CN105331948B - 一种表面p型导电金刚石热沉材料的制备方法 - Google Patents

一种表面p型导电金刚石热沉材料的制备方法 Download PDF

Info

Publication number
CN105331948B
CN105331948B CN201510623007.3A CN201510623007A CN105331948B CN 105331948 B CN105331948 B CN 105331948B CN 201510623007 A CN201510623007 A CN 201510623007A CN 105331948 B CN105331948 B CN 105331948B
Authority
CN
China
Prior art keywords
diamond
film
boron
diamond film
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510623007.3A
Other languages
English (en)
Other versions
CN105331948A (zh
Inventor
魏俊俊
李成明
刘金龙
陈良贤
黑立富
高旭辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Beijing USTB
Original Assignee
University of Science and Technology Beijing USTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB filed Critical University of Science and Technology Beijing USTB
Priority to CN201510623007.3A priority Critical patent/CN105331948B/zh
Publication of CN105331948A publication Critical patent/CN105331948A/zh
Application granted granted Critical
Publication of CN105331948B publication Critical patent/CN105331948B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/272Diamond only using DC, AC or RF discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0227Pretreatment of the material to be coated by cleaning or etching
    • C23C16/0245Pretreatment of the material to be coated by cleaning or etching by etching with a plasma
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/274Diamond only using microwave discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/278Diamond only doping or introduction of a secondary phase in the diamond

Abstract

一种表面P型导电金刚石热沉材料的制备制备方法,属于金刚石自支撑膜应用技术领域。本发明以抛光的自支撑金刚石厚膜为基底,经微波氢等离子体表面处理后再沉积一层薄的具有P型导电能力的掺硼金刚石薄膜。由于属于同质外延生长,因此外延的导电层与衬底具有极佳的附着,界面热阻可减小到最低;微波CVD技术制备掺硼金刚石膜层,厚度可控、表面粗糙度低、膜层电导率高;中间采用氢等离子体处理基底表面,可对基底进行原子尺度的清洁,形成的氢悬挂键更有利于掺硼金刚石膜的外延生长。这种表面P型导电金刚石热沉材料可用于某些需要热沉材料表面导电的高功率电子器件封装领域。

Description

一种表面P型导电金刚石热沉材料的制备方法
技术领域
本发明涉及一种表面P型导电金刚石热沉材料的制备方法,该材料可用于高功率电子器件的封装,属于金刚石自支撑膜应用技术领域。
背景技术
在所有已知材料中,天然金刚石具有最高热导率,可达2000W·m-1k-1,是铜的5倍。随着CVD金刚石膜制备技术的不断发展,目前人工合成的CVD金刚石自支撑膜其热导率已经达到天然金刚石水平,且制备效率及成本已经足以满足商业化的需求,非常有望成为下一代电子器件的热沉封装材料。另一方面,通过人工掺杂等手段,可将原本呈绝缘态的金刚石转变为具有P型导电能力的半导体材料,其电阻率可从1012Ω·cm级骤降至10-3Ω·cm以下,从而进入半导体甚至导体的范畴,同时原本具有的优良物理及化学特性也能够得以延续。
在某些高功率电子封装领域,往往不仅需要封装衬底材料具有良好热导率及绝缘性,同时也希望这种衬底材料表面具有一定的导电层,传统的方法是在高导热绝缘衬底表面镀制一层导电金属来实现。倘若利用掺硼金刚石膜的导电特性及极佳的机械特性,将其外延至高导热金刚石自支撑膜表面,则有望形成一种整体的金刚石热沉材料,这种材料将同时满足高导热及表面导电的特性。
中国专利CN201010578837曾提出了一种制备金刚石热沉基片的方法,采用直流喷射CVD技术首先在金属或石墨基底上制备掺硼金刚石膜,然后外延非掺杂金刚石膜,脱膜后再进行双面研磨抛光获得金刚石膜复合基片。此方法的缺点包括:采用先沉积后研磨工艺,无法准确控制掺硼金刚石膜层厚度;其次直流喷射CVD技术合成掺硼金刚石膜可控性差、电导率低,无法满足实际应用要求。中国专利CN200810051719.2将金刚石自支撑膜用于高功率LED封装,但其主要涉及金刚石膜焊接至陶瓷片上,未对金刚石自支撑膜做处理。美国专利US6211461提出了一种采用金刚石作为热沉材料,结合铜基座用于电子器件装置的方法,同样金刚石自支撑膜表面未做处理。美国专利US6337513报道了一种将金刚石薄膜代替其它涂层用于芯片热沉材料的报道,未涉及导热能力更好的金刚石自支撑膜。
发明内容
本发明提出一种在高导热金刚石自支撑厚膜表面外延掺硼金刚石薄膜的结构。这种结构不但保证了整体材料具有最佳的热导率和机械强度,同时由于属于同质外延生长,膜层与基底不存在明显界面;采用氢等离子体处理基底表面,使得外延的掺硼金刚石膜附着力极佳,界面热阻低,保证了基底材料的高度绝缘和表面层的P型导电的完美结合。这种金刚石材料可用于某些需要热沉材料表面导电的高功率电子器件封装领域。
一种表面P型导电金刚石热沉材料的制备方法,采用直流电弧等离子体喷射CVD法制备金刚石自支撑膜,然后采用机械研磨及抛光的方式,获得双面抛光的金刚石自支撑导热片。将导热片切割成所需尺寸后清洗、烘干作为衬底材料,采用微波等离子体化学气相沉积技术依次在其表面进行氢终端处理和表面外延制备一定厚度掺硼金刚石薄膜。若需进行布线操作,可采用激光加工技术对掺硼金刚石膜层进行线路设计。
具体实施步骤
1:采用直流电弧等离子体喷射CVD(DCArcPlasmaJet)在钼衬底上制备无掺杂金刚石厚膜,生长温度900-1050℃,沉积时间50-100h。降温过程中薄膜自动从基底脱落形成高绝缘金刚石自支撑厚膜,薄膜电阻率≥1010Ω·cm;
2:采用机械研磨及抛光技术对高绝缘金刚石自支撑厚膜进行加工,减少其表面粗糙度Ra至5-20nm,获得的双面抛光金刚石自支撑膜。
3:采用激光加工技术对获得的双面抛光金刚石自支撑膜进行切割,获得形状规则的金刚石自支撑膜片,金刚石自支撑膜片热导率需≥1600W·m-1k-1
4:将步骤3所述金刚石自支撑膜片分别采用丙酮和酒精清洗,随后烘干,放入微波等离子体化学气相沉积系统。
5:开启微波等离子体CVD系统进行氢等离子体处理,氢气流量100-200sccm,衬底温度600-800℃,时间0.5-2h。
6:随后将含硼液体(硼酸三甲酯、三甲基硼等)通过载气(氢气)带入微波等离子体化学气相沉积系统反应室,沉积掺硼金刚石膜。反应气体H2流量100-200sccm,CH4流量1-4sccm;载气流量2-8sccm,温度700-800℃,沉积时间6-10h,制备6-10μm厚掺硼金刚石薄膜。
7:根据电子器件封装要求,对获得的表面P型导电的层状金刚石热沉体进行表面激光刻蚀加工,获得合适的线路分布。
本发明的优点及积极效果:
金刚石自支撑膜具有最佳的导热效果,其热导率是铜的5倍,且高度绝缘,是目前高功率及超高功率电子器件封装的理想热沉材料。在某些特殊的电子器件封装领域,甚至需要在热沉材料表面进行导电布线设计,因此往往需要在原有高导热衬底材料表面镀制一层金属导电层。这种导电层与高导热衬底多属于异质材料,各方面性能往往差异极大,在电子器件大发热量的情况下这种异质结构存在膜层脱落、界面热阻过大等缺陷。而采用在金刚石自支撑厚膜表面同质外延掺硼金刚石薄膜的设计,可在获得表面导电层的同时,彻底解决异质外延层存在的附着力不足、界面热阻过大的问题;
本发明的突出优势在于:
1)采用微波等离子体CVD技术在自支撑金刚石膜表面制备掺硼金刚石膜,膜层厚度可根据生长时间进行准确控制,且生长表面粗糙度低,不需额外研磨抛光即可满足应用要求;
2)微波等离子体CVD掺硼效果较直流喷射CVD更好,有利于获得电导率更高的掺硼金刚石膜层,适用于高电导率膜层的制备;
3)在沉积掺硼金刚石外延层之前,采用氢等离子体处理自支撑金刚石膜基底表面,可在原子尺度对金刚石衬底表面进行洁净化处理,同时在浅表层获得P型导电层,表面悬挂的氢终端更有利于掺硼金刚石膜同质外延生长。
具体实施方式
实施例1:以100mm直径高温钼为衬底材料,先对其进行表面镀制过渡层处理,然后采用金刚石粉进行手工研磨提高后续镀膜形核率。采用直流电弧等离子体喷射CVD系统,氩气/氢气/甲烷为反应气源,沉积时间100h,温度1050℃,沉积厚度约800μm,获得直径100mm完整金刚石自支撑膜。然后分别进行机械研磨及抛光,磨料为粒度不同的金刚石粉,最后获得双面粗糙度小于20nm,整体厚度500μm金刚石自支撑膜。采用激光切割技术将金刚石自支撑膜加工成20mm×20mm金刚石片,并用丙酮及酒精进行清洗,随后烘干留作衬底用。采用微波等离子体化学气相沉积系统,激发氢气获得氢等离子体,氢气流量100sccm,衬底温度800℃,处理时间0.5h,以便获得具有P型导电的氢终端金刚石膜表面;随后保持MPCVD系统处于工作状态,硼酸三甲酯为硼源,氢气为载气,流量为6sccm,甲烷/氢气为反应气体(其中氢气流量200sccm,甲烷流量1.5sccm),衬底温度750℃,沉积时间8h,获得8μm厚掺硼金刚石薄膜。最终形成层状高导热、表面p型导电金刚石热沉体,经测试整体材料热导率1750W·m-1k-1,表面电阻率1×10-2Ω·cm,为P型导电。
实施例2:以实施例1中同样的自支撑金刚石厚膜为基底,采用微波等离子体化学气相沉积系统,激发氢气获得氢等离子体进行等离子体表面处理,氢气流量100sccm,衬底温度700℃,处理时间1h;随后保持MPCVD系统处于工作状态,硼酸三甲酯为硼源,氢气为载气,氢气为载气,流量为8sccm,甲烷/氢气为反应气体(其中氢气流量200sccm,甲烷流量4sccm),衬底温度800℃,沉积时间6h,获得10μm厚掺硼金刚石薄膜。最终形成层状高导热、表面p型导电金刚石热沉体,经测试整体材料热导率1600W·m-1k-1,表面电阻率7.7×10-3Ω·cm,为P型导电。
实施例3:以实施例1中同样的自支撑金刚石厚膜为基底,采用微波等离子体化学气相沉积系统,激发氢气获得氢等离子体进行等离子体表面处理,氢气流量200sccm,衬底温度600℃,处理时间2h;随后保持MPCVD系统处于工作状态,硼酸三甲酯为硼源,氢气为载气,氢气为载气,流量为2sccm,甲烷/氢气为反应气体(其中氢气流量100sccm,甲烷流量1sccm),衬底温度700℃,沉积时间10h,获得6μm厚掺硼金刚石薄膜。最终形成层状高导热、表面p型导电金刚石热沉体,经测试整体材料热导率1780W·m-1k-1,表面电阻率1.5×10-2Ω·cm,为P型导电。

Claims (2)

1.一种表面P型导电金刚石热沉材料的制备方法,其特征在于采用直流电弧等离子体喷射CVD法制备金刚石自支撑膜,然后采用机械研磨及抛光的方式,获得双面抛光的金刚石自支撑导热片;将导热片切割成所需尺寸后清洗、烘干作为衬底材料,采用微波等离子体化学气相沉积技术依次在其表面进行氢终端处理和表面外延制备一定厚度掺硼金刚石薄膜;
具体实施步骤为:
(1)、采用直流电弧等离子体喷射CVD在钼衬底上制备无掺杂金刚石厚膜,生长温度900-1050℃,沉积时间50-100h;降温过程中薄膜自动从基底脱落形成高绝缘金刚石自支撑厚膜,薄膜电阻率≥1010Ω·cm;
(2)、采用机械研磨及抛光技术对高绝缘金刚石自支撑厚膜进行加工,减少其表面粗糙度Ra至5-20nm,获得的双面抛光金刚石自支撑膜;
(3)、采用激光加工技术对获得的双面抛光金刚石自支撑膜进行切割,获得形状规则的金刚石自支撑膜片,金刚石自支撑膜片热导率需≥1600W·m-1k-1
(4)、将步骤(3)所述金刚石自支撑膜片分别采用丙酮和酒精清洗,随后烘干,放入微波等离子体化学气相沉积系统;
(5)、开启微波等离子体CVD系统进行氢等离子体处理,氢气流量100-200sccm,衬底温度600-800℃,时间0.5-2h;
(6)、随后将含硼液体通过载气带入反应室,沉积掺硼金刚石膜;反应气体H2流量100-200sccm,CH4流量1-4sccm;载气流量2-8sccm,温度700-800℃,沉积时间6-10h,制备6-10μm厚掺硼金刚石薄膜;
(7)、根据电子器件封装要求,对获得的表面P型导电的层状金刚石热沉体进行表面激光刻蚀加工,获得合适的线路分布。
2.如权利要求1所述一种表面P型导电金刚石热沉材料的制备方法,其特征在于步骤(6)所述含硼液体为硼酸三甲酯、三甲基硼,载气为氢气。
CN201510623007.3A 2015-09-25 2015-09-25 一种表面p型导电金刚石热沉材料的制备方法 Active CN105331948B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510623007.3A CN105331948B (zh) 2015-09-25 2015-09-25 一种表面p型导电金刚石热沉材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510623007.3A CN105331948B (zh) 2015-09-25 2015-09-25 一种表面p型导电金刚石热沉材料的制备方法

Publications (2)

Publication Number Publication Date
CN105331948A CN105331948A (zh) 2016-02-17
CN105331948B true CN105331948B (zh) 2017-11-28

Family

ID=55282702

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510623007.3A Active CN105331948B (zh) 2015-09-25 2015-09-25 一种表面p型导电金刚石热沉材料的制备方法

Country Status (1)

Country Link
CN (1) CN105331948B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10494713B2 (en) * 2015-04-16 2019-12-03 Ii-Vi Incorporated Method of forming an optically-finished thin diamond film, diamond substrate, or diamond window of high aspect ratio
CN107419329B (zh) * 2017-05-22 2019-08-27 北京科技大学 单晶金刚石表面原位n型半导体化全碳结构的制备方法
CN107400923B (zh) * 2017-07-24 2020-10-27 哈尔滨工业大学 一种增强金刚石热导率的方法
WO2019127423A1 (zh) * 2017-12-29 2019-07-04 深圳前海小有技术有限公司 具有复合金刚石衬底的led芯片及其制备方法
CN109911894A (zh) * 2019-03-31 2019-06-21 河北地质大学 微波等离子体化学气相沉积法生长多晶金刚石片的方法
CN111441031A (zh) * 2019-12-23 2020-07-24 上海征世科技有限公司 可拆卸的、可用于真空密封用的单晶金刚石窗口
CN111733454B (zh) * 2020-05-20 2022-08-23 西南科技大学 基于掺硼过渡层的cvd同质外延金刚石大单晶的分离方法
CN114501828A (zh) * 2022-02-21 2022-05-13 太原理工大学 一种高效散热金刚石印刷电路板的制备方法
CN115418622A (zh) * 2022-09-21 2022-12-02 山东欣远新材料科技有限公司 一种掺硼金刚石电极及其制备方法、制备装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000256850A (ja) * 1999-03-04 2000-09-19 Riken Corp ダイヤモンドライクカーボン薄膜及びその製造方法
CN102157353B (zh) * 2010-12-03 2012-03-21 北京科技大学 一种高导热集成电路用金刚石基片的制备方法

Also Published As

Publication number Publication date
CN105331948A (zh) 2016-02-17

Similar Documents

Publication Publication Date Title
CN105331948B (zh) 一种表面p型导电金刚石热沉材料的制备方法
CN109722641B (zh) 金刚石/石墨烯复合导热膜及其制备方法和散热系统
JP3445393B2 (ja) ヒートシンクした電子部品の作成方法及びその電子部品
CN102318093B (zh) 用于led发光元件的复合材料基板、其制造方法及led发光元件
CN107419329B (zh) 单晶金刚石表面原位n型半导体化全碳结构的制备方法
JP2603257B2 (ja) ダイヤモンド多層薄膜
CN109742026B (zh) 直接生长法制备金刚石辅助散热碳化硅基底GaN-HEMTs的方法
CN101481792B (zh) 一种硼掺杂金刚石超导材料的制备方法
CN102102220A (zh) 金刚石(111)面上的石墨烯制备方法
CN101935837B (zh) 一种铜基镶嵌结构界面金刚石涂层及其制备方法和应用
CN107523828B (zh) 一种GaN与金刚石复合散热结构的制备方法
JPWO2004104272A1 (ja) ダイヤモンド被覆電極及びその製造方法
CN207775345U (zh) 金刚石/石墨烯复合导热膜和散热系统
CN108588822A (zh) 不间断动态原位合成单晶与超纳米金刚石复合结构的方法
CN104947068A (zh) 一种金刚石热沉片的制备方法
JPS61251158A (ja) 放熱基板
CN103797598A (zh) Led发光元件保持基板用包覆材料及其制造方法
JP4166346B2 (ja) 耐蝕性部材、耐蝕性部材の製造方法および腐食性物質の加熱装置
TW201139676A (en) Diamond neural devices and associated methods
CN113089093B (zh) 金刚石半导体结构的形成方法
CN111129184A (zh) 一种高效散热半导体衬底及其制备方法
CN109825815A (zh) 一种降低金刚石/铜导热复合材料界面热阻的制备方法
CN207134352U (zh) 氮化镓器件结构
CN108597993A (zh) 一种氮化镓/金刚石的直接键合方法
CN110504229A (zh) 一种高导热材料及其制备方法和应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant