗三次,用氮气吹干,以保证去除硅片表面附着的杂质;
(2)电蒸镀过程:在洁净的硅衬底上蒸镀厚度为300nm的铝膜;
(3)将样品放入溅射腔室内,首先对腔室以及衬底进行加热升温,升温速度不超过10℃ /min,当温度计显示达到预设温度时,持续保温1h以确保腔室和衬底温度的稳定。采用双电源磁控溅射法,以高纯六方BN靶材(99.99%)和金属Al作为靶源,氩气(Ar)作为放电气体,在衬底上沉积BN(Al)薄膜。其中溅射BN靶材的功率为600W,溅射Al靶材的功率为150W,溅射总压强为0.3Pa,沉积温度为室温,靶基距为100mm,真空度为5×10-4Pa,薄膜制备过程中引入氮气对样品表面进行轰击,补充N空位缺陷,诱导薄膜成形,溅射时间为3h。
(4)溅射完成后,样品在真空中自然冷却至室温后取出真空室。
(5)在溅射制备的BN(Al)薄膜制备上电极(In),制备成In/BN(Al)/Al三明治结构电阻开关元器件。
由技术常识可知,本发明可以通过其它的不脱离其精神实质或必要特征的实施方案来实现。因此,上述公开的实施方案,就各方面而言,都只是举例说明,并不是仅有的。所有在本发明范围内或在等同于本发明的范围内的改变均被本发明包含。

Claims (9)

1.一种基于BN(Al)薄膜的电阻开关,其特征在于,包括硅衬底,硅衬底的一面镀有金属层作为下电极,硅衬底的另一面设有BN(Al)薄膜,BN(Al)薄膜表面设有上电极;构成上电极/BN(Al)/下电极三明治结构电阻开关。
2.根据权利要求1所述的电阻开关,其特征在于,硅衬底的一面镀有的金属层为金属Al;BN(Al)薄膜表面设有的上电极为In电极。
3.根据权利要求1所述的电阻开关,其特征在于,BN(Al)薄膜为BN薄膜中掺杂了金属Al,金属Al的掺杂质量百分比≥0%。
4.权利要求1至3中任一项所述电阻开关的制备方法,其特征在于,包括以下步骤:
(1)硅衬底清洗干净;
(2)在硅衬底一面蒸镀金属薄膜作为下电极;
(3)将硅衬底放入溅射腔室内溅射一层BN(Al)薄膜;
(4)溅射完成后,待硅衬底在溅射腔室内自然冷却至室温后取出;
(5)在溅射制备的BN(Al)薄膜表面制备上电极,形成上电极/BN(Al)/下电极的三明治结构电阻开关。
5.根据权利要求4所述的制备方法,其特征在于,步骤(2)中:在洁净的硅衬底上蒸镀厚度为150-300nm的金属薄膜作为下电极。
6.根据权利要求4所述的制备方法,其特征在于,步骤(3)中:将硅衬底放入溅射腔室内,对溅射腔室以及硅衬底进行加热,达到预设温度时,硅衬底温度稳定后采用双电源磁控溅射法,以六方BN靶材和金属Al靶材作为靶源,氩气作为放电气体,在硅衬底另一面上沉积BN(Al)薄膜。
7.根据权利要求6所述的制备方法,其特征在于,溅射BN靶源的功率为400-600W,溅射金属Al的功率为0-150W,溅射总压强为0.3-0.6Pa,沉积温度为室温-600℃,靶基距为100-150mm,薄膜制备过程中引入氮气对衬底表面进行轰击,补充N空位缺陷,诱导薄膜出现,溅射时间大于等于1.5h。
8.根据权利要求7所述的制备方法,其特征在于,溅射金属Al靶材的功率为60-150W。
9.根据权利要求4所述的制备方法,其特征在于,具体包括以下步骤:
(1)硅衬底清洗:将硅衬底在311溶液中加热至180℃,浸泡15min,然后在无水乙醇中超声清洗15min,使用去离子水冲洗三次,用氮气吹干,去除硅片表面附着的杂质;
(2)电蒸镀过程:在洁净的硅衬底上蒸镀厚度为150nm的铝膜;
(3)将样品放入溅射腔室内,首先对腔室以及衬底进行加热升温,升温速度不超过10℃/min,当温度计显示达到预设温度时,持续保温1h以确保腔室和衬底温度的稳定;采用双电源磁控溅射法,以六方BN靶材和金属Al作为靶源,氩气作为放电气体,在衬底上沉积BN(Al)薄膜;其中溅射BN靶材的功率为400W,溅射Al靶材的功率为150W,溅射总压强为0.6Pa,沉积温度为600℃,靶基距为150mm,真空度为5×10-4Pa,薄膜制备过程中引入氮气对样品表面进行轰击,补充N空位缺陷,诱导薄膜成形,溅射时间为2h;形成样品中BN薄膜中掺入金属Al的比例为7.51%;
(4)溅射完成后,样品在真空中自然冷却至室温后取出真空室;
(5)在溅射制备的BN(Al)薄膜制备上In电极,制备成In/BN(Al)/Al三明治结构电阻开关元器件。
CN201910563612.4A 2019-06-26 2019-06-26 一种基于BN(Al)薄膜的电阻开关及制备方法 Active CN110224064B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910563612.4A CN110224064B (zh) 2019-06-26 2019-06-26 一种基于BN(Al)薄膜的电阻开关及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910563612.4A CN110224064B (zh) 2019-06-26 2019-06-26 一种基于BN(Al)薄膜的电阻开关及制备方法

Publications (2)

Publication Number Publication Date
CN110224064A true CN110224064A (zh) 2019-09-10
CN110224064B CN110224064B (zh) 2020-10-27

Family

ID=67814877

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910563612.4A Active CN110224064B (zh) 2019-06-26 2019-06-26 一种基于BN(Al)薄膜的电阻开关及制备方法

Country Status (1)

Country Link
CN (1) CN110224064B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110791805A (zh) * 2019-10-31 2020-02-14 中国电子科技集团公司第十三研究所 一种衬底、外延片及其生长方法
CN112941466A (zh) * 2021-01-29 2021-06-11 杭州电子科技大学 一种金掺杂氮化硼薄膜的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040159835A1 (en) * 2001-08-13 2004-08-19 Krieger Juri Heinrich Memory device
US20090052226A1 (en) * 2007-08-24 2009-02-26 Samsung Electronics Co., Ltd Resistive random access memory device
CN102254927A (zh) * 2010-05-18 2011-11-23 中国科学院上海微系统与信息技术研究所 一种电阻式随机存取存储器及其制造方法
WO2013019228A1 (en) * 2011-08-03 2013-02-07 Hewlett-Packard Development Company, L.P. Nitride-based memristors
US20150372225A1 (en) * 2014-06-20 2015-12-24 International Business Machines Corporation Method of forming an on-pitch self-aligned hard mask for contact to a tunnel junction using ion beam etching
CN105679785A (zh) * 2016-01-18 2016-06-15 苏州大学 一种基于多层氮化硼的rram器件及其制备方法
CN107431070A (zh) * 2015-03-31 2017-12-01 索尼半导体解决方案公司 开关器件和存储装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040159835A1 (en) * 2001-08-13 2004-08-19 Krieger Juri Heinrich Memory device
US20090052226A1 (en) * 2007-08-24 2009-02-26 Samsung Electronics Co., Ltd Resistive random access memory device
CN102254927A (zh) * 2010-05-18 2011-11-23 中国科学院上海微系统与信息技术研究所 一种电阻式随机存取存储器及其制造方法
WO2013019228A1 (en) * 2011-08-03 2013-02-07 Hewlett-Packard Development Company, L.P. Nitride-based memristors
US20150372225A1 (en) * 2014-06-20 2015-12-24 International Business Machines Corporation Method of forming an on-pitch self-aligned hard mask for contact to a tunnel junction using ion beam etching
CN107431070A (zh) * 2015-03-31 2017-12-01 索尼半导体解决方案公司 开关器件和存储装置
CN105679785A (zh) * 2016-01-18 2016-06-15 苏州大学 一种基于多层氮化硼的rram器件及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
F.M.PUGLISI等: ""2D h-BN based RRAM devices"", 《IEEE》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110791805A (zh) * 2019-10-31 2020-02-14 中国电子科技集团公司第十三研究所 一种衬底、外延片及其生长方法
CN112941466A (zh) * 2021-01-29 2021-06-11 杭州电子科技大学 一种金掺杂氮化硼薄膜的制备方法

Also Published As

Publication number Publication date
CN110224064B (zh) 2020-10-27

Similar Documents

Publication Publication Date Title
JP5421101B2 (ja) 導電性層を製作する方法
Solovyev et al. Magnetron sputtering of gadolinium-doped ceria electrolyte for intermediate temperature solid oxide fuel cells
Rey-Mermet et al. Nanoporous YSZ film in electrolyte membrane of micro-solid oxide fuel cell
Paek et al. A study on properties of yttrium-stabilized zirconia thin films fabricated by different deposition techniques
WO2023284596A1 (zh) 高导电耐蚀长寿命max相固溶复合涂层、其制法与应用
CN110224064A (zh) 一种基于BN(Al)薄膜的电阻开关及制备方法
EP4186993A1 (en) Piston manufacturing method and piston
Hu et al. Preparation and dielectric properties of dense and amorphous alumina film by sol–gel technology
Solovyev et al. Effect of magnetron sputtered anode functional layer on the anode-supported solid oxide fuel cell performance
CN105977379A (zh) 一种碳氧化硅薄膜及阻变存储器
Wagner et al. Preparation and characterization of rare earth scandates as alternative gate oxide materials
Liu et al. Solid oxide fuel cells with apatite-type lanthanum silicate-based electrolyte films deposited by radio frequency magnetron sputtering
Kim et al. Titanium oxynitride films for a bipolar plate of polymer electrolyte membrane fuel cell prepared by inductively coupled plasma assisted reactive sputtering
Hofer-Roblyek et al. Linking erosion and sputter performance of a rotatable Mo target to microstructure and properties of the deposited thin films
CN116234419A (zh) 一种自旋轨道矩器件的制备方法
CN115411285A (zh) 一种含有防腐薄膜的燃料电池双极板及其制备方法
Guo et al. Refined Pore Structure Design and Surface Modification of 3D Porous Copper Achieving Highly Stable Dendrite‐Free Lithium‐Metal Anode
Wang et al. Diffusion barrier capability of Zr–Si films for copper metallization with different substrate bias voltage
CN108831754B (zh) 一种高比表面积的MeN涂层及其制备方法和超级电容器
Fondard et al. Effect of total pressure on La2NiO4 coatings deposited by reactive magnetron sputtering using plasma emission monitoring
Solovyev et al. Magnetron deposition of yttria-stabilised zirconia electrolyte for solid oxide fuel cells
Kim et al. Structural and electrochemical properties of ZrO2· Hx thin films deposited by reactive sputtering in hydrogen atmosphere as solid electrolytes
CN100370584C (zh) GaAs基材料上原位淀积高介电常数Al2O3和金属膜的方法
Solovyev et al. Solid oxide fuel cell anode surface modification by magnetron sputtering of NiO/YSZ thin film
Ionov et al. Formation of NiO/YSZ functional anode layers of solid oxide fuel cells by magnetron sputtering

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant