CN105344346A - 一种微乳法合成纳米铈锆固溶体的方法 - Google Patents

一种微乳法合成纳米铈锆固溶体的方法 Download PDF

Info

Publication number
CN105344346A
CN105344346A CN201510760773.4A CN201510760773A CN105344346A CN 105344346 A CN105344346 A CN 105344346A CN 201510760773 A CN201510760773 A CN 201510760773A CN 105344346 A CN105344346 A CN 105344346A
Authority
CN
China
Prior art keywords
microemulsion
cerium zirconium
mixed solution
nano cerium
zirconium sosoloid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510760773.4A
Other languages
English (en)
Inventor
刘义林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201510760773.4A priority Critical patent/CN105344346A/zh
Publication of CN105344346A publication Critical patent/CN105344346A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种微乳法合成纳米铈锆固溶体的方法。其具体操作步骤为:(1)配置十六烷基三甲基溴化铵、正丁醇、和环己烷的混合溶液,将其平均分成两份备用;(2)将一份步骤(1)所得混合溶液加入到硝酸铈和硝酸氧锆混合液中配成微乳液A;(3)将另一份步骤(1)所得混合溶液加入到氨水中配成微乳液B;(4)在强烈搅拌下将微乳液A与微乳液B混合,室温下陈化12小时;(5)将步骤(4)所得混合物过滤,所得陈化物经去离子水洗涤、无水乙醇洗涤后110℃干燥2小时,再500℃焙烧2小时后得纳米铈锆固溶体。本发明操作简便,步骤简单,能在较短时间内获得高比表面积铈锆固溶体,适于工业化生产。

Description

一种微乳法合成纳米铈锆固溶体的方法
技术领域
本发明涉及一种铈锆固溶体制备方法,尤其涉及一种微乳法合成纳米铈锆固溶体的方法。
背景技术
光催化反应是光源和物质之间相互作用的方式之一,是光反应和催化反应的结合,是在光和催化剂同时作用下所进行的化学反应。光催化反应机理一般是通过光照,光催化剂表面会产生电子空穴对,空穴进一步和水作用产生活性较强的羟基自由基·OH,与吸附在催化剂表面的化合物分子发生氧化还原反应,将其降解为无极小分子。当前,环境和能源问题是人类面临和必须解决的重大瓶颈问题,而光催化氧化技术由于其清洁和可直接利用太阳能资源等特性,成为理想的治理环境污染和生产清洁能源的技术。
铈锆复合氧化物是一种多功能的新型催化剂,具备如下特性:①具有高的热稳定性以及储氧能力;②高结晶度、高均匀性;③低温还原性高。铈和锆在很大配比范围内可复合,形成稳定的铈锆复合固溶体,铈锆固溶体具有很高的催化活性,以其独特的酸性、“准液相”行为、多功能等优点在催化领域中受到人们的广泛关注。铈锆固溶体可以看作是量子级的半导体物质,可有效地降解污染物,且毒性低,不污染环境,活性高,反应条件温和,不腐蚀设备等特性,被众多学者作为光催化剂加以广泛研究,在水处理和汽车尾气治理等领域已成为非常富有前途的光催化剂。
铈锆固溶体的制备方法主要有:共沉淀法、溶胶一凝胶法、化学燃烧法、微乳液法。微乳液法制备铈锆固溶体是将两种互不相溶的反应物通过表面活性剂组成宏观上均一而微观上不均一的混合物,分散相以微液滴的形式存在其中,两种分别包有不同反应物的微乳液滴发生碰撞、反应从而生成沉淀。微乳液法作为一种新的制备纳米催化剂的方法,与其它方法相比较,具有粒径大小可控、粒度分布均匀、实验装置简单、条件温和及操作方便等优点,选择适宜的微乳体系并将微乳技术与其它技术有机结合,能有效地控制纳米催化粒子的结构、大小及分布。
中国专利CN1242844C向硝酸铈Ce(NO3)3·6H2O和硝酸锆Zr(NO3)4·6H2O混合水溶液中加入一定比例阳离子表面活性剂,再在搅拌下将混合液以60滴/分钟速度滴加到氨水中,使其完全沉淀,然后再采用氢氧化钠调节沉淀液的PH=11.5,将沉淀物转入70~80℃油浴中陈化132~144小时,抽滤后,用60~70℃热蒸馏水洗涤,再用丙酮浸洗,去除溶液,于100~120℃干燥36小时候,再用马弗炉600~650℃焙烧2小时得到高比表面积铈锆固溶体。不足之处是,所采用的滴加方式操作复杂,且后续处理过程繁琐,陈化时间过长,不适合工业化生产。
发明内容
本发明提供了一种微乳法合成纳米铈锆固溶体的方法,操作简便,步骤简单,能在较短时间内获得高比表面积铈锆固溶体,适于工业化生产。
本发明所述的微乳法制备纳米铈锆固溶体的具体操作步骤为:
(1)配置十六烷基三甲基溴化铵、正丁醇、和环己烷的混合溶液,将其平均分成两份备用;
(2)将一份步骤(1)所得混合溶液加入到硝酸铈和硝酸氧锆混合液中配成微乳液A;
(3)将另一份步骤(1)所得混合溶液加入到氨水中配成微乳液B;
(4)在强烈搅拌下将微乳液A与微乳液B混合,室温下陈化12小时;
(5)将步骤(4)所得混合物过滤,所得陈化物经去离子水洗涤、无水乙醇洗涤后110℃干燥2小时,再500℃焙烧2小时后得纳米铈锆固溶体。
硝酸铈和硝酸氧锆溶于正丁醇,不溶于正丁烷,将硝酸铈和硝酸氧锆混合液加入到十六烷基三甲基溴化铵、正丁醇、和环己烷的混合溶液中,在阳离子表面活性剂十六烷基三甲基溴化铵的作用下,形成微乳液A。沉淀剂氨水在正丁醇中溶解性良好,而不溶于正丁烷,因此在十六烷基三甲基溴化铵的作用下,形成微乳液B。在强烈的搅拌作用下,微乳液A和B的微液滴发生碰撞,反应,沉淀,从而形成Ce-Zr-O沉淀颗粒,并在表面活性剂作用下,Ce-Zr-O沉淀颗粒彼此隔开,防止了粒子聚结,增大了沉淀物比表面积。最后经陈化将沉淀物成功分离,并通过离子水洗涤、无水乙醇洗涤去除表面活性剂、正丁醇、正丁烷及未反应完全的硝酸铈和硝酸氧锆。所得沉淀物经500℃焙烧除去结晶水,并经分解生成铈锆晶体,即为所需铈锆固溶体。
作为优选,步骤(1)所述的十六烷基三甲基溴化氨、正丁醇、和环己烷的投料摩尔比为1∶8∶34。
作为优选,步骤(2)所述的硝酸铈和硝酸氧锆的摩尔比为67∶33。不同的Ce/Zr摩尔比能使Ce-Zr-O具有不同的结构,本发明选用Ce/Zr摩尔比为67∶33.
本发明的有益效果为:
1、通过阳离子表面活性剂十六烷基三甲基溴化氨,将反应体系变为微乳液,生成的沉淀颗粒微小,且不易聚结,因此能获得高比表面积的纳米铈锆固溶体。
2、仅通过强烈搅拌制备固溶体,相比滴加法,操作更为简便,同时陈化时间短,后处理简单,易于工业化生成。
附图说明
图1为铈锆固溶体的X射线衍射图。
图2为铈锆固溶体的热重-差热(TG-DTA)图。
具体实施方式
下面以具体实施例对本发明的技术方案做进一步说明,但本发明的保护范围不限于此:
实施例1
先配置摩尔比为1∶8∶34的十六烷基三甲基溴化氨(CTAB)、正丁醇、和环己烷的混合溶液,将其分成两份备用。其中一份加入计量比的硝酸铈和硝酸氧锆(摩尔比Ce∶Zr=67∶33)混合液配成微乳液,另一份加入氨水配成微乳液。在强烈搅拌下将两种微乳液混合,室温下陈化12h。经过滤和去离子水充分洗涤后,再用无水乙醇洗沉淀。之后于干燥箱内110℃干燥2小时,再500℃焙烧2小时。
铈锆固溶体的X射线衍射图见图1。样品的X射线(XRD)分析采用德国Bruker公司生产的BrukerAXDD8advance型X射线衍射仪进行测定,使用CuKα射线,电压40kV,电流40mA,扫描范围2θ=20°~80°。从图1可见,XRD图中2θ=29°,35°,48°,58°时出现了4个特征衍射峰,该衍射峰归属于CeO2的典型立方萤石结构,另外,样品中没有检测到单一的ZrO2特征衍射峰[18]。说明Zr4+已进入CeO2的晶格,形成了Ce0.67Zr0.33O2立方相固溶体。
样品比表面的测定在美国micromeritics公司生产的Geminiv全自动比表面积和孔隙度分析仪上进行。各样品经常温脱气15min,200℃脱气30min,以N2为吸附质,测定样品在液氮下的吸附性能,由BET方程计算样品比表面积。用表面分析仪测得样品的比表面积为114.2m2/g,该数据表明用微乳液法制得的催化剂具有较大的比表面积,催化剂应该有较好的催化活性。
热重-差热测试在美国TA公司生产的SDTQ600差热热重同步热分析仪上进行,以N2作为保护气,升温时间设为20℃/min。铈锆固溶体的热重-差热图见图2。从图2可知:第一阶段,在100℃附近为样品失去表面吸附水分的阶段;第二阶段,在190℃左右有一个放热峰,这为硝酸盐分解的峰,另外在100~500℃的失重还包括样品中结合水的去除。500℃时样品基本完全分解,此时铈锆形成晶体。从而确定铈锆固溶体的最低焙烧温度为500℃。
本实施例中铈锆固溶体的制备方法操作简便,能在较短时间内获得高比表面积纳米铈锆固溶体,适用于工业化生产。虽然本发明已以实施例公开如上,但其并非用以限定本发明的保护范围,任何熟悉该项技术的技术人员,在不脱离本发明的构思和范围内所作的更动与润饰,均应属于本发明的保护范围。

Claims (3)

1.一种微乳法合成纳米铈锆固溶体的方法,其特征在于,所述方法包含以下步骤:
(1)配置十六烷基三甲基溴化铵、正丁醇、和环己烷的混合溶液,将其平均分成两份备用;
(2)将一份步骤(1)所得混合溶液加入到硝酸铈和硝酸氧锆混合液中配成微乳液A;
(3)将另一份步骤(1)所得混合溶液加入到氨水中配成微乳液B;
(4)在强烈搅拌下将微乳液A与微乳液B混合,室温下陈化12小时;
(5)将步骤(4)所得混合物过滤,所得陈化物经去离子水洗涤、无水乙醇洗涤后110℃干燥2小时,再500℃焙烧2小时后得纳米铈锆固溶体。
2.一种微乳法合成纳米铈锆固溶体的方法,其特征在于,步骤(1)所述的十六烷基三甲基溴化氨、正丁醇、和环己烷的投料摩尔比为1∶8∶34。
3.一种微乳法合成纳米铈锆固溶体的方法,其特征在于,步骤(2)所述的硝酸铈和硝酸氧锆的摩尔比为67∶33。
CN201510760773.4A 2015-11-10 2015-11-10 一种微乳法合成纳米铈锆固溶体的方法 Pending CN105344346A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510760773.4A CN105344346A (zh) 2015-11-10 2015-11-10 一种微乳法合成纳米铈锆固溶体的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510760773.4A CN105344346A (zh) 2015-11-10 2015-11-10 一种微乳法合成纳米铈锆固溶体的方法

Publications (1)

Publication Number Publication Date
CN105344346A true CN105344346A (zh) 2016-02-24

Family

ID=55320488

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510760773.4A Pending CN105344346A (zh) 2015-11-10 2015-11-10 一种微乳法合成纳米铈锆固溶体的方法

Country Status (1)

Country Link
CN (1) CN105344346A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110026201A (zh) * 2019-05-10 2019-07-19 大连大学 一种用于甲烷催化燃烧的催化剂及其制备方法
CN116251562A (zh) * 2023-02-10 2023-06-13 广州市汉宵科研技术有限公司 一种纳米级氧化铈颗粒材料及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004363474A (ja) * 2003-06-06 2004-12-24 Yaskawa Electric Corp 永久磁石用粒子の製造方法
CN101214434A (zh) * 2007-12-29 2008-07-09 北京英泰世纪环境科技有限公司 一种纳米铈锆固溶体及其制备方法
CN102247826A (zh) * 2011-05-27 2011-11-23 济南大学 一种高比表面积的立方相铈锆基复合氧化物及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004363474A (ja) * 2003-06-06 2004-12-24 Yaskawa Electric Corp 永久磁石用粒子の製造方法
CN101214434A (zh) * 2007-12-29 2008-07-09 北京英泰世纪环境科技有限公司 一种纳米铈锆固溶体及其制备方法
CN102247826A (zh) * 2011-05-27 2011-11-23 济南大学 一种高比表面积的立方相铈锆基复合氧化物及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
赵波等: "Ce0.67Zr0.33O2材料的制备和表征及其负载单Pd三效催化剂的性能", 《催化学报》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110026201A (zh) * 2019-05-10 2019-07-19 大连大学 一种用于甲烷催化燃烧的催化剂及其制备方法
CN110026201B (zh) * 2019-05-10 2022-05-17 大连大学 一种用于甲烷催化燃烧的催化剂及其制备方法
CN116251562A (zh) * 2023-02-10 2023-06-13 广州市汉宵科研技术有限公司 一种纳米级氧化铈颗粒材料及其制备方法

Similar Documents

Publication Publication Date Title
Testa et al. Screening of different solid acid catalysts for glycerol acetylation
Puangpetch et al. Hydrogen production over Au-loaded mesoporous-assembled SrTiO3 nanocrystal photocatalyst: effects of molecular structure and chemical properties of hole scavengers
CN103240130B (zh) 光催化分解水用TiO2/MIL-101复合催化剂及制备方法和应用
Lu et al. Synthesis of visible-light-driven BiOBrxI1-x solid solution nanoplates by ultrasound-assisted hydrolysis method with tunable bandgap and superior photocatalytic activity
CN102600880B (zh) 一种可见光响应二氧化钛光催化液的制备方法
CN100509149C (zh) 一种介孔钛酸铋光催化剂的制备方法
CN103991903B (zh) 一种混相二氧化钛纳米片光催化剂的制备方法
Liu et al. One-step synthesis of metallic Bi deposited Bi2WO6 nanoclusters for enhanced photocatalytic performance: An experimental and DFT study
CN104069848B (zh) 一种醇热法制备纯相钛酸铋与氧化钛复合材料的方法
CN101563161A (zh) 掺杂氧化钛的制备方法、掺杂氧化钛及使用该掺杂氧化钛的可见光响应型光催化剂
CN103172030A (zh) 氧化物粉体及其制备方法、催化剂、以及催化剂载体
CN102583255B (zh) 一种介孔过渡金属复合氧化物的制备方法
WO2012156080A1 (en) Method for preparing a supported ruthenium catalyst
CN104249993A (zh) 基于金属氧化物光催化剂的太阳光催化水产氢产氧的方法
CN104108753A (zh) 一种可见光响应的BiVO4催化剂的制备
CN109364910B (zh) 一种同质异相三氧化钨纳米带光催化剂及其制备方法与应用
Yu et al. Selective catalytic reduction of NO using phase-pure anatase, rutile, and brookite TiO2 nanocrystals
CN103263920A (zh) 一种TiO2负载的高分散金属催化剂及其制备方法
CN104511293A (zh) 一种氯氧化铋-钛酸铁铋复合光催化剂及其制备方法
Wu et al. Significant photocatalytic activity enhancement of titania inverse opals by anionic impurities removal in dye molecule degradation
CN103263936A (zh) 一种可见光催化剂及其制备方法与应用
CN105772039A (zh) 一种具有氧空位的(001)晶面氟硼共掺杂TiO2纳米片的制备方法及用途
CN104707641A (zh) 一种金属-氮共掺杂二氧化钛空心球催化剂及其制备方法
CN102139914A (zh) 一种钛酸钙纳米颗粒的制备方法
CN105344346A (zh) 一种微乳法合成纳米铈锆固溶体的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20160224