CN105339304A - 锡酸硅酸钛其制备方法及其用途 - Google Patents

锡酸硅酸钛其制备方法及其用途 Download PDF

Info

Publication number
CN105339304A
CN105339304A CN201480032865.4A CN201480032865A CN105339304A CN 105339304 A CN105339304 A CN 105339304A CN 201480032865 A CN201480032865 A CN 201480032865A CN 105339304 A CN105339304 A CN 105339304A
Authority
CN
China
Prior art keywords
stannic acid
titanium silicate
acid titanium
silicate
stannic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201480032865.4A
Other languages
English (en)
Other versions
CN105339304B (zh
Inventor
吉姆·阿洛伊休斯·玛丽亚·布兰茨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of CN105339304A publication Critical patent/CN105339304A/zh
Application granted granted Critical
Publication of CN105339304B publication Critical patent/CN105339304B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/14Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of germanium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28069Pore volume, e.g. total pore volume, mesopore volume, micropore volume
    • B01J20/28071Pore volume, e.g. total pore volume, mesopore volume, micropore volume being less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/28083Pore diameter being in the range 2-50 nm, i.e. mesopores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/30Ion-exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/08Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/14Base exchange silicates, e.g. zeolites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/08Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides with the hydroxy or O-metal group of organic compounds
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing
    • G21F9/12Processing by absorption; by adsorption; by ion-exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2235/00Indexing scheme associated with group B01J35/00, related to the analysis techniques used to determine the catalysts form or properties
    • B01J2235/15X-ray diffraction
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/006Radioactive compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/32Hydrocarbons, e.g. oil
    • C02F2101/327Polyaromatic Hydrocarbons [PAH's]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/06Contaminated groundwater or leachate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Thermal Sciences (AREA)
  • Nanotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

本发明是关于一种具有通式:Mv+ wTixSiySnzO2x+2y+2z+0.5vw的非晶锡酸硅酸钛,其中M为质子、铵、金属或金属混合物,其中v为M为正整数的化合价,且其中x、y、z及w为摩尔比:x为1,y为0.01至99,z为0.01至99及w为0.01至50。所述锡酸硅酸钛尤其适用于催化及吸附。

Description

锡酸硅酸钛其制备方法及其用途
技术领域
本发明是关于用作催化剂及吸附剂的硅酸盐,尤其是含有诸如钛的过渡金属的硅酸盐的领域。
背景技术
中孔硅酸盐材料由于其大表面积及预定直径的孔隙而在如催化剂及吸附介质的广泛领域中有许多应用。此使其尤其适用于用作纯化吸附剂、催化剂、催化剂载体、过滤介质、填充剂。
具体而言,US5,508,457描述IVB族硅酸盐,尤其是硅酸钛及硅酸锆,其可为结晶的或非晶的。所述催化剂尤其为结晶硅酸钛、结晶硅酸铝钛、非晶硅酸钛及相应的锆化合物。硅酸盐适用于(转)酯化反应,且尤其是在固定床工艺中。
US5,053,139描述可用于在通常可见于饮用水中的竞争离子存在下,从该饮用水中移除铅的非晶硅酸钛及硅酸锡。
GB212,065描述一种通过使酸与可溶性盐的溶液混合制备多元氧化物凝胶以生产水凝胶的方法,该可溶性盐诸如为氧化锡、氧化铝、氧化钨和/或氧化钛的酸的钠盐。将此方法的最终产物描述为具有超显微孔的高孔隙度的物质。亦描述通过混合锡酸钠、钨酸钠及酸的溶液制备锡酸钨酸盐凝胶以生产水凝胶。但是,没有描述使用可溶性钛酸盐且建议使用的唯一钛酸盐为几乎不溶于水的钛酸钠的实例。
虽然已存在各种硅酸盐,但始终需要具有改良的物理性质(诸如孔径)及改良的催化剂性质(诸如选择性及活性)的新颖化合物用于催化及吸附应用。
发明内容
为了解决前述需求中的至少一者,本发明提供一种非晶锡酸硅酸钛,其具有以下通式:
Mv+ wTixSiySnzO2x+2y+2z+0.5vw
其中M为质子、铵、金属或金属混合物中的至少一种,v为M为正整数的化合价且其中x、y、z及w为摩尔比:
x为1,
y为0.01至99,
z为0.01至99,及
w为0.01至50。
在另一方面中,本发明提供一种用于制备根据本发明的锡酸硅酸钛的方法,其包含在可溶性硅酸盐源、可溶性锡酸盐源及可溶性钛源之间的水性介质中的沉淀反应,由此所述锡酸硅酸钛沉淀且分离。
在另一方面中,本发明提供根据本发明的锡酸硅酸钛的用途,其用作化学反应中的催化剂或催化剂载体或用作吸附剂。
具体实施方式
根据本发明的锡酸硅酸钛与现有硅酸钛及硅酸锡的不同之处在于所有三种元素构成氧网络。在结构层面上,本发明化合物表示一种由互连的硅酸盐、钛酸盐、及锡酸盐多面体构成的三维氧化物网络。因此,所有的三个原子(Si、Ti及Sn)构成氧-O-键的网络中的一部分。在替代观点中,据说Sn原子代替经由氧-O-键键合的Ti及Si的网络中的Ti(或Si)原子。亦据说根据本发明的化合物为钛、锡及硅的混合氧化物。通过与Sn阳离子进行离子交换自硅酸钛获得的Ti/Sn/Si化合物的区别在于锡不以阳离子形式存在于根据本发明的化合物中,而与氧原子共价结合,亦即呈锡酸盐形式。并且,锡以Sn(IV)形式存在于根据本发明的化合物中,而通常通过离子交换引入Sn(II)。此外术语“锡酸盐(stannate)”特别意味着以Sn(IV)形式存在于结构中的锡。
锡酸硅酸钛的所述结构明显不同于通过锡盐浸渍获得的结构,其中Sn以Sn2+阳离子形式存在。在硅酸钛(非晶的)及硅酸钛(结晶的,例如TS-1、ETS-4)中经像SnCl2的阳离子锡化合物进行阳离子交换的实例描述于[JournalofMolecularCatalysisA:Chemical(2005),237(1-2),1-8]及[ChemicalCommunications(2003),(13),1500-1501]中。但是,Sn的装载受限于可交换阳离子的量,因为锡阳离子仅微弱地与具有Si-O或Ti-O基的Ti/Si氧化物结构的表面结合。在本发明中,并入结构中的Sn的量可变化且可为极高的,诸如至少30wt.%、或至少50wt.%或甚至高达至少70wt.%。理论上,可存在于本发明的锡酸硅酸钛中的Sn的最大量为78wt.%,其是以具有痕量SiO2/TiO2的几乎纯的SnO2计算的。在制备本发明化合物期间,Sn不以阳离子形式而以阴离子形式添加,诸如Na2SnO3的SnO3 2-。在根据本发明的氧化物网络中引入Sn出人意料地导致改良的物理及催化性质,如在下文中更详细描述。
Sn原子的结构及环境可通过不同技术测定,例如XPS、UV-Vis或固态NMR。另外,通过离子交换引入的Sn始终影响M与Sn的重量比。此意味着如通式中所用的摩尔比w及z在离子交换引入的情况下为相互关联的,尽管在本发明中可彼此独立地选择这些值。举例而言,在离子交换期间,单个Na离子交换单个Sn离子。但在本发明中,由于Sn以锡酸盐形式内建于氧化物结构中,因此不影响可结合在锡酸硅酸钛的表面处的Na或H的量。
根据本发明的锡酸硅酸钛以非晶形式存在。在非晶形式下意味着X射线非晶,亦即其X射线粉末衍射图像不含结晶的衍射峰的固体形式。如本发明人所发现,呈非晶形式的锡酸硅酸钛允许在广泛范围内控制Ti:Si:Sn之间的摩尔比,其可继而更好地调整材料性质且因此带来更好的催化及吸附性质。另外,非晶形式在酯化及转酯化反应中具有尤其良好的催化性质。
根据本发明的锡酸硅酸钛具有以下通式:Mv+ wTixSiySnzO2x+2y+2z+0.5vw。在此公式中,M表示H(质子)、铵、金属或金属混合物中的至少一种。金属可为碱金属、碱土金属、过渡金属或其他金属,诸如化合价为1、2或3的金属,在优选的实施方式中,M为质子、铵、Na、Li、K、Cs、Ca、Mg、Sr、Ba、Fe(II)、Fe(III)、Sn(II)、Ce、La、Nb、Ni、V、W、Mo、Al、Zn、Cu、Mn中的至少一种。在一个优选的实施方式中,M为质子、铵、碱金属或碱土金属。在另一优选的实施方式中,M表示Li、Cs、Mg、Ca、Sr、Ba、La、Nb、Fe、Ni、V、W、Mo、Al、Ce、Sn、Zn、Cu、Mn离子或这些离子的组合。
元素M具有化合价v,其为正整数。优选地,M的化合价v为1、2、3、4、5或6。在一个优选的实施方式中,v为1、2或3。在另一优选的实施方式中,v可为5或6。值x、y、z及w为摩尔比且尤其为如下:x为1,y为0.01至99,z为0.01至99及w为0.01至50。优选地,y在0.1至10、更优选0.2至5的范围内。优选地,z在0.03至5、更优选0.05至1的范围内。优选地,w在0.01至50、更优选0.1至10的范围内。如先前所提及,w及z的值可以彼此独立的方式调整。
出人意料地,通过在硅酸钛结构中并入SnO2(或通过将TiO2并入硅酸锡结构中),所得材料的物理及催化性质可经改变。
甚至更出人意料地,根据本发明的材料的孔隙体积比非晶硅酸钛材料典型地可见的孔隙体积(通常远低于0.3mL/g)高。举例而言,US5053139报导介于0.03mL/g与0.25mL/g之间的孔隙体积。根据本发明的锡酸硅酸钛具有至少0.3mL/g的孔隙体积。连同锡酸硅酸钛材料的增加的孔隙体积一起,发现更大的平均孔隙直径,典型地具有如由IUPAC1994分类的中孔隙和/或大孔隙,其分别具有2nm至50nm及>50nm的孔隙直径。锡酸硅酸钛材料的典型的平均孔隙直径值至少为更优选为至少 传统的非晶硅酸钛具有介于之间的平均孔隙直径。本发明的锡酸硅酸钛的BET表面积为100至600,优选为200m2/g至500m2/g。
如本文所用的BET表面积为在MicromeriticsASAP2420上在180℃下对样品除气之后,通过液氮吸附所测量,且尤其通过测定在77K及大约0.3的P/Po下所吸附的氮气的量且假定氮气截面积为所测量的值。如本文所用,总孔隙体积为通过使用MicromeriticsASAP2420确定在大约1的P/Po下所吸附的液氮体积所测量的值。如本文所用,平均孔隙直径为通过总孔隙体积除以BET表面积及假定孔隙为圆柱形所测定的值。BJH方法可用于使用孔隙充填的开尔文(Kelvin)模型由实验等温线计算孔径分布。
本发明的锡酸硅酸钛优选呈粉末、片、颗粒或挤出物形式,更优选呈片或挤出物形式。
出人意料地,本发明人已发现根据本发明的新颖含锡材料与非晶硅酸钛相比具有改良的催化性质。举例而言,与非晶硅酸钛相比,用作催化剂的本发明的材料对三酸甘油酯与甲醇转化为脂肪酸甲酯更有效。并且,本发明的材料在游离脂肪酸与甲醇酯化以形成脂肪酸甲酯中更有效。
在另一方面中,本发明提供一种用于制备本发明的锡酸硅酸钛的方法。此方法包括在可溶性硅酸盐源、可溶性锡酸盐源及可溶性钛源之间的水性介质中的沉淀反应,由此该锡酸硅酸钛沉淀且分离。作为硅酸盐源,优选使用可溶性硅酸盐,诸如Na2SiO3。作为锡酸盐源,优选使用可溶性锡酸盐,诸如Na2SnO3。合适的钛源例如为钛盐及钛氧盐,诸如TiOCl2。尤其合适的为钛(IV)化合物,诸如TiCl4、溴化钛(IV)、氟化钛(IV)、碘化钛(IV)、烷氧钛(IV)、TiO烷氧盐,但亦可使用钛(III)。
沉淀物以从溶液中分离(优选通过过滤)的物质形式获得。为获得适用于催化及吸附应用的TiSiSn材料,应物质中的水应该除去以获得固体产物。可在高温下(诸如80℃至120℃)进行干燥,但亦可在室温下进行。干燥可在空气中或在氮气流中进行。干燥亦可在洗涤步骤之前以移除在沉淀期间所形成的盐。
替代干燥步骤或在干燥步骤的后,固体材料可在例如超过200℃、优选超过300℃、更优选超过400℃的温度下煅烧。在较高温度下煅烧可使材料作为催化剂活性更高。优选在较高温度下煅烧的另一原因为使用润滑剂制备片。在此情况下,润滑剂(例如经氢化的脂肪或石墨)需要烧尽而不影响TiSiSn结构的非晶特性。
本发明的锡酸硅酸钛保持非晶,甚至在450℃下煅烧之后。本发明人观察到在氧化硅不存在的情况下,所形成的化合物为在110℃下干燥之后已结晶的锡酸钛,且其亦在450℃下煅烧之后仍为结晶的。未内建Si的该材料(100%TiSn,参见实施例4)在酯化及转酯化反应中展示相当低的活性。
根据本发明的方法可进一步包括至少一个离子交换的步骤。举例而言,在沉淀反应之后存在于沉淀物中的至少一部分阳离子可由质子(H+)交换。质子化了的锡酸硅酸钛会不太易于在进料或产物流中降解及溶解。阳离子与H+置换的部分(诸如Na+或K+)亦可具有增加催化剂的酯化活性的优点。在新鲜催化剂(亦即在将其与原料,尤其与(脂肪)酸接触之前)中,Na或K离子的量典型地为大约5wt.%至10wt.%。此Na或K含量可通过与H+交换降至小于3wt.%。更优选地,钠或钾含量通过与H+交换降至小于1wt.%,甚至更优选地降至大约0.1wt.%至0.2wt.%。可使用其他阳离子代替H+来交换Na或K离子,诸如NH4 +、Cs+或Ca2+。离子交换的步骤可在沉淀之后及干燥步骤(若存在)之前,或在干燥步骤之后(若存在)或甚至在煅烧之后进行。
同样发现材料的热稳定性可受离子交换影响。尤其,发现当钠交换质子时,经XRD测量探测到的结晶度下的煅烧温度高得多。据信煅烧温度的高度对材料的BET-SA、孔隙体积及平均孔隙直径具有影响。因此,探测到结晶度下的温度较高意味着材料的热稳定性增加。
在优选的实施方式中,离子交换经选自以下的阳离子进行:质子、铵、Na、K、Li、Cs、Mg、Ca、Sr、Ba、La、Nb、Fe、Ni、V、W、Mo、Al、Ce、Sn、Zn、Cu、Mn离子及其组合。为了改良所得化合物在催化反应中的活性和/或选择性可将阳离子引入结构中。
根据本发明的材料可用于各种应用。此材料尤其优选用于催化反应中,诸如酯化、迈克尔(Michael)加成、转酯化、(环)氧化、羟基化反应。本发明的锡酸硅酸钛优选用作催化剂或催化剂载体,原样或在通过离子交换进行改性之后。本发明的材料亦可用作离子交换剂。本发明的锡酸硅酸钛的其他用途为吸附小的无机及有机分子(例如CO2或芳族化合物)。
本发明的锡酸硅酸钛的另一优选用途为其用于从水溶液中吸附及移除放射性核素,优选为Sr(尤其为90Sr)或锕系元素。因此本发明的材料可用作用于处理受金属污染的废物流及地下水的吸附剂。
本发明的材料的另一用途为用于在生理条件下选择性吸附及解吸附金属,优选为Pt(II)、Pt(IV)、Pd、Gd、Hg、Cd、Au或Ho。
本发明的材料可以粉末、片、颗粒、挤出物等形式使用。其可用作散装材料或用在载体上。
现将于以下非限制性实施例中说明本发明。除非另外说明,否则其中所提及的百分比或份数意味着重量百分比或重量份。
实施例1
制备摩尔比为0.29:1:1.02:0.06的Na:Ti:Si:Sn
在含有95g脱矿水(demi-water)的容器中,溶解有27.6mL的30%NaOH溶液、10mL的27%Na2SiO3溶液及6.8mL的13.5wt%Na2SnO3溶液。此容器中的溶液称为溶液A。在含有112g脱矿水的另一容器中,添加16mL的35%TiOCl2溶液。此容器中的溶液称为溶液B。随后,在5分钟内伴以剧烈搅拌将溶液A添加至溶液B。在添加完全的后,使混合物继续混合额外10分钟。溶液的pH值应降为介于7.5与7.9之间;若需要,则用稀释的HCl或稀释的NaOH调节pH值。随后使样品老化超过4小时(多至4天)。浆料被过滤且在110℃下在烘箱中将剩余物质干燥隔夜。所得白色固体被粒化,经由425μm筛筛分,在水中再打浆且搅拌1小时。随后,浆料被过滤,用脱矿水洗涤直至洗涤水的传导率低于200μS/cm。所得白色材料在110℃下在烘箱中干燥隔夜。通过方法产生大约12.5g白色固体。
该材料为非晶的(XRD)且其中Na:Ti:Si:Sn的比为0.29:1:1.02:0.06,且孔隙体积为0.47mL/g,BET-SA=430m2/g,
实施例2
制备摩尔比为0.23:1:0.34:0.18的Na:Ti:Si:Sn
使用如实施例1中所述的类似步骤但使用不同量的起始材料。溶液A含有95g脱矿水、26.7mL的30%NaOH溶液、3.4mL的27%Na2SiO3溶液及20mL的13.5wt.%的Na2SnO3溶液。溶液B类似于实施例1。产生大约10.8g白色固体。
材料为非晶(XRD)且其中Na:Ti:Si:Sn的摩尔比为0.23:1:0.34:0.18且孔隙体积为0.48mL/g。BET-SA=431m2/g,
实施例3
制备H + 交换材料
使用如实施例1中所述的类似步骤但使用不同量的起始材料。溶液A含有380g脱矿水、105mL的30%NaOH溶液、13.7mL的27%Na2SiO3溶液及80.8mL的13.5wt.%的Na2SnO3溶液。溶液B通过将64.5mL的35%TiOCl2溶液添加至450g脱矿水中制备。随后,在10分钟内伴以剧烈搅拌将溶液A添加至溶液B。在添加完全的后,使混合物继续混合额外10分钟。溶液的pH值应降为介于7.5与7.9之间;若需要,则用稀释的HCl或稀释的NaOH调节pH值。向混合物中添加40g的NaCl(视情况选用之)。随后使样品老化超过4小时。浆料被过滤且在110℃下在烘箱中将剩余物质干燥隔夜。干燥之后,白色固体被粒化,经由425μm筛筛分,在水中再打浆且在pH2.0(用10%HCl调节pH值)下搅拌1小时。随后,浆料被过滤,用脱矿水洗涤直至洗涤水的传导率低于200μS/cm。所得白色材料在110℃下在烘箱中干燥隔夜。通过方法产生大约40.7g白色固体。
材料为非晶的如通过XRD所确认,且其中Na:Ti:Si:Sn的摩尔比为0.01:1:0.34:0.16且孔隙体积为0.50mL/g。BET-SA=384m2/g,
实施例4
不用Si制备
使用如实施例1中所述的类似步骤但使用不同量的起始材料。溶液A含有90g脱矿水、24.3mL的30%NaOH溶液及25mL的13.5wt.%的Na2SnO3溶液。溶液B含有100g脱矿水及15mL的35%TiOCl2溶液。随后,在5分钟内伴以剧烈搅拌将溶液A添加至溶液B。在添加完全的后,使混合物继续混合额外10分钟。溶液的pH值应降为介于7.5与7.9之间;若不为此情况,则用稀释的HCl或稀释的NaOH调节pH值。向混合物中添加10g的NaCl(视情况选用之)。随后使样品老化超过4小时(多至4天)。浆料被过滤且在110℃下在烘箱中将剩余物质干燥隔夜。所得白色固体被粒化,经由425μm筛筛分,在水中再打浆且在pH2.0(用10%HCl调节pH值)下搅拌1小时。随后,浆料被过滤,用脱矿水洗涤直至洗涤水的传导率低于200μS/cm。所得白色材料在110℃下在烘箱中干燥隔夜。通过方法产生大约8.2g白色固体。
该材料为结晶的如通过XRD所确认,且其中Na:Ti:Si:Sn的比为0.01:1:0:0.24,且孔隙体积为0.30mL/g,BET-SA=256m2/g,
实施例1、2、3及4的煅烧
通过实施例1、2、3及4制备的样品在450℃下在空气中煅烧2小时。煅烧之后,除了来自实施例4的材料仍为结晶的外,所有样品均保持非晶的。
实施例5
TiSi传统合成
根据US-A-5053139的实施例9制得硅酸钛粉末:两公升1.5M氯化钛溶液(溶液A)通过添加569.11g的TiCl4至足够的去离子水中以形成2公升来制得。两公升1.5M硅酸钠溶液(溶液B)通过将638.2g的Na2SiO3.5H2O溶解于足够的3M的NaOH中以形成2公升来制得。伴以极剧烈搅拌以16cc/分钟的速率将溶液B添加至溶液A。在添加完全的后,使混合物继续混合额外15分钟。溶液的pH值应降为介于7.5与7.9之间;若不为此情况,则用稀释的HCl或稀释的NaOH调节pH值。随后使样品老化2-4天。老化之后,将物质的顶部上的任何水倾析掉。样品随后被过滤,每公升物质用1公升去离子水洗涤,在4公升至6公升去离子水中再打浆,过滤且最后每公升物质在2公升水中再洗涤。
为了效率原因,样品随后在105℃下干燥24小时(直至LOI低于10)。在合成步骤期间从不允许物质接触任何金属;在整个制备过程中使用聚丙烯及玻璃实验室器皿。
由此方法产生的固体被粒化及筛分至粒子小于250微米,且所得的钠:钛:硅的摩尔比为0.35:1:0.96,且孔隙体积大约为0.14mL/g,BET-SA=364m2/g,
图1展示实施例2及5中获得的产物的孔径分布。可见与不含Sn的化合物(实施例5)相比,存在Sn内建于结构中(实施例2)产生明显更大的孔隙体积。
实施例6
通过SnCl 2 改性的TiSi的阳离子交换
在玻璃烧杯中,在450mL脱矿水中将50.0g根据实施例5制备的硅酸钛制成浆料。向此浆料中添加29.34g呈固体状的SnCl2.2H2O。混合物的颜色从白色变成黄色。浆料的pH值从8.80变成1.60。使混合物在室温下搅拌额外2小时。2小时之后,浆料被过滤且用脱矿水洗涤直至滤液的传导率低于20微西门子/厘米(microSiemens/cm)。微黄色的滤饼在110℃下在烘箱中干燥隔夜产生48.2g黄色粉末。所得材料为通过XRD确认的非晶。
材料的Na:Ti:Si:Sn摩尔比为0.01:1:1.27:0.19。测量到的孔隙体积为0.14mL/g,BET表面积为229m2/g,平均孔隙直径为
实施例7
片的制备
将实施例3的材料与石墨混合且制片成1.5mm×1.5mm的大小。所得片在500℃下煅烧2小时。
实施例8
同时在酯化及转酯化中使用TiSi
10mL硅酸钛片由根据实施例5制备的材料制成,但其中钠含量在pH2.00下通过HCl处理而降低。在过滤、洗涤及干燥之后,材料含有0.8wt.%的Na。将此材料制片成1.5mm*1.5mm的片。片装载于固定床反应器中。向反应器连续进料MeOH(1.73mL/h)及菜籽油(3.47mL/h),其中已添加5wt.%的十二烷酸。反应条件为180℃、28巴N2背压(backpressure)、LHSV菜籽油0.347h-1(3.47mL/h)、LHSVMeOH0.173h-1(1.73mL/h)。
三酸甘油酯至脂肪酸甲酯的转化率为46%且99.1%的十二烷酸转化成相对应的甲酯。
实施例9
同时在酯化及转酯化中使用TiSiSn
从根据实施例3制备的材料制备10mL锡酸硅酸钛片。片装载于固定床反应器中。向反应器连续进料MeOH(1.73mL/h)及菜籽油(3.47mL/h),其中已添加5wt%的十二烷酸。反应条件为180℃、28巴N2背压、LHSV菜籽油0.347h-1(3.47mL/h)、LHSVMeOH0.173h-1(1.73mL/h)。
三酸甘油酯至脂肪酸甲酯的转化率为60%且99.8%的十二烷酸转化成相对应的甲酯。

Claims (15)

1.非晶锡酸硅酸钛,具有以下通式:
Mv+ wTixSiySnzO2x+2y+2z+0.5vw
其中M为质子、铵、金属或金属混合物中的至少一种,v为M为正整数的化合价且其中x、y、z及w为摩尔比:
x为1,
y为0.01至99,
z为0.01至99,及
w为0.01至50。
2.如权利要求1所述的锡酸硅酸钛,其中M为质子、铵、Na、Li、K、Cs、Ca、Mg、Sr、Ba、Fe(II)、Fe(III)、Sn(II)、Ce、La、Nb、Ni、V、W、Mo、Al、Zn、Cu、Mn中的至少一种。
3.如权利要求1或2所述的锡酸硅酸钛,其中y在0.1至10,优选0.2至5的范围内。
4.如前述权利要求中任一项所述的锡酸硅酸钛,其中z在0.03至5,优选0.05至1的范围内。
5.如前述权利要求中任一项所述的锡酸硅酸钛,其中w在0.1至10的范围内。
6.如前述权利要求中任一项所述的锡酸硅酸钛,其中所述锡酸硅酸钛具有由液氮吸附所测定的至少0.3mL/g的孔隙体积。
7.如前述权利要求中任一项所述的锡酸硅酸钛,其中所述锡酸硅酸钛具有由液氮吸附所测定的至少的平均孔隙直径。
8.如前述权利要求中任一项的锡酸硅酸钛,呈粉末、片、颗粒或挤出物形式。
9.制备如前述权利要求中任一项所述的锡酸硅酸钛的方法,包括在可溶性硅酸盐源、可溶性锡酸盐源及可溶性钛源之间的水性介质中的沉淀反应,由此所述锡酸硅酸钛沉淀且分离。
10.如权利要求9所述的方法,进一步包括经选自以下的阳离子进行离子交换的步骤:质子、铵、Na、Li、K、Cs、Ca、Mg、Sr、Ba、Fe(II)、Fe(III)、Sn(II)、Ce、La、Nb、Ni、V、W、Mo、Al、Zn、Cu、Mn离子及其组合。
11.如权利要求9至10中任一项所述的方法,其中所述锡酸硅酸钛进一步在超过200℃的温度下煅烧。
12.如权利要求1至8中任一项所述的锡酸硅酸钛的用途,所述锡酸硅酸钛用作化学反应中的催化剂或催化剂载体,或用作吸附剂。
13.如权利要求12所述的用途,其中所述化学反应为酯化、迈克尔加成、转酯化、氧化、环氧化或羟基化的反应。
14.如权利要求12所述的用途,所述锡酸硅酸钛用于从水溶液吸附及移除放射性核素,优选为90Sr或锕系元素。
15.如权利要求12所述的用途,所述锡酸硅酸钛用于在生理条件下选择性吸附或解吸附金属,所述金属优选为Pt(II)、Pt(IV)、Pd、Gd、Hg、Cd、Au或Ho。
CN201480032865.4A 2013-04-11 2014-04-10 锡酸硅酸钛其制备方法及其用途 Active CN105339304B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP13163288.7 2013-04-11
EP13163288 2013-04-11
PCT/IB2014/060621 WO2014167524A1 (en) 2013-04-11 2014-04-10 Titanium stannate silicate, method of preparation and use thereof

Publications (2)

Publication Number Publication Date
CN105339304A true CN105339304A (zh) 2016-02-17
CN105339304B CN105339304B (zh) 2018-02-13

Family

ID=48050580

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480032865.4A Active CN105339304B (zh) 2013-04-11 2014-04-10 锡酸硅酸钛其制备方法及其用途

Country Status (11)

Country Link
US (1) US10814310B2 (zh)
EP (1) EP2984036B1 (zh)
JP (1) JP6272986B2 (zh)
KR (1) KR101773694B1 (zh)
CN (1) CN105339304B (zh)
AR (1) AR095849A1 (zh)
BR (1) BR112015025752A2 (zh)
CA (1) CA2909405C (zh)
MY (1) MY194298A (zh)
TW (1) TWI637909B (zh)
WO (1) WO2014167524A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107304486A (zh) * 2016-04-25 2017-10-31 中央大学 非线性光学晶体及其制备方法
CN110152648A (zh) * 2018-02-12 2019-08-23 中国石油化工股份有限公司 锡催化剂的制备方法、锡催化剂及其应用
CN111433013A (zh) * 2017-06-29 2020-07-17 索理思科技开曼公司 水稳性颗粒和片剂
JP2021525303A (ja) * 2018-05-25 2021-09-24 コンセホ・スペリオル・デ・インベスティガシオネス・シエンティフィカス(セエセイセ)Consejo Superior De Investigaciones Cientificas(Csic) 水性混合物に含まれる含酸素化合物を原料とした、炭化水素および芳香族化合物を製造するための触媒的方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI585249B (zh) 2016-04-25 2017-06-01 國立中央大學 非線性光學晶體及其製備方法
KR20180032336A (ko) * 2016-09-22 2018-03-30 안동대학교 산학협력단 4가 양이온이 도입된 방사성 핵종 제거용 티타노실리케이트의 제조방법
CN110931786B (zh) * 2019-12-11 2022-10-28 河南创力新能源科技股份有限公司 一种铁镍电池负极硅酸盐晶体材料的制备方法
CN110931785B (zh) * 2019-12-11 2022-09-30 河南创力新能源科技股份有限公司 一种锌镍电池负极硅酸盐晶体材料的制备方法
CN113893842B (zh) * 2021-09-24 2023-09-22 浙江工业职业技术学院 改性负载型氧化镁催化剂的制备方法及单甘酯生产工艺

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB212065A (en) * 1923-02-09 1924-03-06 Silica Gel Corp Improved manufacture of gels
US5053139A (en) * 1990-12-04 1991-10-01 Engelhard Corporation Removal of heavy metals, especially lead, from aqueous systems containing competing ions utilizing amorphous tin and titanium silicates

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4329328A (en) 1979-10-19 1982-05-11 National Research Development Corporation Method of synthesizing zincosilicate or stannosilicate or titanosilicate material
US5192519A (en) 1987-09-01 1993-03-09 Exxon Research And Engineering Company Substituted stannosilicates and preparation thereof
US5508457A (en) 1993-05-04 1996-04-16 Engelhard De Meern B.V. Esterification process
US6074624A (en) 1997-04-22 2000-06-13 Uop Llc Titanostannosilicates and preparation thereof
US5780654A (en) 1997-04-22 1998-07-14 Uop Llc Titanostannosilicalites: epoxidation of olefins
US5968473A (en) * 1998-12-18 1999-10-19 Uop Llc Stannosilicate molecular sieves
GB0212065D0 (en) 2002-05-24 2002-07-03 Mars Inc Pressure release packages
WO2010101991A1 (en) 2009-03-04 2010-09-10 Basf Se Method of removing heavy metal from an aqueous solution

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB212065A (en) * 1923-02-09 1924-03-06 Silica Gel Corp Improved manufacture of gels
US5053139A (en) * 1990-12-04 1991-10-01 Engelhard Corporation Removal of heavy metals, especially lead, from aqueous systems containing competing ions utilizing amorphous tin and titanium silicates

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107304486A (zh) * 2016-04-25 2017-10-31 中央大学 非线性光学晶体及其制备方法
CN111433013A (zh) * 2017-06-29 2020-07-17 索理思科技开曼公司 水稳性颗粒和片剂
CN110152648A (zh) * 2018-02-12 2019-08-23 中国石油化工股份有限公司 锡催化剂的制备方法、锡催化剂及其应用
CN110152648B (zh) * 2018-02-12 2022-01-04 中国石油化工股份有限公司 锡催化剂的制备方法、锡催化剂及其应用
JP2021525303A (ja) * 2018-05-25 2021-09-24 コンセホ・スペリオル・デ・インベスティガシオネス・シエンティフィカス(セエセイセ)Consejo Superior De Investigaciones Cientificas(Csic) 水性混合物に含まれる含酸素化合物を原料とした、炭化水素および芳香族化合物を製造するための触媒的方法
JP7389056B2 (ja) 2018-05-25 2023-11-29 コンセホ・スペリオル・デ・インベスティガシオネス・シエンティフィカス(セエセイセ) 水性混合物に含まれる含酸素化合物を原料とした、炭化水素および芳香族化合物を製造するための触媒的方法
US11839867B2 (en) 2018-05-25 2023-12-12 Consejo Superior De Investigaciones Cientificas Catalytic method for the production of hydrocarbons and aromatic compounds from oxygenated compounds contained in aqueous mixtures

Also Published As

Publication number Publication date
JP6272986B2 (ja) 2018-01-31
KR101773694B1 (ko) 2017-08-31
KR20160006679A (ko) 2016-01-19
EP2984036A1 (en) 2016-02-17
US20160067677A1 (en) 2016-03-10
US10814310B2 (en) 2020-10-27
CN105339304B (zh) 2018-02-13
WO2014167524A1 (en) 2014-10-16
AR095849A1 (es) 2015-11-18
JP2016523789A (ja) 2016-08-12
EP2984036B1 (en) 2020-03-11
TWI637909B (zh) 2018-10-11
TW201446651A (zh) 2014-12-16
MY194298A (en) 2022-11-27
BR112015025752A2 (pt) 2017-07-18
CA2909405C (en) 2018-11-20
CA2909405A1 (en) 2014-10-16

Similar Documents

Publication Publication Date Title
CN105339304B (zh) 锡酸硅酸钛其制备方法及其用途
CN105377760B (zh) 第4族金属硅酸盐的制备方法及其用途
JP6672849B2 (ja) 新規ゼオライト
JP6430303B2 (ja) Afx型ゼオライトの製法
CN101239322B (zh) 蒙脱土/分子筛复合材料的制备方法
CN100344538C (zh) Im-9结晶固体及其制备方法
CN102666387B (zh) 新型金属硅酸盐及其生产方法、氮氧化物除去催化剂及其生产方法和使用所述催化剂的氮氧化物除去方法
KR20130132944A (ko) 구리 및 알칼리 토금속을 담지한 제올라이트
JP6702759B2 (ja) チタンを含有するaei型ゼオライト及びその製造方法
CN102583255A (zh) 一种介孔过渡金属复合氧化物的制备方法
JP6817022B2 (ja) 高耐水熱性チャバザイト型ゼオライトおよびその製造方法
CN100450609C (zh) 钨硅酸盐/介孔分子筛杂化材料及其制备方法
JP4484193B2 (ja) 球状マイクロポアシリカ多孔質粒子及びその製造方法
WO2017213022A1 (ja) 高耐水熱性チャバザイト型ゼオライトおよびその製造方法
CN107417826B (zh) 球形沸石介孔复合材料和负载型催化剂及其制备方法
CN104888840A (zh) 一种高骨架硅铝比原位晶化fcc重油转化助剂的制备方法
CN103964463A (zh) 一种y型分子筛的制备方法
JP2021062362A (ja) マイクロ孔を有する物質で被覆された遷移金属担持体およびその製造方法
JP2022008141A (ja) Afx型ゼオライトおよびその製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant