CN105401121A - 使用锌基合金化层涂覆分立工件的工艺 - Google Patents

使用锌基合金化层涂覆分立工件的工艺 Download PDF

Info

Publication number
CN105401121A
CN105401121A CN201510711802.8A CN201510711802A CN105401121A CN 105401121 A CN105401121 A CN 105401121A CN 201510711802 A CN201510711802 A CN 201510711802A CN 105401121 A CN105401121 A CN 105401121A
Authority
CN
China
Prior art keywords
workpiece
temperature
chamber
zinc
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510711802.8A
Other languages
English (en)
Inventor
布鲁诺·盖伊
艾蒂安·佩蒂特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Umicore NV SA
Original Assignee
Umicore NV SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Umicore NV SA filed Critical Umicore NV SA
Publication of CN105401121A publication Critical patent/CN105401121A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/06Solid state diffusion of only metal elements or silicon into metallic material surfaces using gases
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/06Solid state diffusion of only metal elements or silicon into metallic material surfaces using gases
    • C23C10/08Solid state diffusion of only metal elements or silicon into metallic material surfaces using gases only one element being diffused
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/085Oxides of iron group metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/541Heating or cooling of the substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating

Abstract

本发明涉及使用锌基合金化层涂覆分立工件的工艺。具体地,本公开涉及一种适用于使用富锌的、完全合金化层镀覆分立工件的工艺。已知用于这种工件的防腐蚀方法包括热浸镀锌退火步骤,通常之后进行涂装。然而所述热浸镀工艺必须在高温下进行,因而使得所述工件经受极高的热应力作用。因此提出了一种新的Zn真空沉积工艺。其特征在于,在工件与金属Zn蒸气接触的步骤中,工件的温度等于或者高于Zn蒸气的露点。所述工艺产生具有均一厚度的涂层,即使在不易达到的表面上也是如此。表面粗糙度很好地适应涂料的粘附。

Description

使用锌基合金化层涂覆分立工件的工艺
本申请是申请日为2010年2月4日、申请号为201080006697.3、发明名称为“使用锌基合金化层涂覆分立工件的工艺”的中国发明专利申请的分案申请。
技术领域
本发明涉及使用锌基合金化层涂覆分立工件的工艺。具体地,本公开文本涉及一种适合使用富锌的完全合金化层镀覆工件、尤其是分立工件(discretearticle)的工艺。
背景技术
分立工件是指不连续工件,其通常有至少一个凹面。它们通常包含连接部件的组合。
公开的工艺适于在铁或者钢上施加锌基保护涂层,其中在贯穿涂层的整个厚度上形成Zn-Fe金属间化合物。这层涂层类似于由所谓“镀锌退火”工艺形成的层。它不同于在外表面具有不含Fe的Zn的镀锌层。
设想将基体涂装时,由Zn-Fe金属间化合物组成的表面较Zn表面是更优选的。它的确在涂料和含锌层之间的分界面提供一种优良的长期的涂料粘附力和极好的抗腐蚀性。另一个优势是好的点焊行为,这在汽车市场上是重要的。然而,作为连续产品的典型情况,如果这种产品必须进一步成形,则应当考虑涂层的有限的延展性。
为了产生一个富锌的完全合金化层,通常通过将在先的镀锌表面在高于锌熔点的温度立刻再加热从而将连续产品、例如板和线镀锌退火。
JP-A-58034167描述了一个典型的工艺,其中通过在约465℃熔融Zn浴中热浸镀的方法将连续产品镀锌。当从浴中取出时,用所谓的气刀吹走在所述镀锌层上的额外的液态锌。然后,将表面迅速加热至最高达600℃并且在高温保持一段时间,以完成退火工艺。
根据在JP-A-2194162中公布的另一工艺,将产品在真空沉积站内镀锌。在100至300℃的温度下将确定量的锌沉积于相对冷的钢基体上。因为只有几秒的短暂的处理时间,以及钢的相对较低的温度,Zn沉积的机理基于冷凝作用。然后使所述镀锌的产品通过一个加热站以进行退火。
JP-A-59083765涉及一种用以在钢板上镀锌的连续真空沉积工艺。因此钢板的温度保持在300℃以下、优选200℃以下,以避免锌的再气化。该过程针对锌镀层,其中可以在表面上观察到锌晶体。没有提到Zn-Fe的形成:常用于连续涂装的低处理温度和相对短的停留时间,从逻辑上排除了Zn-Fe合金的形成。
JP-A-63004057也涉及一种用以在钢板上镀锌的连续真空沉积工艺。其描述了一种2步工艺。第一步在真空沉积室中进行,其中在所述真空沉积室中使Zn凝结在钢板上。除了凝结热以外,通过一个卷绕的辊将另外的热提供给钢板。然后,在第二步形成Zn-Fe合金,第二步在钢板出口室进行。这篇文件也教导了Zn的物理凝结,作为形成合金的反应条件仅在之后达到。
只能在有简单的几何形状的连续产品上、例如板和线上进行上述工艺。对于离散产品来说,使用分批法。
通过在相对高的560至630℃温度的Zn浴中热浸镀,可以在单一步骤内在离散产品上形成完全合金化表面。因为在该温度下Zn流动性特别好,从浴池中取出工件时的天然的气流足以消除额外的表面Zn。虽然如此,有时也将工件离心以加速Zn的除去。高温促进在贯穿涂层的整个厚度上Zn-Fe金属间化合物的形成。
然而,在这样高的温度下热浸镀会导致工件中潜在的有害热应力。而且,钢自身的特征可能受到不良影响。而一个典型的热浸镀架带有多个由不同的钢号制成的分立工件,这更加重了这个问题。这导致无法确定适合全部工件的工艺参数,例如浴温或者浸镀时间。
发明内容
根据本发明的分批工艺提供一种较镀锌退火更优的替代方式。即使在工件由不同的钢号制成或者具有复杂的形状时,也能够获得均一的金属间化合物涂层厚度。此外,由于固有的更慢和更均一的加热工艺,可以基本上避免由热应力引起的问题。
公开的使用Zn-Fe金属间化合物层涂覆铁或钢工件的工艺包含如下步骤:
-提供可密封的炉,其包括装配有加热装置的工艺室,引入和引出气体的装置,以及待涂覆工件的进入口;
-将待涂覆工件置于工艺室;
-在工艺室中使所述工件在200至650℃的温度下与还原气体接触,从而除去表面的氧化物;
-从工艺室中引出气体至残余压力低于1000Pa、优选低于100Pa;
-在工艺室中使所述工件在225至650℃的温度下与金属Zn蒸气接触,从而在工件上涂覆Zn-Fe金属间化合物层;
-从工艺室取出涂覆的工件。
其特征还在于,在工件与金属Zn蒸气接触的步骤中,工件的温度,优选在该步骤中不变,等于或者高于Zn蒸气的露点。
Zn蒸气的露点是指Zn在环境分压下冷凝的温度。可以用已知的表格从分压得到露点。如上提到的情形能够,例如在实践中通过在涂覆反应器内提供一个冷冻区或者指形冷冻器来保证。冷冻是指一个控制为略低于待涂覆钢工件温度的温度。
在一个优选实施方式中,在工件与金属Zn蒸气接触的步骤中,工件的温度可以等于或者高于Zn蒸气的温度。温度的这种关系将防止锌在工件上凝结。
可以方便地通过使用还原性气体、例如N2和H2的混合物获得所需的还原条件。工件的温度优选350到550℃。
在与金属Zn蒸气接触的步骤中,工件的温度优选350到550℃。部分Zn分压应当有利地处于1至500Pa的范围内尤其以避免任何凝结,其中根据工件的温度确定分压的上限。更高的温度和更高的Zn分压导致涂层更快的层生长。
可将所获工件有效地涂装。Zn-Fe金属间化合物层提供需要的粗糙度以确保良好的涂料粘附力。
通常,在进入涂覆炉之前,工件经历初步的表面处理。工件实际上通常被来自钢热轧工艺或来自其生产工艺的氧化物覆盖。通常,除去这层的处理包括酸洗或者喷砂。这在专用仪器里采用已知的方式进行。在这个步骤之后,由于在常温下的空气氧化,表面仍然被几纳米厚的天然氧化物薄层覆盖。根据本发明,在涂覆炉之内进行的步骤中还原剩余的氧化物。这个步骤的目的是为了活化朝向锌蒸气的表面反应性。
在还原气体接触工艺中,需要200℃或更高的工件温度以确保足够快的还原动力学。例如,在静态条件下这个步骤可以在大气压下在N2/H2混合物中进行。在高速流动气体条件下还原还可以在低压下、例如100至1000Pa进行。负压有利于确保没有H2从炉中溢出;过压则会提高还原动力学。工件的温度优选为350至550℃。
在Zn接触工艺中,需要225℃或更高的工件温度以允许Zn-Fe金属间化合物的形成。350至550℃的温度是优选的,因为其在保持工件不被任何热降解的同时,确保Fe足够快地扩散穿过该层。
温度超过650℃,无论在与还原性气体还是与Zn蒸气接触的工艺中,对工艺的经济性是有害的或者通常将导致工件的热降解。
在进入涂覆炉之前预热工件,并且将其从涂覆炉取出之后使其冷却,能缩短在真空炉内的处理时间。
当处理在其表面上有碳或者有机残余物的工件时,可以用包含O2的气体在涂覆炉内进行预氧化步骤。
一般认为Zn的沉积机理不是冷凝,而是反应沉积。Zn蒸气直接与表面的Fe反应,因此形成Zn-Fe金属间化合物。在设想的操作温度下Zn-Fe相通常为固态。Zn也被限制在稳定的化合物中。这意味着在工件的表面上没有滴落的危险。由于相对长的停留时间和工件及其表面的高温度,在暴露于Zn期间Fe和Zn倾向于迁移穿过金属间化合物层。随着合金化层的厚度增加,Fe穿过层的扩散减速,导致朝向Zn蒸气的表面反应性降低。这种效应有利于在全部需涂覆的部分生成具有均一厚度的层。可以生成高达100μm的层。
本工艺的一个优点是可以完全避免在热浸镀中在含有Si和P的钢上使Fe-Zn金属间化合物生长控制恶化的Sandelin效应。这种效应发生在适度的温度下,并且归因于ζ相(FeZn13)细丝的形成。认为本工艺中没有任何液态Zn的存在解释了这种行为。
本工艺特别适合涂覆复杂形状的工件。这意味着工件具有至少一个凹面和/或关于全部的轴的一个可变的截面。这样的工件也通常有厚度大于10毫米和/或由焊接件组装而成的区域。它们经常具有不易达到的区域例如管的内表面。
附图说明
图1示出了根据本发明的一种实施方式的涂覆炉的示意图。
具体实施方式
参考图1,涂覆炉基本上包括:
-一个气密密封的工艺室(1);
-一个加热装置(2)以控制工件以及室内气氛和墙的温度;这个装置可以在工艺室内或者围绕工艺室;
-一个真空系统(3),用以引出气体,例如N2、H2、H2O和空气;
-用于气体,例如N2、H2和空气的气体注入装置(4)。
-用于导入和取出涂覆工件的进入口(5);
-用于在工艺室中加入Zn的供应源(6);或者直接在室内引入金属,或者通过连接到蒸发器的气体喷射装置引入金属。
如下实施例揭示了本发明。
这个实施例涉及在热轧钢板上沉积Zn-Fe金属间化合物和Zn。为此,两个100mm×200mm×3mm的钢板在工艺室中彼此接近地放置,其平行面之间的间距为10mm。于是这种布置定义了2个外表面和2个内表面,从而模拟了在现实中复杂的工件表面可达性的差别。
进行下述步骤。
步骤1:通过喷砂清洗热轧钢材样品,以除去在热轧工艺里形成的氧化铁层。
步骤2:在涂覆炉中引入样品。所述涂覆炉包括一个处理室(直径0.2m,长度1m),所述处理室被提供均匀加热的电阻炉(100kW)环绕。这个装置位于一个真空室(1m3)内。将40g的Zn引入位于所述涂覆炉的底部的蒸发器中。
步骤3:真空抽气至0.1豪巴并且将还原气体引入工艺室(5%H2和N295%;露点:-30℃;温度:450℃;压力:0.8巴)。
步骤4:以10℃/min加热涂覆炉和样品至450℃。
步骤5:在还原性气体中还原表面氧化物600s。
步骤6:真空抽气至0.03豪巴并且使温度稳定在450℃。
步骤7:加热Zn蒸发器至450℃并稳定20分钟。
步骤8:用空气把压力增加到大气压。
步骤9:以10℃/min将工艺室和工件冷却到室温。
步骤10:打开涂覆炉并取出涂覆的钢样品。
结果显示在样品的每个表面上,包含所述的内表面,都涂覆了一层由50μm的Zn-Fe金属间化合物形成的均一层。

Claims (7)

1.一种使用Zn-Fe金属间化合物层涂覆铁或钢工件的方法,所述方法包括如下步骤:
-提供可密封的炉,其包括装配有加热装置的工艺室,用于引入和引出气体的装置,以及待涂覆工件的进入口;
-将待涂覆工件置于工艺室中;
-在工艺室中使所述工件在200至650℃的温度下与还原气体接触,从而除去表面的氧化物;
-从工艺室中引出气体至残余压力低于1000Pa;
-在工艺室中使所述工件在225至650℃的温度下与金属Zn蒸气接触,从而在工件上涂覆Zn-Fe金属间化合物层;
-从工艺室取出涂覆的工件;
其特征在于,在所述工件与金属Zn蒸气接触的步骤中,工件的温度等于或者高于Zn蒸气的露点。
2.根据权利要求1所述的方法,其特征在于,在所述工件与金属Zn蒸气接触的步骤中,工件的温度等于或者高于Zn蒸气的温度。
3.根据权利要求1或2所述的方法,其特征在于,在与还原气体接触的步骤中,使用包含H2的气体。
4.根据权利要求1或2所述的方法,其特征在于,在与还原气体接触的步骤中,所述工件的温度为350至550℃。
5.根据权利要求1或2所述的方法,其特征在于,在与金属Zn蒸气接触的步骤中,所述工件的温度为350至550℃。
6.根据权利要求1或2所述的方法,其中,在取出涂覆工件的步骤之后,涂装所述工件。
7.根据权利要求1或2所述的方法,其特征在于,在与还原气体接触的步骤中,使用包含N2/H2混合物的气体。
CN201510711802.8A 2009-02-04 2010-02-04 使用锌基合金化层涂覆分立工件的工艺 Pending CN105401121A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EPPCT/EP2009/000750 2009-02-04
EPPCT/EP2009/000750 2009-02-04
CN2010800066973A CN102308016A (zh) 2009-02-04 2010-02-04 使用锌基合金化层涂覆分立工件的工艺

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN2010800066973A Division CN102308016A (zh) 2009-02-04 2010-02-04 使用锌基合金化层涂覆分立工件的工艺

Publications (1)

Publication Number Publication Date
CN105401121A true CN105401121A (zh) 2016-03-16

Family

ID=41202691

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201510711802.8A Pending CN105401121A (zh) 2009-02-04 2010-02-04 使用锌基合金化层涂覆分立工件的工艺
CN2010800066973A Pending CN102308016A (zh) 2009-02-04 2010-02-04 使用锌基合金化层涂覆分立工件的工艺

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN2010800066973A Pending CN102308016A (zh) 2009-02-04 2010-02-04 使用锌基合金化层涂覆分立工件的工艺

Country Status (10)

Country Link
US (2) US8895106B2 (zh)
JP (1) JP5615297B2 (zh)
KR (1) KR101618914B1 (zh)
CN (2) CN105401121A (zh)
AU (1) AU2010211277B2 (zh)
BR (1) BRPI1008814A2 (zh)
CA (1) CA2751432C (zh)
EA (1) EA019686B1 (zh)
WO (1) WO2010089110A1 (zh)
ZA (1) ZA201105716B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9623632B2 (en) * 2009-02-04 2017-04-18 Umicore Process for coating discrete articles with a zinc-based alloyed layer and articles obtained therefrom
US9956576B2 (en) 2014-04-22 2018-05-01 Metokote Corporation Zinc rich coating process
US9700829B1 (en) * 2016-02-29 2017-07-11 Savannah River Nuclear Solutions, Llc Method of capturing or trapping zinc using zinc getter materials
DE102021133090A1 (de) 2021-12-14 2023-06-15 Thyssenkrupp Steel Europe Ag Verfahren zur Herstellung eines Stahlflachprodukts mit einem kathodischen Korrosionsschutz, Anlage zur Herstellung eines mit einem kathodischen Korrosionsschutz versehenen Stahlflachprodukts und Verwendung

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU88730A1 (fr) * 1996-03-20 1997-02-21 Laminoir De Dudelange S A Procédé pour revêtir un substrat en acier d'une couche de zinc allié
CN201024207Y (zh) * 2007-02-07 2008-02-20 冯伟年 一种密闭的钢丝镀锌装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5465141A (en) 1977-11-04 1979-05-25 Kawasaki Steel Co Rust preventing treatment of cold rolling steel plate
JPS5834167A (ja) 1981-08-25 1983-02-28 Nippon Kokan Kk <Nkk> 溶融亜鉛メツキ鋼板のFe−Zn合金化処理方法
JPS5983765A (ja) 1982-11-05 1984-05-15 Nisshin Steel Co Ltd めつき密着性の優れた真空蒸着亜鉛めつき鋼板の製造方法
JPS61253382A (ja) 1985-04-30 1986-11-11 Mitsubishi Heavy Ind Ltd Zn−Al二層メツキ方法
JPH0660396B2 (ja) 1986-06-24 1994-08-10 日新製鋼株式会社 合金化蒸着亜鉛メツキ鋼帯の製造方法
JPS6417853A (en) 1987-07-14 1989-01-20 Kobe Steel Ltd Zinc alloy plated product having excellent exfoliation resistance of coated film
US5002837A (en) * 1988-07-06 1991-03-26 Kabushiki Kaisha Kobe Seiko Sho Zn-Mg alloy vapor deposition plated metals of high corrosion resistance, as well as method of producing them
JPH02194162A (ja) 1988-10-13 1990-07-31 Kobe Steel Ltd Zn―Mg合金めっき金属材料の製造方法
JPH02232361A (ja) 1989-03-06 1990-09-14 Furukawa Electric Co Ltd:The 表面改質方法
JPH08134632A (ja) 1994-11-11 1996-05-28 Nisshin Steel Co Ltd Zn−Mg合金めっき鋼板の製造方法
TW359688B (en) 1995-02-28 1999-06-01 Nisshin Steel Co Ltd High anticorrosion Zn-Mg series-plated steel sheet and method of manufacture it
JPH09111438A (ja) * 1995-10-18 1997-04-28 Nisshin Steel Co Ltd 端面の耐食性に優れたZn−Mg合金めっき鋼板及び製造方法
JPH09143682A (ja) 1995-11-22 1997-06-03 Nisshin Steel Co Ltd 多重ダクトを用いたZn−Mg蒸着法及び蒸着めっき設備
EP1423553A4 (en) * 2001-08-01 2008-12-17 Danieli Technology Inc METAL VAPOR COATING

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU88730A1 (fr) * 1996-03-20 1997-02-21 Laminoir De Dudelange S A Procédé pour revêtir un substrat en acier d'une couche de zinc allié
CN201024207Y (zh) * 2007-02-07 2008-02-20 冯伟年 一种密闭的钢丝镀锌装置

Also Published As

Publication number Publication date
CA2751432C (en) 2017-10-10
JP5615297B2 (ja) 2014-10-29
AU2010211277B2 (en) 2014-10-30
CN102308016A (zh) 2012-01-04
JP2012516944A (ja) 2012-07-26
AU2010211277A1 (en) 2011-08-18
KR101618914B1 (ko) 2016-05-09
EA201190152A1 (ru) 2012-02-28
EA019686B1 (ru) 2014-05-30
CA2751432A1 (en) 2010-08-12
US8895106B2 (en) 2014-11-25
US20150232985A1 (en) 2015-08-20
WO2010089110A1 (en) 2010-08-12
US20120045582A1 (en) 2012-02-23
BRPI1008814A2 (pt) 2016-10-25
KR20110113190A (ko) 2011-10-14
ZA201105716B (en) 2012-10-31

Similar Documents

Publication Publication Date Title
KR101011897B1 (ko) Si를 함유하는 강판의 연속 어닐링 용융 도금 방법 및연속 어닐링 용융 도금 장치
JP2010504420A (ja) 耐食平鋼生成品の製造方法
CN105401121A (zh) 使用锌基合金化层涂覆分立工件的工艺
JP6454791B2 (ja) 鋼製品の表面に金属保護コーティングを塗布する方法
KR100899550B1 (ko) 고속 합금화 용융 아연 도금강판의 제조방법
US7122221B2 (en) Method and apparatus for metal vapor coating
JP2000290762A (ja) 溶融めっき鋼板の製造方法
KANAMARU et al. Alloying reaction control in production of galvannealed steel
US9623632B2 (en) Process for coating discrete articles with a zinc-based alloyed layer and articles obtained therefrom
JPH051357A (ja) 溶融金属めつき方法
CN112534079A (zh) 热浸镀锌处理方法、利用该热浸镀锌处理方法的合金化热浸镀锌钢板的制造方法、利用该热浸镀锌处理方法的热浸镀锌钢板的制造方法、合金化热浸镀锌钢板、以及热浸镀锌钢板
EP2393956B1 (en) Process for coating discrete articles with a zinc-based alloyed layer
KR950007669B1 (ko) 에어커튼(Air Curtain)을 이용한 증착도금강판의 제조방법
JPH111755A (ja) 亜鉛めっき鋼板及びその製造方法
JPH04276054A (ja) 亜鉛めっき鋼板の製造方法
KR101353669B1 (ko) 드로스 저감형 용융아연도금강판의 제조장치 및 이를 이용한 제조 방법
JP2583982B2 (ja) 溶融合金化亜鉛メッキ鋼板の酸化膜生成方法
KR20010028283A (ko) 용융금속 도금설비의 스나우트내 금속분진 생성 억제방법
JP2002294421A (ja) 摺動性の良好な合金化溶融金属メッキ鋼板の製造方法
Hussey et al. Galvanizing pre‐treatment with hydrogen
JPH09268360A (ja) スプレーめっき法による合金化溶融亜鉛めっき鋼板の製造方法
JPH0463257A (ja) 溶融金属めっき方法
JPH02118086A (ja) 加工性、塗装性に優れた合金化溶融亜鉛めっき鋼板及びその製造方法
KR20030049338A (ko) 용융아연 도금강판의 제조방법
JPH083717A (ja) スプレーめっきによる高耐食性Zn−Al合金めっき鋼板の製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20160316