CN105332097A - 一种负载Co3O4纳米颗粒的碳纤维复合材料的制备方法及所得产品 - Google Patents

一种负载Co3O4纳米颗粒的碳纤维复合材料的制备方法及所得产品 Download PDF

Info

Publication number
CN105332097A
CN105332097A CN201510692209.3A CN201510692209A CN105332097A CN 105332097 A CN105332097 A CN 105332097A CN 201510692209 A CN201510692209 A CN 201510692209A CN 105332097 A CN105332097 A CN 105332097A
Authority
CN
China
Prior art keywords
carbon fiber
preparation
nano particle
load
precursor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510692209.3A
Other languages
English (en)
Other versions
CN105332097B (zh
Inventor
杨萍
董涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Jinan
Original Assignee
University of Jinan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Jinan filed Critical University of Jinan
Priority to CN201510692209.3A priority Critical patent/CN105332097B/zh
Publication of CN105332097A publication Critical patent/CN105332097A/zh
Application granted granted Critical
Publication of CN105332097B publication Critical patent/CN105332097B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/21Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • D01D5/003Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Fibers (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种负载Co3O4纳米颗粒的碳纤维复合材料的制备方法及所得产品,该方法为:室温下,将钴源、聚乙烯吡咯烷酮和N,N-二甲基甲酰胺混合,搅拌均匀得前驱体纺丝液;利用静电纺丝技术制得前驱体纤维,将前驱体纤维在惰性气氛下二次煅烧,得到负载Co3O4纳米颗粒的碳纤维复合材料。本发明利用单针头静电纺丝技术,通过一步法将Co3O4纳米颗粒均匀的负载在碳纤维上,制备工艺简单,制得的碳纤维直径约为400~500nm,Co3O4颗粒尺寸约为50~100nm,形貌规则,纤维相互交叠形成疏松多孔结构,作为储能材料在锂离子电池和超级电容器领域中有着广泛的应用前景。

Description

一种负载Co3O4纳米颗粒的碳纤维复合材料的制备方法及所得产品
技术领域
本发明涉及一种静电纺丝法制备负载Co3O4纳米颗粒的碳纤维复合材料的方法及所得的负载Co3O4纳米颗粒的碳纤维复合材料,属于无机纳米材料技术领域。
背景技术
  过渡金属氧化物作为锂离子电池负极材料或超级电容器电极材料都具有容量高的特点,与目前商业化的碳类材料相比容量高出很多,特别是Co3O4等材料还具有良好的电化学性能,逐渐成为研究热点。
与传统方法相比,静电纺丝技术具有装置简单、工艺可控等优点,是制备一维纳米材料的主要途径。
文献和专利中负载Co3O4纳米颗粒的碳纤维复合材料鲜有报导,多为碳纤维负载其他物质形成的具有特定功能的复合材料。中国专利(CN103545536A)和(CN103696235A)分别制备了碳纤维负载金属催化剂和碳纤维负载介孔二氧化钛,是先制备碳纤维再将目标物质负载与碳纤维上,过程较为复杂。因此,采用一种简便易行的方法控制合成结构稳定、形貌规则、颗粒尺寸分布均匀的负载纳米颗粒的碳纤维复合材料具有显著的意义,可以作为一种储能材料及在其他领域内具有广泛的应用前景。
发明内容
本发明提供了一种负载Co3O4纳米颗粒的碳纤维复合材料的制备方法,该方法利用静电纺丝技术,一步即可制得Co3O4纳米颗粒负载的碳纤维,无须先制备碳纤维,工艺简便可行,具有很好的可控性,所得复合材料形貌规则,Co3O4分布均匀。
本发明采用静电纺丝法制备负载Co3O4纳米颗粒的碳纤维复合材料,首先制备含有钴源的纺丝液,然后通过静电纺丝制成纤维,然后通过煅烧得到负载Co3O4纳米颗粒的碳纤维。所得复合材料由多条负载Co3O4纳米颗粒的碳纤维组成,各碳纤维尺寸均匀,Co3O4分布均匀。各碳纤维相互交叠,能够形成疏松多孔结构。
本发明的具体技术方案如下:
一种负载Co3O4纳米颗粒的碳纤维复合材料的制备方法,该方法包括以下步骤:
(1)纺丝液的制备:室温下,将钴源、聚乙烯吡咯烷酮和N,N-二甲基甲酰胺混合,搅拌均匀得前驱体纺丝液;
(2)静电纺丝过程:将步骤(1)中的前驱体纺丝液利用静电纺丝法进行纺丝,得到前驱体纤维;
(3)煅烧过程:将步骤(2)制备的前驱体纤维先在惰性气氛下升至300℃进行预煅烧,再在惰性气氛下升至500~700℃进行二次煅烧,然后自然冷却至室温,即得到负载Co3O4纳米颗粒的碳纤维复合材料。
上述步骤(1)中,将钴源和聚乙烯吡咯烷酮在室温下加入N,N-二甲基甲酰胺中,室温条件下钴源不会与N,N-二甲基甲酰胺发生反应,从而使纺丝液中的钴始终以钴离子的形式存在,这样在后续的煅烧过程中,钴离子会发生迁移,在碳纤维的表面形成Co3O4,从而形成Co3O4纳米颗粒均匀分布在碳纤维表面的形貌。
本发明中使用N,N-二甲基甲酰胺做溶剂,其对多种无机化合物和有机化合物均具有良好的溶解能力和化学稳定性,配制的纺丝液在室温下即可较稳定的储存。通过调整聚乙烯吡咯烷酮的质量浓度控制纺丝液的粘度,保证纺丝过程中不易出现液滴,使纺丝过程顺利进行。
上述步骤(1)中,所述钴源可以为六水合硝酸钴或四水合乙酸钴。
上述步骤(1)中,钴源的的浓度为0.25~0.5mol/L。钴源的用量影响碳纤维上Co3O4颗粒的多少,在本发明范围内,钴源用量越大,Co3O4颗粒在碳纤维上的负载量越大,Co3O4颗粒在碳纤维上的分布越密集。
上述步骤(1)的前驱体纺丝液中,聚乙烯吡咯烷酮的质量浓度为0.13~0.17g/ml,以使纺丝正常进行。
上述步骤(2)中,静电纺丝工艺采用常规的工艺技术进行即可。在本发明的优选实施例中,静电纺丝过程的参数为:针头直径为0.6mm,电压为15kV,针头与接收板的距离为16cm,纺丝液推进速度为0.3mL/h,采用铝箔作为纤维接收装置。
上述步骤(3)中,煅烧分两步进行,先在低温下进行预煅烧,然后在高温下进行二次煅烧。预煅烧的时间一般为1h,二次煅烧的时间一般为1~5h。通过通过煅烧温度和时间可以控制四氧化三钴的结晶性,温度越高、时间越长可得到结晶度高的纳米四氧化三钴。
上述步骤(3)中,预煅烧时按照5℃/min的升温速率由室温升至300℃。
上述步骤(3)中,二次煅烧时的升温速率影响四氧化三钴颗粒的形成,也可以控制四氧化三钴颗粒的尺寸大小。在本发明中,二次煅烧一般按照1~10℃/min的升温速率升温至500~700℃,优选按照5~10℃/min的升温速率升温至500~700℃。
步骤(3)中,煅烧在惰性气氛下进行,以使聚乙烯吡咯烷酮在煅烧过程中碳化,转变为碳纤维。所用惰性气体可以为氮气或氩气。
按照上述方法得到的负载Co3O4纳米颗粒的碳纤维复合材料具有特殊的形貌,其由碳纤维和Co3O4纳米颗粒组成,所述Co3O4纳米颗粒均匀负载在碳纤维表面。
按照上述方法制得的负载Co3O4纳米颗粒的碳纤维复合材料中,所述碳纤维直径为400~500nm,Co3O4纳米颗粒尺寸为50~100nm。
按照上述方法制得的负载Co3O4纳米颗粒的碳纤维复合材料中,负载的颗粒牢固,不易脱落,各负载Co3O4纳米颗粒的碳纤维相互交叠,形成疏松多孔结构。
本发明首先将钴源和聚乙烯吡咯烷酮溶于N,N-二甲基甲酰胺中,充分搅拌得到均一稳定的前驱体纺丝液;四氧化三钴前驱体在纺丝过程中直接与聚乙烯吡咯烷酮复合形成纤维;煅烧过程中,惰性气氛下温度升高,溶剂逐渐的挥发,随着溶剂的挥发,四氧化三钴前驱体逐渐聚集在纤维外层,聚乙烯吡咯烷酮作为纤维主体,在惰性气氛、高温下碳化,变成碳纤维,前驱体变成纳米四氧化三钴颗粒负载于碳纤维上。
本发明利用单针头静电纺丝技术制备负载Co3O4纳米颗粒的碳纤维复合材料,可一步法得到所需产品,无需先制备碳纤维再负载Co3O4,简化了工艺操作,制备过程简单、可控。制得的碳纤维复合材料纤维形貌规则,纤维直径约为400~500nm,Co3O4颗粒尺寸约为50~100nm,纤维相互交叠形成疏松多孔结构,该复合材料可作为储能材料,在锂离子电池和超级电容器领域中有着广泛的应用前景。
附图说明
图1本发明实施例1合成的负载Co3O4纳米颗粒的碳纤维复合材料的扫描电镜照片。
图2本发明实施例1合成的负载Co3O4纳米颗粒的碳纤维复合材料的X射线衍射图谱。
图3本发明实施例2合成的负载Co3O4纳米颗粒的碳纤维复合材料的扫描电镜照片。
具体实施方式
下面通过实施例对本发明进行进一步的阐述,需要说明的是,下述说明仅是为了解释本发明,并不对其内容进行限定。
实施例1
1.1称取0.4365gCo(NO3)2·6H2O,在室温下加入至盛有6mLDMF的烧杯中,磁力搅拌至完全溶解后再加入1.0gPVP,持续搅拌得到均一、具有一定粘度的前驱体纺丝液(简称纺丝液,下同);
1.2将纺丝液注入注射器,进行静电纺丝,得到前驱体纤维。纺丝过程的参数为:针头直径为0.6mm,电压为15kV,针头与接收板的距离为16cm,纺丝液推进速度为0.3mL/h,采用铝箔作为纤维接收装置;
1.3将实施例1.2中得到的前驱体纤维放入氮气气氛炉中,以5℃/min的升温速度升至300℃煅烧1h,然后以10℃/min的升温速率升至600℃保温2h,煅烧后自然冷却至室温,即得到负载Co3O4纳米颗粒的碳纤维复合材料。图1为该样品的扫描电镜照片,从图中可以看出所得碳纤维表面均匀分布有Co3O4颗粒,且颗粒分布密集,碳纤维直径为450纳米左右,Co3O4颗粒尺寸为50纳米左右。图2为该样品的X射线衍射图谱,由图谱可知,制得的Co3O4为尖晶石型。
实施例2
2.1称取0.4365gCo(NO3)2·6H2O,在室温下加入至盛有6mLDMF的烧杯中,磁力搅拌至完全溶解后再加入1.0gPVP,持续搅拌得到均一、具有一定粘度的纺丝液;
2.2将纺丝液注入注射器,进行静电纺丝,得到前驱体纤维。纺丝过程的参数为:针头直径为0.6mm,电压为15kV,针头与接收板的距离为16cm,纺丝液推进速度为0.3mL/h,采用铝箔作为纤维接收装置;
2.3将实施例2.2中得到的前驱体纤维放入气氛炉中,采用高纯氮气为惰性气体,以5℃/min的升温速度升至300℃煅烧1h,然后以1℃/min的升温速率加热至600℃保温2h,煅烧后自然冷却至室温,即得到负载Co3O4纳米颗粒的碳纤维复合材料。图3为该样品的扫描电镜照片,从图中可以看出所得碳纤维表面均匀分布有Co3O4颗粒,且颗粒分布密集,碳纤维直径为500纳米,Co3O4颗粒尺寸为100纳米左右。
实施例3
3.1称取0.7275gCo(NO3)2·6H2O,在室温下加入至盛有6mLDMF的烧杯中,磁力搅拌至完全溶解后再加入1.0gPVP,持续搅拌得到均一、具有一定粘度的纺丝液;
3.2将纺丝液注入注射器,进行静电纺丝,得到前驱体纤维。纺丝过程的参数为:针头直径为0.6mm,电压为15kV,针头与接收板的距离为16cm,纺丝液推进速度为0.3mL/h,采用铝箔作为纤维接收装置;
3.3将实施例3.2中得到的前驱体纤维放入气氛炉中,采用高纯氮气为惰性气体,以5℃/min的升温速度升至300℃煅烧1h,然后以10℃/min的升温速率加热至700℃保温2h,煅烧后自然冷却至室温,即得到负载Co3O4纳米颗粒的碳纤维复合材料。所得碳纤维表面均匀分布有Co3O4颗粒,且颗粒分布密集,碳纤维直径为450纳米左右,Co3O4颗粒尺寸为50纳米左右。
实施例4
4.1称取0.4365gCo(NO3)2·6H2O,在室温下加入至盛有6mLDMF的烧杯中,磁力搅拌至完全溶解后再加入1.0gPVP,持续搅拌得到均一、具有一定粘度的纺丝液;
4.2将纺丝液注入注射器,进行静电纺丝,得到前驱体纤维。纺丝过程的参数为:针头直径为0.6mm,电压为15kV,针头与接收板的距离为16cm,纺丝液推进速度为0.3mL/h,采用铝箔作为纤维接收装置;
4.3将实施例4.2中得到的前驱体纤维放入气氛炉中,采用高纯氮气为惰性气体,以5℃/min的升温速度升至300℃煅烧1h,然后以8℃/min的升温速率加热至500℃保温2h,煅烧后自然冷却至室温,即得到负载Co3O4纳米颗粒的碳纤维复合材料。所得碳纤维表面均匀分布有Co3O4颗粒,且颗粒分布密集,碳纤维直径为450纳米左右,Co3O4颗粒尺寸为60纳米左右。
实施例5
5.1称取0.873gCo(NO3)2·6H2O,在室温下加入至盛有6mLDMF的烧杯中,磁力搅拌至完全溶解后再加入0.8gPVP,持续搅拌得到均一、具有一定粘度的纺丝液;
5.2将纺丝液注入注射器,进行静电纺丝,得到前驱体纤维。纺丝过程的参数为:针头直径为0.6mm,电压为15kV,针头与接收板的距离为16cm,纺丝液推进速度为0.3mL/h,采用铝箔作为纤维接收装置;
5.3将实施例5.2中得到的前驱体纤维放入气氛炉中,采用高纯氮气为惰性气体,以5℃/min的升温速度升至300℃煅烧1h,然后以10℃/min的升温速率加热至600℃保温2h,煅烧后自然冷却至室温,即得到负载Co3O4纳米颗粒的碳纤维复合材料。所得碳纤维表面均匀分布有Co3O4颗粒,且颗粒分布密集,碳纤维直径为450纳米左右,Co3O4颗粒尺寸为50纳米左右。
实施例6
6.1称取0.4365gCo(NO3)2·6H2O,在室温下加入至盛有6mLDMF的烧杯中,磁力搅拌至完全溶解再后加入1.0gPVP,持续搅拌得到均一、具有一定粘度的纺丝液;
6.2将纺丝液注入注射器,进行静电纺丝,得到前驱体纤维。纺丝过程的参数为:针头直径为0.6mm,电压为15kV,针头与接收板的距离为16cm,纺丝液推进速度为0.3mL/h,采用铝箔作为纤维接收装置;
6.3将实施例6.2中得到的前驱体纤维放入气氛炉中,采用高纯氮气为惰性气体,以5℃/min的升温速度升至300℃煅烧1h,然后以5℃/min的升温速率加热至600℃保温5h,煅烧后自然冷却至室温,即得到负载Co3O4纳米颗粒的碳纤维复合材料。所得碳纤维表面均匀分布有Co3O4颗粒,且颗粒分布密集,碳纤维直径为500纳米左右,Co3O4颗粒尺寸为70纳米左右。
实施例7
7.1称取0.3735gCo(CH3COO)2·4H2O,在室温下加入至盛有6mLDMF的烧杯中,磁力搅拌至完全溶解后再加入1.0gPVP,持续搅拌得到均一、具有一定粘度的纺丝液;
7.2将纺丝液注入注射器,进行静电纺丝,得到前驱体纤维。纺丝过程的参数为:针头直径为0.6mm,电压为15kV,针头与接收板的距离为16cm,纺丝液推进速度为0.3mL/h,采用铝箔作为纤维接收装置;
7.3将实施例7.2中得到的前驱体纤维放入气氛炉中,采用高纯氮气为惰性气体,以5℃/min的升温速度升至300℃煅烧1h,然后以10℃/min的升温速率加热至700℃保温1h,煅烧后自然冷却至室温,即得到负载Co3O4纳米颗粒的碳纤维复合材料。所得碳纤维表面均匀分布有Co3O4颗粒,且颗粒分布密集,碳纤维直径为500纳米左右,Co3O4颗粒尺寸为60纳米左右。
对比例1
1.1称取0.1455gCo(NO3)2·6H2O加入至盛有6mL的DMF烧杯中,磁力搅拌至完全溶解后加入1.0gPVP,持续搅拌得到均一、具有一定粘度的纺丝液。
1.2其他步骤与实例1中的相同,最终产物因钴浓度变化负载的Co3O4在碳纤维上分布不均匀,且有部分嵌在纤维内部。
对比例2
2.1称取0.4365gCo(NO3)2·6H2O,加入1mlDMF中,加热至80-100℃搅拌至溶解,得到钴的溶胶液;称取1.0gPVP,加入5mlDMF中,加热至80-100℃搅拌至溶解,得到PVP的溶液;
2.2将钴的溶胶液滴加到PVP的溶液中,在80-100℃继续搅拌20-25h,得到纺丝液;
2.3按照实施例1的方法进行静电纺丝和煅烧,得到产品。所得纤维表面光滑,Co3O4纳米颗粒负载量很少,多嵌于碳纤维内部。

Claims (10)

1.一种负载Co3O4纳米颗粒的碳纤维复合材料的制备方法,其特征在于,包括以下步骤:
(1)纺丝液的制备:室温下,将钴源、聚乙烯吡咯烷酮和N,N-二甲基甲酰胺混合,搅拌均匀得前驱体纺丝液;
(2)静电纺丝过程:将步骤(1)中的前驱体纺丝液利用静电纺丝法进行纺丝,得到前驱体纤维;
(3)煅烧过程:将步骤(2)制备的前驱体纤维先在惰性气氛下升至300℃进行预煅烧,再在惰性气氛下升至500~700℃进行二次煅烧,然后自然冷却至室温,即得到负载Co3O4纳米颗粒的碳纤维复合材料。
2.根据权利要求1所述的制备方法,其特征是:步骤(1)中,所述钴源为六水合硝酸钴或四水合乙酸钴。
3.根据权利要求1或2所述的制备方法,其特征在于:步骤(1)中,钴源的的浓度为0.25~0.5mol/L。
4.根据权利要求1或3所述的制备方法,其特征在于:步骤(1)的前驱体纺丝液中,聚乙烯吡咯烷酮的质量浓度为0.13~0.17g/ml。
5.根据权利要求1所述的制备方法,其特征在于:步骤(3)中,预煅烧时间为1h。
6.根据权利要求1所述的制备方法,其特征在于:步骤(3)中,二次煅烧的时间为1~5h。
7.根据权利要求1、5或6所述的制备方法,其特征在于:步骤(3)中,预煅烧的升温速率为5℃/min;二次煅烧的升温速率为1~10℃/min。
8.按照权利要求1-7中任一项所述的负载Co3O4纳米颗粒的碳纤维复合材料的制备方法制备得到的负载Co3O4纳米颗粒的碳纤维复合材料,其特征是:由碳纤维和Co3O4纳米颗粒组成,所述Co3O4纳米颗粒均匀负载在碳纤维表面。
9.根据权利要求8所述的负载Co3O4纳米颗粒的碳纤维复合材料,其特征是:所述碳纤维直径为400~500nm,Co3O4纳米颗粒尺寸为50~100nm。
10.根据权利要求8所述的负载Co3O4纳米颗粒的碳纤维复合材料,其特征是:各负载Co3O4纳米颗粒的碳纤维相互交叠,形成疏松多孔结构。
CN201510692209.3A 2015-10-23 2015-10-23 一种负载Co3O4纳米颗粒的碳纤维复合材料的制备方法及所得产品 Expired - Fee Related CN105332097B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510692209.3A CN105332097B (zh) 2015-10-23 2015-10-23 一种负载Co3O4纳米颗粒的碳纤维复合材料的制备方法及所得产品

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510692209.3A CN105332097B (zh) 2015-10-23 2015-10-23 一种负载Co3O4纳米颗粒的碳纤维复合材料的制备方法及所得产品

Publications (2)

Publication Number Publication Date
CN105332097A true CN105332097A (zh) 2016-02-17
CN105332097B CN105332097B (zh) 2018-10-19

Family

ID=55282848

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510692209.3A Expired - Fee Related CN105332097B (zh) 2015-10-23 2015-10-23 一种负载Co3O4纳米颗粒的碳纤维复合材料的制备方法及所得产品

Country Status (1)

Country Link
CN (1) CN105332097B (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106629859A (zh) * 2016-09-22 2017-05-10 济南大学 一种CuO@CuFe2O4纳米管及其制备方法
CN106995948A (zh) * 2017-04-10 2017-08-01 吉林大学 一种氮掺杂碳纳米点/磁性金属氧化物复合纳米纤维材料、制备方法及其应用
CN108276874A (zh) * 2018-02-05 2018-07-13 西南石油大学 一种氧化锆/碳复合纤维改性环氧涂层的制备方法
CN108479832A (zh) * 2018-03-12 2018-09-04 合肥工业大学 一种非金属元素掺杂负载纳米零价镍碳纤维复合材料的制备方法
CN108642606A (zh) * 2018-04-11 2018-10-12 西安交通大学 四氧化三钴/碳纳米纤维复合材料及其制备方法和应用
CN109065808A (zh) * 2018-08-07 2018-12-21 河北工业大学 一种用于锂硫电池的功能性隔层的制备方法
CN109378222A (zh) * 2018-11-23 2019-02-22 山东大学 一种Fe2MoC-C复合超级电容器电极材料及制备方法
CN109755033A (zh) * 2019-03-08 2019-05-14 桂林电子科技大学 一种碳纤维负载钴氧化物复合材料及其制备方法和应用
CN109856203A (zh) * 2018-12-25 2019-06-07 许昌学院 镶嵌型合金/二氧化铈片/碳纤维复合纳米材料的制备方法及其应用研究
CN110707307A (zh) * 2019-10-22 2020-01-17 西京学院 中空纳米纤维Co3O4/S复合材料及制备方法与用途
CN111477890A (zh) * 2020-04-26 2020-07-31 陈怀付 一种碳纤维包覆纳米Co3O4的氧还原催化剂及其制法
CN114108135A (zh) * 2021-10-29 2022-03-01 山东大学 一种碳/氧化锰/钴纳米复合纤维及其制备方法与应用
CN114245941A (zh) * 2021-03-31 2022-03-25 宁德新能源科技有限公司 负极极片、电化学装置和电子装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104775185A (zh) * 2015-04-14 2015-07-15 济南大学 一种四氧化三钴珠链状纤维及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104775185A (zh) * 2015-04-14 2015-07-15 济南大学 一种四氧化三钴珠链状纤维及其制备方法

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106629859A (zh) * 2016-09-22 2017-05-10 济南大学 一种CuO@CuFe2O4纳米管及其制备方法
CN106995948A (zh) * 2017-04-10 2017-08-01 吉林大学 一种氮掺杂碳纳米点/磁性金属氧化物复合纳米纤维材料、制备方法及其应用
CN106995948B (zh) * 2017-04-10 2019-07-12 吉林大学 一种氮掺杂碳纳米点/磁性金属氧化物复合纳米纤维材料、制备方法及其应用
CN108276874A (zh) * 2018-02-05 2018-07-13 西南石油大学 一种氧化锆/碳复合纤维改性环氧涂层的制备方法
CN108479832A (zh) * 2018-03-12 2018-09-04 合肥工业大学 一种非金属元素掺杂负载纳米零价镍碳纤维复合材料的制备方法
CN108479832B (zh) * 2018-03-12 2020-08-07 合肥工业大学 一种非金属元素掺杂负载纳米零价镍碳纤维复合材料的制备方法
CN108642606A (zh) * 2018-04-11 2018-10-12 西安交通大学 四氧化三钴/碳纳米纤维复合材料及其制备方法和应用
CN109065808A (zh) * 2018-08-07 2018-12-21 河北工业大学 一种用于锂硫电池的功能性隔层的制备方法
CN109065808B (zh) * 2018-08-07 2021-09-10 河北工业大学 一种用于锂硫电池的功能性隔层的制备方法
CN109378222B (zh) * 2018-11-23 2020-02-11 山东大学 一种Fe2MoC-C复合超级电容器电极材料及制备方法
CN109378222A (zh) * 2018-11-23 2019-02-22 山东大学 一种Fe2MoC-C复合超级电容器电极材料及制备方法
CN109856203A (zh) * 2018-12-25 2019-06-07 许昌学院 镶嵌型合金/二氧化铈片/碳纤维复合纳米材料的制备方法及其应用研究
CN109755033A (zh) * 2019-03-08 2019-05-14 桂林电子科技大学 一种碳纤维负载钴氧化物复合材料及其制备方法和应用
CN110707307A (zh) * 2019-10-22 2020-01-17 西京学院 中空纳米纤维Co3O4/S复合材料及制备方法与用途
CN111477890A (zh) * 2020-04-26 2020-07-31 陈怀付 一种碳纤维包覆纳米Co3O4的氧还原催化剂及其制法
CN114245941A (zh) * 2021-03-31 2022-03-25 宁德新能源科技有限公司 负极极片、电化学装置和电子装置
CN114108135A (zh) * 2021-10-29 2022-03-01 山东大学 一种碳/氧化锰/钴纳米复合纤维及其制备方法与应用

Also Published As

Publication number Publication date
CN105332097B (zh) 2018-10-19

Similar Documents

Publication Publication Date Title
CN105332097A (zh) 一种负载Co3O4纳米颗粒的碳纤维复合材料的制备方法及所得产品
Xu et al. Highly porous Li4Ti5O12/C nanofibers for ultrafast electrochemical energy storage
Zhao et al. Highly flexible self-standing film electrode composed of mesoporous rutile TiO2/C nanofibers for lithium-ion batteries
Wu et al. CoFe2O4/C composite fibers as anode materials for lithium-ion batteries with stable and high electrochemical performance
Weng et al. Electrospun carbon nanofiber-based composites for lithium-ion batteries: structure optimization towards high performance
CN104176778B (zh) 一种分级多孔钒氧化物微球及其制备方法和应用
Liu et al. Mesoporous spinel Li4Ti5O12 nanoparticles for high rate lithium-ion battery anodes
Shi et al. Rapid microwave synthesis of self-assembled hierarchical Mn2O3 microspheres as advanced anode material for lithium ion batteries
CN109817932B (zh) 一步法制备N-掺杂多孔碳包覆SnO2-Co3O4复合材料的方法及其应用
CN107681195B (zh) 纳米石榴石型固体电解质材料的制备方法
Zhou et al. Preparation and characterization of ultralong spinel lithium manganese oxide nanofiber cathode via electrospinning method
CN106711432B (zh) 一种三维网状结构MoO2纳米材料及其制备和应用
CN104393272A (zh) 一种钛酸锂类负极复合材料及制备方法
Wu et al. Electrochemical studies on electrospun Li (Li1/3Ti5/3) O4 grains as an anode for Li-ion batteries
CN113816422B (zh) 金属钒酸盐纳米复合材料及其制备方法和锂离子二次电池
CN105375018A (zh) 一种珠链状钛酸锂纤维的制备方法及所得产品
CN106654190A (zh) 一维In2O3/C纤维复合材料、其制备方法和应用
CN105489863A (zh) 一种基于C/Ti4O7复合纳米纤维的锂硫电池正极材料及其制备方法
CN110079895A (zh) 一种钛酸盐与二氧化钛复合物纳米线及其制备方法
CN108821256A (zh) 一种纳米纤维状锂离子电池正极材料LiVPO4F的制备方法
CN106811834B (zh) 一种柔性三氧化二铁/四氧化三铁与氮掺杂碳复合纳米纤维的制备方法
CN102290253A (zh) 一种碳包覆纳米过渡金属氧化物及其制备方法
Chen et al. Ultrafine MoO 2 nanoparticles encapsulated in a hierarchically porous carbon nanofiber film as a high-performance binder-free anode in lithium ion batteries
KR101308736B1 (ko) 주석 산화물 함유 탄소나노섬유, 그의 제조방법 및 이를 이용한 리튬이차전지
CN108314010B (zh) 一种火焰法修饰的碳纳米管及其制备方法和应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20181019

Termination date: 20201023

CF01 Termination of patent right due to non-payment of annual fee